دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: DasGupta. Bhaskar
سری: IEEE Press Series on Biomedical Engineering 30
ISBN (شابک) : 9781119162254, 1119162262
ناشر: Wiley-IEEE Press
سال نشر: 2016
تعداد صفحات: 255
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 12 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
کلمات کلیدی مربوط به کتاب مدلها و الگوریتمهای بیومولکولها و شبکههای مولکولی: زیست مولکول ها، روابط ساختار-فعالیت (بیوشیمی)، علم، علوم زیستی، بیوفیزیک
در صورت تبدیل فایل کتاب Models and Algorithms for Biomolecules and Molecular Networks به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مدلها و الگوریتمهای بیومولکولها و شبکههای مولکولی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این مرجع با ارائه توضیحاتی به اصول مدلسازی، نظریهها، راهحلهای محاسباتی و مسائل باز، دامنه کاملی را در مورد پدیدههای بیولوژیکی مرتبط، چارچوبهای مدلسازی، چالشهای فنی و الگوریتمها ارائه میدهد. پیشرفتهای بهروز ساختارهای زیستمولکولها، زیستشناسی سیستمها، مدلهای پیشرفته و الگوریتمها تکنیکهای نمونهبرداری برای تخمین نرخهای تکاملی و تولید ساختارهای مولکولی.
By providing expositions to modeling principles, theories, computational solutions, and open problems, this reference presents a full scope on relevant biological phenomena, modeling frameworks, technical challenges, and algorithms. Up-to-date developments of structures of biomolecules, systems biology, advanced models, and algorithms Sampling techniques for estimating evolutionary rates and generating molecular structures Accurate computation of probability landscape of stochastic networks, solving discrete chemical master equations End-of-chapter exercises
Content: List of Figures xiii --
List of Tables xix --
Foreword xxi --
Acknowledgments xxiii --
1 Geometric Models of Protein Structure and Function Prediction 1 --
1.1 Introduction, 1 --
1.2 Theory and Model, 2 --
1.2.1 Idealized Ball Model, 2 --
1.2.2 Surface Models of Proteins, 3 --
1.2.3 Geometric Constructs, 4 --
1.2.4 Topological Structures, 6 --
1.2.5 Metric Measurements, 9 --
1.3 Algorithm and Computation, 13 --
1.4 Applications, 15 --
1.4.1 Protein Packing, 15 --
1.4.2 Predicting Protein Functions from Structures, 17 --
1.5 Discussion and Summary, 20 --
References, 22 --
Exercises, 25 --
2 Scoring Functions for Predicting Structure and Binding of Proteins 29 --
2.1 Introduction, 29 --
2.2 General Framework of Scoring Function and Potential Function, 31 --
2.2.1 Protein Representation and Descriptors, 31 --
2.2.2 Functional Form, 32 --
2.2.3 Deriving Parameters of Potential Functions, 32 --
2.3 Statistical Method, 32 --
2.3.1 Background, 32 --
2.3.2 Theoretical Model, 33 --
2.3.3 Miyazawa --
Jernigan Contact Potential, 34 --
2.3.4 Distance-Dependent Potential Function, 41 --
2.3.5 Geometric Potential Functions, 45 --
2.4 Optimization Method, 49 --
2.4.1 Geometric Nature of Discrimination, 50 --
2.4.2 Optimal Linear Potential Function, 52 --
2.4.3 Optimal Nonlinear Potential Function, 53 --
2.4.4 Deriving Optimal Nonlinear Scoring Function, 55 --
2.4.5 Optimization Techniques, 55 --
2.5 Applications, 55 --
2.5.1 Protein Structure Prediction, 56 --
2.5.2 Protein --
Protein Docking Prediction, 56 --
2.5.3 Protein Design, 58 --
2.5.4 Protein Stability and Binding Affinity, 59 --
2.6 Discussion and Summary, 60 --
2.6.1 Knowledge-Based Statistical Potential Functions, 60 --
2.6.2 Relationship of Knowledge-Based Energy Functions and Further Development, 64 --
2.6.3 Optimized Potential Function, 65 --
2.6.4 Data Dependency of Knowledge-Based Potentials, 66 --
References, 67 --
Exercises, 75 --
3 Sampling Techniques: Estimating Evolutionary Rates and Generating Molecular Structures 79. 3.1 Introduction, 79 --
3.2 Principles of Monte Carlo Sampling, 81 --
3.2.1 Estimation Through Sampling from Target Distribution, 81 --
3.2.2 Rejection Sampling, 82 --
3.3 Markov Chains and Metropolis Monte Carlo Sampling, 83 --
3.3.1 Properties of Markov Chains, 83 --
3.3.2 Markov Chain Monte Carlo Sampling, 85 --
3.4 Sequential Monte Carlo Sampling, 87 --
3.4.1 Importance Sampling, 87 --
3.4.2 Sequential Importance Sampling, 87 --
3.4.3 Resampling, 91 --
3.5 Applications, 92 --
3.5.1 Markov Chain Monte Carlo for Evolutionary Rate Estimation, 92 --
3.5.2 Sequentail Chain Growth Monte Carlo for Estimating Conformational Entropy of RNA Loops, 95 --
3.6 Discussion and Summary, 96 --
References, 97 --
Exercises, 99 --
4 Stochastic Molecular Networks 103 --
4.1 Introduction, 103 --
4.2 Reaction System and Discrete Chemical Master Equation, 104 --
4.3 Direct Solution of Chemical Master Equation, 106 --
4.3.1 State Enumeration with Finite Buffer, 106 --
4.3.2 Generalization and Multi-Buffer dCME Method, 108 --
4.3.3 Calculation of Steady-State Probability Landscape, 108 --
4.3.4 Calculation of Dynamically Evolving Probability Landscape, 108 --
4.3.5 Methods for State Space Truncation for Simplification, 109 --
4.4 Quantifying and Controlling Errors from State Space Truncation, 111 --
4.5 Approximating Discrete Chemical Master Equation, 114 --
4.5.1 Continuous Chemical Master Equation, 114 --
4.5.2 Stochastic Differential Equation: Fokker --
Planck Approach, 114 --
4.5.3 Stochastic Differential Equation: Langevin Approach, 116 --
4.5.4 Other Approximations, 117 --
4.6 Stochastic Simulation, 118 --
4.6.1 Reaction Probability, 118 --
4.6.2 Reaction Trajectory, 118 --
4.6.3 Probability of Reaction Trajectory, 119 --
4.6.4 Stochastic Simulation Algorithm, 119 --
4.7 Applications, 121 --
4.7.1 Probability Landscape of a Stochastic Toggle Switch, 121 --
4.7.2 Epigenetic Decision Network of Cellular Fate in Phage Lambda, 123 --
4.8 Discussions and Summary, 127 --
References, 128.