دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Soumendra Nath Kuiry. Dhrubajyoti Sen
سری:
ISBN (شابک) : 0367255782, 9780367255787
ناشر: CRC Press
سال نشر: 2021
تعداد صفحات: 193
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 18 مگابایت
در صورت تبدیل فایل کتاب Modelling Hydrology, Hydraulics and Contaminant Transport Systems in Python به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مدلسازی سیستمهای هیدرولوژی، هیدرولیک و انتقال آلاینده در پایتون نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب جنبه های نظری فرآیندهای فیزیکی، استخراج معادلات حاکم و حل آنها را پوشش می دهد. بر روی هیدرولیک، هیدرولوژی و حمل و نقل آلاینده ها، از جمله اجرای کدهای کامپیوتری با مثال های عملی تمرکز دارد. کدهای کامپیوتری مبتنی بر پایتون برای همه رویکردهای راه حل برای درک بهتر و پیاده سازی آسان ارائه شده است. مدلهای ریاضی از طریق برنامههای کاربردی نشان داده شده و نتایج از طریق جداول دادهها، نمودارها و مقایسه با دادههای تحلیلی و تجربی تحلیل میشوند. این مفاهیم برای حل کاربردهای عملی مانند جریان آب سطحی و زیرزمینی، مسیریابی سیلاب، نیاز آب محصول و برنامه ریزی آبیاری استفاده می شود.
این کتاب برای دانشجویان ارشد و فارغ التحصیلان رشته های مهندسی عمران، مهندسی سواحل، هیدرولوژی و مهندسی منابع آب است.
This book covers theoretical aspects of the physical processes, derivation of the governing equations and their solutions. It focusses on hydraulics, hydrology, and contaminant transport, including implementation of computer codes with practical examples. Python-based computer codes for all the solution approaches are provided for better understanding and easy implementation. The mathematical models are demonstrated through applications and the results are analyzed through data tables, plots, and comparison with analytical and experimental data. The concepts are used to solve practical applications like surface and ground water flow, flood routing, crop water requirement and irrigation scheduling.
This book is aimed at senior undergraduates and graduate students in Civil Engineering, Coastal Engineering, Hydrology, and Water Resources Engineering.
Cover Half Title Title Page Copyright Page Table of Contents Preface About the Authors Chapter 1: Introduction to Modelling in Hydrology, Hydraulics, and Contaminant Transport 1.1 Examples of Different Types of Models in Water Systems: Deterministic, Stochastic, Data-Based, and Others 1.2 Choosing a Numerical Approach for Flow and Transport Modelling 1.3 Python as the Preferred Programming Platform 1.4 Pedagogical Emphasis 1.5 Types of Models Treated in the Book Chapter 2: Non-Linear and Simultaneous Equations 2.1 Examples of Non-Linear Functions 2.1.1 Normal Depth of Flow in a Trapezoidal Channel 2.1.2 Height and Velocity of a Surge Wave 2.1.3 Depth of Flow in a Constricted and Raised Channel Section 2.2 System of Equations 2.2.1 System of Reactors – Steady-State Analysis 2.2.2 Steady-State Distribution of Flow in Pipe Networks 2.2.3 Derivation of the Unit Hydrograph 2.3 Solution Techniques 2.3.1 Non-Linear Equations in One Variable 2.3.2 Linear Simultaneous Equations 2.3.3 Non-Linear Simultaneous Equations 2.4 Python Programs 2.4.1 Non-Linear Equations in One Variable: Finding Uniform Flow Depth in a Channel 2.4.2 Non-Linear Equations in One Variable: Finding the Height and Velocity of a Surge Wave 2.4.3 Non-Linear Equations in One Variable: Finding the Depth of flow above a Hump in a Contraction 2.4.4 Solution of Linear Simultaneous Equations: Concentrations in Interconnected Reactors 2.4.5 Solution of Linear Simultaneous Equations: Derivation of the Unit Hydrograph 2.4.6 Solution of Non-Linear Simultaneous Equations: Flow Distribution in a Three-Pipe Network 2.4.7 Solution of Non-Linear Simultaneous Equations: Flow Distribution in a General Pipe Network References Chapter 3: Ordinary Differential Equations 3.1 Examples of Ordinary Differential Equations in Hydrology, Hydraulics, and Water Resources Engineering 3.1.1 Emptying of a Water Tank 3.1.2 Computing Flood Outflow from the Spillway of a Dam by the Level-Pool Routing Method 3.1.3 Water Surface Profile for Steady-State Gradually Varied Flows 3.1.4 Steady-State Concentration Profile for Dissolved Oxygen and Biochemical Oxygen Demand in One-Dimensional Flows 3.1.5 Oscillations of Water Level in a Surge Tank 3.1.6 Recharge of Rainwater into Ground and Steady-State Groundwater-Table Profile 3.1.7 Steady-State Concentration Profile for Contaminant Injection in One-Dimensional Channel Flows 3.2 Solution Techniques 3.2.1 First-Order Ordinary Differential Equations 3.2.1.1 Euler’s Method 3.2.1.2 Fourth-Order Runge–Kutta Method 3.2.1.3 Accuracy and Stability 3.2.2 Second-Order Ordinary Differential Equations 3.2.3 Two-Point Boundary Value Problems 3.3 Python Programs 3.3.1 First-Order ODE: Solving the Tank Filling and Emptying Problem Using Heun’s Method 3.3.2 First-Order ODE: Flood Routing through a Reservoir and Spillway Using Heun’s Method 3.3.3 First-Order ODE: Computation of the Back-Water Gradually Varied Flow Profile Using Fourth-Order Runge–Kutta (RK4) Method 3.3.4 First-Order ODE: Computing the Steady-State BOD and DO Concentration Profiles in a One-Dimensional Stream Using Heun’s Method 3.3.5 Second-Order ODE: Surge-Tank Oscillation Problem Solved Using Heun’s Method 3.3.6 Second-Order ODE: Steady-State Groundwater Table Profile for Recharge and Withdrawal 3.3.7 Second-Order ODE: Computing the Steady-State Concentration Profile for Point Loadings in One-Dimensional Channel Flow References Chapter 4: Partial Differential Equations in Surface Hydrology, Free Surface Flows, and Ideal Fluid Flows 4.1 Governing Equations of Free Surface Flow 4.1.1 Governing Equations of Flow in a Prismatic Channel 4.1.2 Ideal Fluid Flow 4.1.3 Governing Equations of Two-Dimensional Depth-Averaged Flows 4.2 Numerical Methods for Solving the Flow Equations 4.2.1 Solving the Kinematic Wave Equation for Flow in a Prismatic Channel with Lateral Inflows 4.2.2 Routing a Flood Wave by the Kinematic Wave Approximation in a Triangular Channel 4.2.3 Open-Book Catchment Hydrograph with the Kinematic Wave Approximation 4.2.4 Simulation of Unsteady Flows in a Channel Using the St. Venant Equations 4.2.5 Ideal Fluid Flow Equation Solving 4.2.6 Simulation of Two-Dimensional Depth-Averaged Flows in a Shallow Basin 4.3 Python Programs 4.3.1 Flow in a Rectangular Channel with Lateral Inflows Solved by the Kinematic Wave Equation 4.3.2 Routing a Flood Hydrograph by the Kinematic Wave Approximation in a Triangular Channel 4.3.3 Simulation of a Simplified Open-Book Catchment Hydrograph with the Kinematic Wave Approximation 4.3.4 Simulation of a Surge Wave in a Trapezoidal Channel Using the St. Venant Equations 4.3.5 Simulation of Streamlines in an Ideal Fluid Flow 4.3.6 Two-Dimensional Depth-Averaged Flows in a Shallow Basin References Chapter 5: Partial Differential Equations in Subsurface Flows 5.1 Governing Equations of Subsurface Flows 5.1.1 Governing Equations of Flow in an Unconfined Aquifer 5.1.2 Governing Equations of Flow in a Confined Aquifer 5.1.3 Governing Equation of Steady-State Seepage in the Vertical Plane 5.2 Numerical Methods for Solving the Groundwater and Seepage Flow Equations 5.2.1 Solving the Unsteady One-Dimensional Groundwater Flow in an Unconfined Aquifer 5.2.2 Solving the Unsteady Two-Dimensional Groundwater Flow in an Unconfined Aquifer 5.2.3 Steady-State Seepage below Floors and Piles 5.3 Python Programs 5.3.1 Unsteady One-Dimensional Groundwater Flow in an Unconfined Aquifer 5.3.2 Unsteady Two-Dimensional Groundwater Flow in an Unconfined Aquifer 5.3.3 Steady Seepage below a Weir Floor and Sheet Pile References Chapter 6: Partial Differential Equations in Contaminant Transport 6.1 Governing Equations 6.1.1 Governing Equations for Reaction-Diffusion, without Advection 6.1.2 Governing Equations for Advection and Diffusion 6.1.3 Governing Equations for Advection, Diffusion, and Reaction 6.2 Numerical Methods for Finding the Fate of a Contaminant 6.2.1 Solving the One-Dimensional Unsteady Reaction-Diffusion Problem 6.2.2 Solving the One-Dimensional Unsteady Advection-Diffusion Problem 6.2.3 Solving the One-Dimensional Combined Unsteady Advection, Diffusion, and Reaction Equation 6.2.4 Solving the Two-Dimensional Unsteady Advection and Diffusion Equation 6.3 Python Programs 6.3.1 One-Dimensional Unsteady Reaction-Diffusion Problem 6.3.2 One-Dimensional Unsteady Advection-Diffusion Problem 6.3.3 Two-Dimensional Unsteady Advection-Diffusion Problem 6.3.4 Contaminant Dispersion for Seepage below Sheet Pile and Floor References Chapter 7: Simple Data-Based Models 7.1 Environmental Data and Motivation for Data Analysis 7.1.1 Time-Series Data: Variations in Time 7.1.1.1 Hourly Record of Temperature and Humidity 7.1.1.2 Record of Daily River Stage and Discharge 7.1.1.3 Variation of the Rate of Infiltration in Soil with Time 7.1.2 Data Recorded in One-Dimensional Space 7.1.2.1 Velocity at a Point in a Channel 7.1.2.2 Elevation Versus Reservoir Capacity 7.1.2.3 Variation of Sediment Concentration with Depth in a Channel 7.1.3 Area of a Closed Polygon 7.2 Solution Techniques 7.2.1 Interpolation 7.2.2 Regression 7.2.3 Area-Finding and Numerical integration 7.3 Python Programs 7.3.1 Interpolation 7.3.2 Regression 7.3.3 Computation of Area 7.3.4 Numerical Integration References Index