ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Modeling Techniques in Predictive Analytics with Python and R: A Guide to Data Science

دانلود کتاب تکنیک‌های مدل‌سازی در تحلیل پیش‌بینی‌کننده با پایتون و R: راهنمای علم داده

Modeling Techniques in Predictive Analytics with Python and R: A Guide to Data Science

مشخصات کتاب

Modeling Techniques in Predictive Analytics with Python and R: A Guide to Data Science

ویرایش:  
نویسندگان:   
سری:  
 
ناشر: PH Professional Business 
سال نشر: 2014 
تعداد صفحات: 0 
زبان: English 
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 19 مگابایت 

قیمت کتاب (تومان) : 34,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 9


در صورت تبدیل فایل کتاب Modeling Techniques in Predictive Analytics with Python and R: A Guide to Data Science به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب تکنیک‌های مدل‌سازی در تحلیل پیش‌بینی‌کننده با پایتون و R: راهنمای علم داده نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب تکنیک‌های مدل‌سازی در تحلیل پیش‌بینی‌کننده با پایتون و R: راهنمای علم داده



توضیحاتی درمورد کتاب به خارجی

Master predictive analytics, from start to finish

Start with strategy and management

Master methods and build models

Transform your models into highly-effective code—in both Python and R

This one-of-a-kind book will help you use predictive analytics, Python, and R to solve real business problems and drive real competitive advantage. You’ll master predictive analytics through realistic case studies, intuitive data visualizations, and up-to-date code for both Python and R—not complex math.

Step by step, you’ll walk through defining problems, identifying data, crafting and optimizing models, writing effective Python and R code, interpreting results, and more. Each chapter focuses on one of today’s key applications for predictive analytics, delivering skills and knowledge to put models to work—and maximize their value.

Thomas W. Miller, leader of Northwestern University’s pioneering program in predictive analytics, addresses everything you need to succeed: strategy and management, methods and models, and technology and code.

If you’re new to predictive analytics, you’ll gain a strong foundation for achieving accurate, actionable results. If you’re already working in the field, you’ll master powerful new skills. If you’re familiar with either Python or R, you’ll discover how these languages complement each other, enabling you to do even more.

All data sets, extensive Python and R code, and additional examples available for download at http://www.ftpress.com/miller/

Python and R offer immense power in predictive analytics, data science, and big data. This book will help you leverage that power to solve real business problems, and drive real competitive advantage.

Thomas W. Miller’s unique balanced approach combines business context and quantitative tools, illuminating each technique with carefully explained code for the latest versions of Python and R. If you’re new to predictive analytics, Miller gives you a strong foundation for achieving accurate, actionable results. If you’re already a modeler, programmer, or manager, you’ll learn crucial skills you don’t already have.

Using Python and R, Miller addresses multiple business challenges, including segmentation, brand positioning, product choice modeling, pricing research, finance, sports, text analytics, sentiment analysis, and social network analysis. He illuminates the use of cross-sectional data, time series, spatial, and spatio-temporal data.

You’ll learn why each problem matters, what data are relevant, and how to explore the data you’ve identified. Miller guides you through conceptually modeling each data set with words and figures; and then modeling it again with realistic code that delivers actionable insights.

You’ll walk through model construction, explanatory variable subset selection, and validation, mastering best practices for improving out-of-sample predictive performance. Miller employs data visualization and statistical graphics to help you explore data, present models, and evaluate performance. Appendices include five complete case studies, and a detailed primer on modern data science methods.

Use Python and R to gain powerful, actionable, profitable insights about:

  • Advertising and promotion

  • Consumer preference and choice

  • Market baskets and related purchases

  • Economic forecasting

  • Operations management

  • Unstructured text and language

  • Customer sentiment

  • Brand and price

  • Sports team performance

  • And much more





  • نظرات کاربران