دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.] نویسندگان: Satya Prakash Maurya (editor), Akhilesh Kumar Yadav (editor), Ramesh Singh (editor) سری: ISBN (شابک) : 1032066989, 9781032066981 ناشر: CRC Press سال نشر: 2022 تعداد صفحات: 356 [377] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 25 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Modeling and Simulation of Environmental Systems: A Computation Approach به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مدل سازی و شبیه سازی سیستم های محیطی: یک رویکرد محاسباتی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب مروری بر مدلسازی و شبیهسازی سیستمهای زیستمحیطی از طریق مشکلات تحقیقاتی متنوع و مطالعات موردی مرتبط، مدلسازی آلودگی هوا، مدلسازی منابع آب پایدار، کاربردهای مبتنی بر اینترنت اشیا در سیستمهای زیستمحیطی، و الگوریتمها و چارچوبهای مفهومی آینده در سیستمهای زیستمحیطی را ارائه میکند.
This book presents an overview of modeling and simulation of environmental systems via diverse research problems and pertinent case studies, covering air pollution modeling, sustainable water resources modeling, IoT based applications in environmental systems, and future algorithms and conceptual frameworks in environmental systems.
Cover Half Title Title Page Copyright Page Table of Contents Foreword Preface Acknowledgements Editors Contributors Part I: Water Chapter 1: Computational Models for Water Resource Management: Opportunities and Challenges 1.1 Introduction 1.2 Mathematical Modeling for WRM 1.3 Computational Modeling for WRM 1.3.1 Numerical Models 1.3.2 Development of Computational Model for WRM 1.3.3 Mathematical Modeling of Flow and Transport in Groundwater 1.3.4 Numerical Model – Finite Difference Method 1.3.5 Numerical Model – Finite Element Method 1.3.6 Numerical Model – Meshfree Radial Point Collocation Method 1.4 Computational Models for WRM 1.4.1 Models for Surface Water Management 1.4.2 Models for Groundwater Management 1.5 Case Studies 1.5.1 Case Study 1 1.5.2 Case Study 2 1.6 Opportunities and Challenges in Computational Modeling for WRM 1.7 Concluding Remarks References Chapter 2: Applicability of Soft Computational Models for Integrated Water Resource Management 2.1 Introduction 2.2 Overview of Soft Computing Methods 2.2.1 Artificial Neural Network (ANN) 2.2.2 Fuzzy Logic 2.2.3 Genetic Algorithms 2.2.4 Support Vector Machine (SVM) 2.2.5 Hybrid Models 2.2.5.1 Wavelet Based Hybrid Models 2.3 Applications of Soft Computing Tools for IWRM 2.3.1 Rainfall Runoff Modeling 2.3.2 Statistical Downscaling of Meteorological Observations 2.3.3 Water Quality Management 2.3.4 Drought Assessment 2.3.5 Ground Water Modeling 2.4 Conclusions References Chapter 3: Computational Models for Exchange of Water between Ground Water and Surface Water Resources over a Sub-Basin 3.1 Introduction 3.2 Flow Processes 3.2.1 Surface Runoff 3.2.1.1 Governing Equations 3.2.2 Infiltration 3.2.2.1 Governing Equations 3.2.2.2 Boundary Conditions 3.2.3 Base Flow 3.2.4 Ground Water–Surface Water (GW–SW) Interactions 3.3 Computational Models 3.3.1 Methodological Framework 3.3.2 Data Requirement 3.3.3 Classification of GW–SW Models 3.3.3.1 Deterministic and Stochastic Models 3.3.3.2 Coupled Models 3.3.3.3 Fully Coupled Models 3.3.3.4 Loosely Couple Models 3.3.4 Challenges and Opportunities 3.4 Applications of Computational Models in Impact Assessment 3.5 Recent Trends in Modeling Techniques 3.6 Summary References Chapter 4: Computational and Field Approach to Assess Artificial Recharge of Groundwater 4.1 Introduction 4.2 Study Area 4.2.1 Artificial Recharge Structures 4.3 Methodology 4.3.1 Water Level Fluctuations 4.3.2 Mass Balance Study 4.3.3 Numerical Groundwater Modeling 4.3.3.1 Flow Model (MODFLOW) 4.4 Results and Discussions 4.4.1 Water Level Fluctuations 4.4.2 Mass Balance 4.4.2.1 Percolation Pond 4.4.2.2 Check Dams 4.4.3 Numerical Groundwater Modeling 4.4.3.1 Flow Model 4.4.3.2 Model Construction 4.4.3.3 Initial Conditions, Boundary Conditions, and Stresses 4.4.3.4 Model Calibration and Validation 4.4.3.5 Performance Evaluation of Individual Structures 4.5 Conclusions References Chapter 5: Multi-Objective Optimization in Water Resource Management 5.1 Introduction 5.2 Mathematical Optimization 5.2.1 Linear Programming Model 5.2.2 Simple Multi-Objective Model 5.2.3 Global Criteria Method 5.2.4 Posteriori Method (Weighing Method) 5.3 Steps to Implement Posteriori Technique 5.3.1 Problem Definition 5.3.2 Objective Functions 5.3.2.1 Maximization of Revenue 5.3.2.2 Minimization of Overutilization 5.3.2.3 Minimization of Cost 5.3.2.4 Minimization of Pollution 5.3.2.5 Maximization of Treatment Plants 5.3.2.6 Minimize Waste Generation 5.3.3 Constraints 5.3.3.1 Supply Constraint 5.3.3.2 Demand Constraint 5.3.3.3 Future Needs 5.3.3.4 Budget Constraint 5.3.3.5 Max. No. of CEP Plants 5.4 Results 5.4.1 Final Model Formulation 5.4.2 Case Study Based on the Allocation of Water in State Delhi with the Available Data 5.5 Conclusions 5.6 Future Scope Acknowledgements References Chapter 6: Tools in Decision-Making of Allocation of Non-Traditional Resources for Sustainable Water Development 6.1 Introduction 6.2 Study Area 6.3 Methodology 6.3.1 Intrinsic Groundwater Vulnerability (Standard DRASTIC) 6.3.2 Sensitive Analysis 6.3.3 Modified DRASTIC (DRASTICQ) 6.4 Results and Discussion 6.4.1 Intrinsic Groundwater Vulnerability (Standard DRASTIC) 6.4.2 Sensitivity Analysis 6.4.3 Modified DRASTIC (DRASTICQ) 6.4.4 Validation 6.5 Discussion 6.6 Conclusion References Chapter 7: Soft Computing Techniques for Forecasting of Water Demand 7.1 Introduction 7.2 Background 7.2.1 Water Demand 7.2.2 Factors Affecting Water Demand 7.2.3 Preprocessing of Dataset 7.2.4 Forecasting Horizons 7.3 Forecasting Methods 7.3.1 Statistical Approaches 7.3.2 Soft Computing Approaches 7.3.2.1 Artificial Neural Networks (ANN) 7.3.2.2 Support Vector Machine (SVM) 7.3.2.3 Metaheuristic Models 7.4 Assessment of Forecasting Models 7.5 Soft Computing Methodologies 7.5.1 Artificial Neural Network (ANN) 7.5.2 Long Short Term Memory (LSTM) 7.5.3 Fuzzy Logic 7.5.4 Adaptive Neuro-Fuzzy Interface System (ANFIS Model) 7.6 Application of Models 7.6.1 Spanish Dataset 7.7 Results and Discussion 7.8 Summary and Conclusions References Chapter 8: Intervention of Computational Models for Groundwater Pollution Source Characterization 8.1 Introduction 8.1.1 Background 8.1.2 Groundwater Pollution Sources Characterization 8.2 Methods for Characterization of Groundwater Pollutant Sources 8.2.1 Direct Inverse Approach for Pollutant Source Characterization 8.2.2 Statistical and Regression Methods for Pollutant Source Characterization 8.2.3 Surrogate Model Based Approach 8.2.4 Linked Simulation Optimization (LSO) 8.2.5 Hybrid Techniques 8.3 Mathematical Framework for USC 8.3.1 Monitoring Well Design for Obtaining Concentration Data 8.3.2 LSO formulation 8.3.3 Result of USC using LSO 8.4 Conclusions References Part II: Air Pollution Chapter 9: Artificial Intelligence for Air Quality and Control Systems: Status and Future Trends 9.1 Introduction 9.2 Air Quality and Control Systems: Current Status of Pollution Research 9.2.1 Background 9.2.2 Initiatives for Air Quality Management 9.2.3 Regulatory Framework for Air Quality Management and Forecasting 9.3 Abbreviation Explanation and Error Assessment Index 9.4 Future Trends Potential Forecasting Methods 9.4.1 Air Pollution Forecasting and Analysis 9.4.2 Some Implemented Systems for Air Quality Monitoring and Control 9.4.2.1 Platform Screen Doors 9.4.2.2 Wireless Sensor Network for Air Quality Monitoring 9.4.2.3 Sensor-Based Wireless Air Quality Monitoring Network-SWAQMN (Polludrone) 9.4.2.4 Some Other Applications of AI Environmental Sector 9.5 Conclusion Acknowledgements Conflicts of Interest References Chapter 10: Fuzzy and Neural Network Model-Based Environmental Quality Monitoring System: Past, Present, and Future 10.1 Introduction 10.2 Scenario and Problems 10.3 Air Pollution Modeling with Fuzzy and Neural Network Model 10.4 Analysis of Available Soft Computing Models (Comparison of Methodology for Air Pollution Modeling) 10.4.1 Multiple Linear Regression Models 10.4.2 Artificial Neural Network Models 10.4.3 Support Vector Machine Models 10.4.4 Back Propagation Neural Network Models 10.4.5 Fuzzy Logic and Neuro-Fuzzy Models 10.4.6 Deep Learning Models 10.4.6.1 Air Pollution Modeling with Deep Learning 10.5 Ensemble and Hybrid Models 10.6 Potential Soft Computing Models and Approaches 10.6.1 Evolutionary Fuzzy and Neuro-Fuzzy Models 10.6.2 Variations of ANN ModelsCase-Based Reasoning and Knowledge-Based Models 10.6.3 Group Method Data Handling Models and Functional Network Models 10.6.4 Appropriate Input Selection Methods 10.7 Conclusions Acknowledgements Conflicts of Interest References Part III: Internet of Things and Environmental Systems Chapter 11: Internet of Things (IoT): Powered Enhancements to Industrial Air Pollution Monitoring Systems 11.1 Introduction 11.2 Literature Survey 11.2.1 Air Pollution 11.2.1.1 Gaseous Pollutants 11.2.2 IoT Applications in Air Pollution Monitoring 11.3 Discussion 11.4 Proposed Framework 11.5 Future Research 11.6 Conclusion References Chapter 12: Impact of Temporary COVID-Related Lockdowns on Air Quality across the Globe: A Systematic Review 12.1 Introduction 12.2 Periods of Temporary Lockdown(s) in the Major Countries across the Globe 12.3 Methodology/Framework Adopted in Previous Studies 12.4 Variation in the Air Quality Globally during Pre-Lockdown and Lockdown Scenarios in the Major Countries across the Globe 12.4.1 United Kingdom (UK) 12.4.2 India 12.4.3 Italy 12.4.4 Spain 12.4.5 France 12.4.6 China 12.5 Discussion and Recommendations 12.6 Conclusion References Chapter 13: Impact of Lockdown on Air Quality during COVID-19 Outbreak: A Global Scenario 13.1 Introduction 13.1.1 Global Overview of COVID-19 Pandemic 13.2 Air Pollution Modeling 13.2.1 Different Models Used for Analysis Using Computational Approach 13.2.2 Recent Modeling Techniques and Trends in Statistical Modeling Tools 13.3 Methodology for Air Quality Index 13.3.1 Air Quality Indices and AQI Model for India 13.4 Results: Impact of Lockdown on Global Air Quality 13.4.1 Impact of Lockdown on Air Quality of Asian Countries 13.4.1.1 Impact of Lockdown on Air Quality of India 13.4.1.2 Impact of Lockdown on Air Quality of China 13.4.2 Impact of Lockdown on Air Quality in United States of America (USA) 13.4.3 Proposed Framework for the Air Pollution Monitoring and Modeling 13.5 Summary of Global Air Quality during COVID-19 Lockdown 13.6 Conclusion Acknowledgements References Chapter 14: Integration of Geospatial Techniques in Environment Monitoring Systems 14.1 Introduction 14.2 Environment Monitoring Systems 14.3 Overview of Geospatial Techniques 14.3.1 Remote Sensing Techniques 14.3.1.1 Basics of Remote Sensing 14.3.1.2 Remote Sensing Datasets 14.3.1.3 Use of Remote Sensing for Environmental Monitoring 14.3.2 Geographic Information Systems (GIS) 14.3.2.1 Basics of GIS 14.3.2.2 Recent Advances in GIS Techniques 14.3.2.3 Use of GIS for Environmental Monitoring 14.4 Integration of Geospatial Techniques of RS and GIS 14.5 Application of Integration of Geospatial Techniques in Environment Monitoring System 14.5.1 Application in Hydrological Modeling 14.6 Case Study – Application of Integration of Geospatial Techniques in Hydrologic Modeling 14.6.1 Description of Study Area 14.6.2 Description of Hydrologic Model SHETRAN and SWAT 14.6.2.1 SWAT Model 14.6.2.2 SHETRAN Model 14.6.2.3 Processing of Data in GIS for SWAT and SHETRAN Model Setup 14.6.2.4 Post Processing of SWAT and SHETRAN Model Outputs in GIS 14.6.2.5 Hydrologic Simulation 14.7 Concluding Remarks References Chapter 15: Agent-Based Modeling for Integrated Urban Water Management 15.1 Introduction 15.2 Background 15.3 Modeling and Simulation in Water Resource Management 15.4 An Agent-Based Integrated Urban Water Management Framework 15.4.1 Basic Framework and Issues Need to Be Addressed 15.4.2 Agent Model-Based Framework 15.4.2.1 ABM for Allocation of Total Water Availability (TAW) 15.4.2.2 ABM for Water Resource Management 15.4.2.3 Conceptual ABM Frame for Urban Water Development (UWD) 15.5 Key Issues of Agent-Based Model for Implementation 15.5.1 Mathematical Formulation 15.5.2 Statistical Simulation 15.5.3 Geospatial Simulation 15.6 Concluding Remarks References Chapter 16: Data-Driven Modeling Approach in Model Rainfall-Runoff for a Mountainous Catchment 16.1 Introduction 16.2 Materials and Methods 16.2.1 Study Area 16.2.2 Physical Properties of the Soil 16.2.3 Methods Used 16.2.3.1 Polynomial Regression 16.2.3.2 Linear Regression Model 16.2.3.3 Quadratic Regression Model 16.2.3.4 Non-Linear Regression 16.2.3.5 Exponential Regression 16.2.3.6 Logarithmic Regression 16.2.3.7 Fuzzy Logic Approach 16.3 Results and Discussion 16.3.1 Polynomial Regression 16.3.2 Linear Regression (LR) Method 16.3.3 Quadratic Regression (QR) Method 16.3.4 Exponential Regression (ER) Method 16.3.5 Logarithmic Regression (LoR) Method 16.3.6 Fuzzy Logic Method 16.4 Comparison of Results 16.5 Conclusions References Chapter 17: Geospatial Technology-Based Artificial Groundwater Recharge Site Selection for Sustainable Water Resource Management: A Case Study of Rajkot District, Gujarat 17.1 Introduction 17.2 Methodology 17.2.1 Study Area 17.3 Materials and Method 17.3.1 Geology 17.3.2 Rainfall Pattern 17.3.3 Morphometric Analysis 17.3.4 Land Use 17.3.5 Soil Texture 17.3.6 Drainage Frequency Density 17.3.7 Slope Analysis 17.4 Results and Discussions 17.4.1 Lineament Analysis 17.4.2 Normalized Weights 17.4.3 Artificial Recharge Sites 17.4.4 Status of Sample Recharge Sites 17.4.5 Groundwater Potential Zoning 17.5 Conclusions Websites References Chapter 18: Rainfall-Runoff Estimation for Rapti River Catchment Using Geospatial Technology 18.1 Introduction 18.1.1 Significance of the Research 18.1.2 Objectives 18.2 Data and Methods 18.2.1 Study Area 18.2.2 Data and Software Used 18.2.3 Methodology 18.2.3.1 Database 18.2.3.1.1 Land Use / Land Cover 18.2.3.1.2 Hydrological Soil Group 18.2.3.1.3 Slope 18.2.3.1.4 Rainfall 18.2.3.2 Runoff Estimation from SCS-CN Method 18.2.3.2.1 Determination of Weighted CN for Each Hydrological Response Unit 18.2.3.2.2 Estimation of Antecedent Moisture Condition (AMC) 18.2.3.3 Runoff Estimation for each LULC Category Using SCS-CN Method 18.2.3.3.1 Determination of Weighted Curve Number for Each Land Use and Land Cover Category 18.2.3.3.2 Computation of AMC-adjusted CN Values for Different Land Use and Land Cover Categories 18.2.3.3.3 Computation of Runoff for Different Land Use and Land Cover Categories 18.2.3.3.4 Types of Analyses Performed 18.3 Results and Discussion 18.3.1 Rainfall-Runoff Relationship for the Individual HRUs 18.3.2 Rainfall-Runoff Relationship for the Individual Land Use and Land Cover Units 18.3.2.1 AMC Wise 18.3.3 Comparative Analysis between the Cumulative Runoff Estimated from HRUs and That from the Corresponding LULC Categories in the Individual Land Units Covered under the Influence of Each Rain Gauze Station 18.3.3.1 AMC Wise 18.4 Summary and Conclusion 18.4.1 Summary of the Research Work 18.4.2 Conclusions Acknowledgements References Chapter 19: Methodologies of Scenario Development for Water Resource Management: A Review 19.1 Introduction 19.1.1 Scenario Planning Perspective for Water Resources 19.1.2 Basic Terminology 19.1.2.1 Types of Scenarios 19.1.2.2 Factors for Scenarios Planning 19.1.2.3 Water Management 19.2 Methodologies Applied 19.2.1 Prediction/Derivation Methods 19.2.1.1 System Dynamics (SD) 19.2.1.2 Markov Model 19.2.1.3 GAMLSS (Generalized Additive Model for Location, Scale, and Shape) 19.2.1.4 ANN 19.2.1.5 Water Balance Models 19.2.1.6 PET (Potential Evapotranspiration) Models 19.2.1.7 ISAT (Impervious Surface Analysis Tool) 19.2.1.8 Rainfall-Runoff Models 19.2.1.9 SWAT (Soil and Water Assessment Tool) 19.2.1.10 Precipitation Runoff Modeling System (PRMS) 19.2.1.11 Semi-distributed Land Use-based Runoff Processes (SLURP) 19.2.1.12 Fuzzy Logic 19.2.1.13 Water Indices 19.2.1.14 Stochastic Programming 19.3 Discussion 19.4 Conclusions Acknowledgements References Part IV: Future Algorithms in Environmental Systems Chapter 20: Process-Based Scenario Analyses of Future Socio-Environmental Systems: Recent Efforts and a Salient Research Agenda for Decision-Making 20.1 Introduction 20.2 Process-Based Modeling of Socio-Environmental Systems 20.2.1 Defining a Socio-Environmental System 20.2.2 Process-Based Modeling 20.3 Scenario-Based Analysis 20.4 Research Agenda for Decision-Making and the Way Forward Acknowledgements References Chapter 21: From Quantitative to Qualitative Environmental Analyses: Translating Mental Modeling into Physical Modeling 21.1 Introduction 21.2 Background 21.3 Mental Model vs Physical Model 21.3.1 Mental Model 21.3.2 Physical Model 21.4 Core Planning-Implementation Gaps of Modeling 21.4.1 Dynamism of Environmental Model 21.4.2 Ambiguity about What Constitutes Data 21.4.3 Lack of Standard Collaboration Norms 21.4.4 Modeling Uncertainty 21.4.5 Integration of Quantitative and Qualitative Approach and Data Source 21.4.6 Advancement in Scales and Scaling 21.4.7 Human Dimensions 21.5 The Translational Understanding: A Mental Model to a Physical Model 21.6 Conclusion References Chapter 22: An Interdisciplinary Modeling Approach for Dynamic Adaptive Policy Pathways 22.1 Introduction 22.2 Background 22.3 Interdisciplinary Modeling Approach for Policy Pathways 22.3.1 Perspectives and Opportunities for Air Pollution 22.3.2 Developing an Interdisciplinary Approach 22.3.3 Field Missions and Long-Term Monitoring 22.4 Computational Interventions in Policy Pathways 22.5 Moving Forward and Conclusions References Index