دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: David Jamieson Bolder
سری: Contributions to Finance and Accounting
ISBN (شابک) : 3030950956, 9783030950958
ناشر: Springer
سال نشر: 2022
تعداد صفحات: 840
[841]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 18 Mb
در صورت تبدیل فایل کتاب Modelling Economic Capital: Practical Credit-Risk Methodologies, Applications, and Implementation Details به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مدلسازی سرمایه اقتصادی: روشهای عملی ریسک اعتباری، کاربردها و جزئیات پیادهسازی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
چگونه می توان تشخیص داد که یک موسسه مالی به شیوه ای متعادل و سازنده ریسک می کند؟ یک ابزار قدرتمند برای پرداختن به این سوال، سرمایه اقتصادی است، که معیاری مبتنی بر مدل از مقدار حقوق صاحبان سهامی است که یک واحد تجاری باید برای جبران رضایتبخش فعالیتهای ریسکزای خود نگه دارد. این کتاب، با تمرکز ویژه بر بعد ریسک اعتباری، روشها و کاربردهای سرمایه اقتصادی در دنیای واقعی را بررسی میکند. این با مسائل عملی خاردار پیرامون ساخت یک مدل سرمایه اقتصادی-ریسک اعتباری (با قدرت صنعتی)، تعیین پارامترهای آن و اطمینان از اجرای کارآمد آن آغاز میشود. سپس نگاه خود را به بررسی کاربردهای مختلف و گسترش سرمایه اقتصادی گسترده می کند. اینها شامل قیمت گذاری وام، محاسبه کاهش ارزش وام، و تست استرس است. در طول مسیر، معمولاً با استفاده از اصول اولیه، گزینههای مختلف مدلسازی ممکن و مفاهیم مرتبط مورد بررسی قرار میگیرند. نتیجه نهایی یک مرجع مفید برای دانشآموزان و شاغلانی است که میخواهند درباره یک دستگاه مدیریت مالی بسیار مهم بیشتر بیاموزند.
How might one determine if a financial institution is taking risk in a balanced and productive manner? A powerful tool to address this question is economic capital, which is a model-based measure of the amount of equity that an entity must hold to satisfactorily offset its risk-generating activities. This book, with a particular focus on the credit-risk dimension, pragmatically explores real-world economic-capital methodologies and applications. It begins with the thorny practical issues surrounding the construction of an (industrial-strength) credit-risk economic-capital model, defensibly determining its parameters, and ensuring its efficient implementation. It then broadens its gaze to examine various critical applications and extensions of economic capital; these include loan pricing, the computation of loan impairments, and stress testing. Along the way, typically working from first principles, various possible modelling choices and related concepts are examined. The end result is a useful reference for students and practitioners wishing to learn more about a centrally important financial-management device.
Foreword Preface An Analyst's Objectives Analytic Axioms #1: Multiplicity of Perspective #2: Many Eyes #3: Pictures and Words #4: The Three Little Pigs #5: The Best for Last Why This Book? Acknowledgements References Testimonials Contents 1 Introducing Economic Capital 1.1 Presenting the Nordic Investment Bank 1.2 Defining Capital 1.2.1 The Risk Perspective 1.2.2 Capital Supply and Demand 1.3 An Enormous Simplification 1.4 Categorizing Risk 1.5 Risk Fundamentals 1.5.1 Two Silly Games 1.5.2 A Fundamental Characterization 1.5.3 Introducing Concentration 1.5.4 Modelling 101 1.6 Managing Models 1.7 NIB's Portfolio 1.8 Looking Forward 1.9 Wrapping Up References Part I Modelling Credit-Risk Economic Capital 2 Constructing a Practical Model 2.1 A Naive, but Informative, Start 2.2 Mixture and Threshold Models 2.2.1 The Mixture Model 2.2.2 The Threshold Model 2.3 Asset-Return Dynamics 2.3.1 Time Discretization 2.3.2 Normalization 2.3.3 A Matrix Formulation 2.3.4 Orthogonalization 2.4 The Legacy Model 2.4.1 Introducing Default 2.4.2 Stochastic Recovery 2.4.3 Risk Metrics 2.5 Extending the Legacy Model 2.5.1 Changing the Copula 2.5.2 Constructing the t Copula 2.5.3 Default Correlation 2.5.4 Modelling Credit Migration 2.5.5 The Nuts and Bolts of Credit Migration 2.6 Risk Attribution 2.6.1 The Simplest Case 2.6.2 An Important Relationship 2.6.3 The Computational Path 2.6.4 A Clever Trick 2.7 Wrapping Up References 3 Finding Model Parameters 3.1 Credit States 3.1.1 Defining Credit Ratings 3.1.2 Transition Matrices 3.1.3 Default Probabilities 3.2 Systemic Factors 3.2.1 Factor Choice 3.2.2 Systemic-Factor Correlations Which Matrix? Which Correlation Measure? What Time Period? 3.2.3 Distinguishing Systemic Weights and Factor Loadings 3.2.4 Systemic-Factor Loadings Some Key Principles A Loading Estimation Approach A Simplifying Assumption Normalization 3.2.5 Systemic Weights A Systemic-Weight Dataset Estimating Correlations Imposing Strict Monotonicity A Final Look 3.3 A Portfolio Perspective 3.3.1 Systemic Proportions 3.3.2 Factor-, Asset-, and Default-Correlation 3.3.3 Tail Dependence 3.4 Recovery Rates 3.5 Credit Migration 3.5.1 Spread Duration 3.5.2 Credit Spreads The Theory Pricing Credit Risky Instruments The Credit-Spread Model Credit-Spread Estimation 3.6 Wrapping Up References 4 Implementing the Model 4.1 Managing Expectations 4.2 A System Architecture 4.3 The Data Layer 4.3.1 Key Data Inputs Peculiarities of Loan Exposures 4.4 The Application Layer 4.4.1 Purchase or Build Application Software? 4.4.2 Which Programming Environment? 4.4.3 The Application Environment 4.4.4 A High-Level Code Overview 4.4.5 Book-Keeping and Parameter Assignment 4.4.6 The Simulation Engine 4.5 Convergence 4.5.1 Constructing Confidence Bands 4.5.2 Portfolio-Level Convergence 4.5.3 Obligor-Level Convergence 4.5.4 Computational Expense 4.5.5 Choosing M 4.6 Wrapping Up References Part II Loan Pricing 5 Approximating Economic Capital 5.1 Framing the Problem 5.2 Approximating Default Economic Capital 5.2.1 Exploiting Existing Knowledge 5.2.2 Borrowing from Regulatory Guidance 5.2.3 A First Default Approximation Model 5.2.4 Incorporating Concentration 5.2.5 The Full Default Model 5.3 Approximating Migration Economic Capital 5.3.1 Conditional Migration Loss 5.3.2 A First Migration Model 5.3.3 The Full Migration Model 5.4 Approximation Model Due Diligence 5.5 The Full Picture 5.5.1 A Word on Implementation 5.5.2 An Immediate Application 5.6 Wrapping Up References 6 Loan Pricing 6.1 Some Fundamentals 6.2 A Holistic Perspective 6.2.1 The Balance-Sheet Perspective 6.2.2 Building the Foundation 6.3 Estimating Marginal Asset Income 6.3.1 Weighting Financing Sources 6.3.2 Other Income and Expenses 6.4 Risk-Adjusted Returns 6.5 The Hurdle Rate 6.6 Allocating Economic Capital 6.7 Getting More Practical 6.7.1 Immediate Disbursement 6.7.2 Payment Frequency 6.7.3 The Lending Margin 6.7.4 Existing Loan Exposure 6.7.5 Forward-Starting Disbursements 6.7.6 Selecting Commitment Fees 6.8 Wrapping Up References Part III Modelling Expected Credit Loss 7 Default-Probability Fundamentals 7.1 The Basics 7.1.1 The Limiting Case 7.1.2 An Extended Aside 7.2 A Thorny Problem 7.2.1 Set-Up 7.2.2 Some Theory 7.2.3 Regularization 7.2.4 Going to the Data 7.3 Building Default-Probability Surfaces 7.3.1 A Low-Dimensional Markov Chain 7.3.2 A Borrowed Model 7.3.3 Time Homogeneity 7.3.4 A Final Decisive Factor 7.4 Mapping to One's Master Scale 7.4.1 Building an Internal Default Probability Surface 7.4.2 Building an Internal Transition Matrix 7.5 Wrapping Up References 8 Building Stress Scenarios 8.1 Our Response Variables 8.1.1 Simplifying Matters 8.1.2 Introducing the Default Curve 8.1.3 Fitting Default Curves 8.2 Our Explanatory Variables 8.2.1 Data Issues 8.3 An Empirically Motivated Approach 8.3.1 A Linear Model 8.3.2 An Indirect Approach 8.3.3 An Alternative Formulation 8.3.4 A Short Aside 8.3.5 Building a Point-in-Time Transition Matrix The Role of P Upgrades and Downgrades Building h 8.4 A Theoretically Motivated Approach 8.4.1 Familiar Terrain 8.4.2 Yang:2017's Contribution 8.4.3 Adding Time 8.4.4 Parameter Estimation Preparation The First Step 8.4.5 The Second Step 8.4.6 To a Point-in-Time Transition Matrix 8.5 Constructing Default-Stress Scenarios 8.6 Wrapping Up References 9 Computing Loan Impairments 9.1 The Calculation 9.1.1 Defining Credit Loss 9.1.2 Selecting a Probability Measure 9.1.3 Managing the Time Horizon Time-Frequency, Interpolation and Bootstrapping 9.1.4 The Simplest Example 9.1.5 A More Realistic Example 9.1.6 Coupon and Discount Rates 9.1.7 Impact of Credit Rating 9.1.8 Adding Macro-Financial Uncertainty 9.1.9 Tying It All Together 9.2 Introducing Stages 9.2.1 Stage-Allocation Consequences 9.2.2 Stage-Allocation Logic 9.3 Managing Portfolio Composition 9.3.1 Motivating Our Adjustment 9.3.2 Building an Adjustment 9.3.3 Retiring Our Concrete Example 9.4 Wrapping Up References Part IV Other Practical Topics 10 Measuring Derivative Exposure 10.1 The Big Picture 10.2 Some Important Definitions 10.3 An Important Choice 10.4 A General, But Simplified Structure 10.4.1 Expected Exposure 10.4.2 Expected Positive Exposure 10.4.3 Potential Future Exposure 10.5 The Regulatory Approach 10.5.1 Replacement Cost 10.5.2 The Add-On 10.5.3 The Trade Level 10.5.4 The Multiplier 10.5.5 Bringing It All Together 10.6 The Asset-Class Perspective 10.6.1 Interest Rates 10.6.2 Currencies 10.7 A Pair of Practical Applications 10.7.1 Normalized Derivative Exposures 10.7.2 Defining and Measuring Leverage 10.8 Wrapping Up References 11 Seeking External Comparison 11.1 Pillar I 11.1.1 The Standardized Regulatory Approach 11.1.2 The Internal Ratings-Based Approach 11.1.3 S&P's Approach to Risk-Weighting 11.1.4 Risk-Weighted Assets 11.2 Pillar II 11.2.1 Geographic and Industrial Diversification Fisher's z-Transformation 11.2.2 Preferred-Creditor Treatment 11.2.3 Single-Name Concentration A First Try A Complicated Add-On The CreditRisk+ Case 11.2.4 Working with Partial Information 11.2.5 A Multi-Factor Adjustment A Generic Multi-Factor Model Introducing a One-Factor Model Calibrating the Multi- and Single-Factor Worlds Granularity Adjustment Revisited The Big Reveal The Drudgery 11.2.6 Practical Granularity-Adjustment Results 11.3 Wrapping Up References 12 Thoughts on Stress Testing 12.1 Organizing Stress-Testing 12.1.1 The Main Risk Pathway 12.1.2 Competing Approaches 12.1.3 Managing Time 12.1.4 Remaining Gameplan 12.2 The Top-Down, or Macro, Approach 12.2.1 Introducing the Vector Auto-Regressive Model 12.2.2 The Basic Idea 12.2.3 An Important Link 12.2.4 The Impulse-Response Function 12.2.5 A Base Sample Portfolio 12.2.6 From Macro Shock to Our Portfolio 12.2.7 The Portfolio Consequences 12.3 The Bottom-Up, or Micro, Approach 12.3.1 The Limits of Brute Force 12.3.2 The Extreme Cases 12.3.3 Traditional Bottom-Up Cases 12.3.4 Randomization 12.3.5 Collecting Our Bottom-Up Alternatives 12.4 Wrapping Up References Index Author Index