دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Muaz A. Niazi
سری:
ISBN (شابک) : 9781785613555, 9781785613562
ناشر: The Institution of Engineering and Technology
سال نشر: 2019
تعداد صفحات: 435
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 5 مگابایت
در صورت تبدیل فایل کتاب Modeling and Simulation of Complex Communication Networks به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مدل سازی و شبیه سازی شبکه های ارتباطی پیچیده نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
سیستم های شبکه مدرن مانند اینترنت اشیا، شبکه هوشمند، ترافیک VoIP، پروتکل همتا به همتا و شبکه های اجتماعی ذاتا پیچیده هستند. آنها به مدل ها و ابزارهای قدرتمند و واقعی نه تنها برای تحلیل و شبیه سازی بلکه برای پیش بینی نیز نیاز دارند. این کتاب موضوعات و رویکردهای مهم مربوط به مدلسازی و شبیهسازی شبکههای ارتباطی پیچیده از دیدگاه سیستمهای تطبیقی پیچیده را پوشش میدهد. این کتاب پارادایمها و رویکردهای مدلسازی مختلف و همچنین بررسیها و مطالعات موردی را ارائه میکند. این کتاب با مشارکت یک پانل بین المللی از کارشناسان، خواندن ضروری برای متخصصان شبکه، محاسبات و ارتباطات، محققان و مهندسان در زمینه شبکه های نسل بعدی و سیستم های اطلاعاتی و ارتباطات پیچیده، و دانشگاهیان و دانشجویان پیشرفته شاغل در این زمینه ها است.
Modern network systems such as Internet of Things, Smart Grid, VoIP traffic, Peer-to-Peer protocol, and social networks, are inherently complex. They require powerful and realistic models and tools not only for analysis and simulation but also for prediction. This book covers important topics and approaches related to the modeling and simulation of complex communication networks from a complex adaptive systems perspective. The book presents different modeling paradigms and approaches as well as surveys and case studies. With contributions from an international panel of experts, this book is essential reading for networking, computing, and communications professionals, researchers and engineers in the field of next generation networks and complex information and communication systems, and academics and advanced students working in these fields.
Cover Contents Preface Part I Modeling and simulation 1 Modeling and simulation: the essence and increasing importance 1.1 Introduction 1.2 Experimentation aspects of simulation 1.3 Experience aspects of simulation 1.3.1 Simulation for training 1.3.2 Simulation for entertainment 1.4 Taxonomies and ontologies of simulation 1.4.1 Background 1.4.2 Taxonomies of simulation 1.4.3 Ontologies of simulation 1.5 Evolution and increasing importance of simulation 1.6 Conclusion Disclaimer Appendix A – A list of over 750 types of simulation Appendix B – A list of 120 types of input References 2 Flexible modeling with Simio 2.1 Overview 2.2 Simio object framework 2.3 Simio object classes 2.4 Modeling movements 2.5 Modeling physical components 2.6 Processes 2.7 Data tables 2.8 Experimentation with the model 2.9 Application programming interface 2.10 Applications in scheduling 2.11 Summary Glossary References 3 A simulation environment for cybersecurity attack analysis based on network traffic logs 3.1 Introduction 3.1.1 Network simulation 3.1.2 Network emulation 3.1.3 The application of network simulation and emulation in network security 3.1.4 Virtualization 3.1.5 Virtualization using hypervisor 3.1.6 Virtualization using container 3.1.7 Virtual machines and simulation 3.2 Literature review 3.2.1 Network anomalies and detection methods 3.2.2 Network workload generators 3.2.3 Network simulation for security studies 3.3 Methodology 3.4 Defining a simulated and virtualized test bed for network anomaly detection researches 3.4.1 GNS3 3.4.2 Ubuntu 3.4.3 Network interfaces 3.5 Simulated environment for network anomaly detection researches 3.5.1 Victim machine 3.5.2 Attacker machine 3.5.3 pfSense firewall 3.5.3.1 Firewall configuration 3.5.4 NAT and VMware host-only networks 3.5.5 Traffic generator machine 3.5.6 NTOPNG tool 3.5.6.1 NTOPNG configuration 3.5.6.2 NTOPNG configuration to dump logs to Mysql machine 3.5.7 Repository machine 3.5.7.1 Repository machine configuration 3.5.7.2 Give a remote root access to Data_ Repository machine 3.6 Discussion and results 3.7 Summary References Part II Surveys and reviews 4 Demand–response management in smart grid: a survey and future directions 4.1 Overview 4.2 Introduction 4.3 Backgrounds 4.3.1 Smart grid 4.3.2 Demand–response management 4.3.3 Complex systems 4.3.4 Learning-based approaches 4.4 A review of demand–response management in SG 4.4.1 Learning-based approaches 4.4.1.1 Artificial neural network 4.4.1.2 Reinforcement learning approach 4.4.2 Complex system 4.4.2.1 Collaborative approach 4.4.2.2 Complex adaptive system 4.4.2.3 Demand-side integration 4.4.2.4 Particle swarm optimization 4.4.2.5 Game-theory approach 4.4.3 Other techniques 4.4.3.1 Security management 4.4.3.2 Home-energy management system 4.4.3.3 Electric vehicles charging 4.4.3.4 Renewable energy sources 4.4.3.5 Energy market 4.4.3.6 Mircorgrid 4.5 Open-research problems and discussion 4.5.1 Open-research problems in learning system 4.5.2 Open-research problems in complex system 4.5.3 Open-research problems in other techniques 4.6 Conclusions References 5 Applications of multi-agent systems in smart grid: a survey and taxonomy 5.1 Overview 5.2 Introduction 5.3 A review of multi-agent system to smart-grid application 5.3.1 Communication management 5.3.1.1 Group communication 5.3.1.2 Learning-based approach 5.3.2 Demand–response management 5.3.2.1 Learning-based approach 5.3.2.2 Complex system 5.3.3 Fault monitoring 5.3.3.1 Self-organizing 5.3.3.2 Algorithmic approach 5.3.4 Power scheduling 5.3.4.1 Complex system 5.3.4.2 Learning-based approach 5.3.5 Storage and voltage management 5.3.5.1 Learning 5.3.5.2 Monitoring 5.3.5.3 Searching 5.4 Open research problems and discussion 5.5 Conclusions References 6 Shortest path models for scale-free network topologies: literature review and cross comparisons 6.1 Mapping the Internet topology 6.1.1 Interface level 6.1.1.1 Active methodology based on traceroute 6.1.1.2 IP options and subnet discovery 6.1.2 Router level 6.1.2.1 Alias resolution techniques 6.1.2.2 Recursive router discovery 6.1.3 AS level 6.1.3.1 Passive methodology based on BGP and Internet Routing Registry 6.1.3.2 Active methodology based on traceroute 6.1.4 Geographic network topologies 6.2 Internet models based on the graph theory 6.2.1 Fundamental notions from the graph theory 6.2.2 Topology models 6.2.2.1 Regular and well-known topology models 6.2.2.2 Random and small-world topology model 6.2.2.3 Power-law topology models 6.2.2.4 Scale-free topology model 6.2.2.5 Hierarchical methods 6.2.3 Topology generator tools 6.2.3.1 Random topology generator tools 6.2.3.2 Power-law topology generator tools 6.2.3.3 Scale-free topology generator tools 6.2.3.4 Hierarchical topology generator tools 6.3 Shortest path models 6.3.1 Parameters definition 6.3.2 Shortest path models 6.3.2.1 Gamma distribution 6.3.2.2 Weibull distribution 6.3.2.3 Lognormal distribution 6.3.3 Cross-comparison among shortest path models 6.3.4 Shortest path models applications 6.4 Conclusion Acknowledgment References Part III Case studies and more 7 Accurate modeling of VoIP traffic in modern communication 7.1 Introduction 7.2 Modern communication networks: from simple packet network to multiservice network 7.3 Voice over IP (VoIP) and quality of service (QoS) 7.3.1 Basic structure of a VoIP system 7.3.2 VoIP frameworks: H.323 and SIP 7.3.2.1 H.323 7.3.2.2 Session initiation protocol 7.3.3 Basic concepts of QoS 7.3.4 QoS assessment 7.3.5 Oneway delay 7.3.6 Jitter 7.3.7 Packetloss rate 7.4 Self-similarity processes in modern communication networks 7.4.1 Self-similar processes 7.4.2 Haar wavelet-based decomposition and Hurst index estimation 7.5 QoS parameters modeling on VoIP traffic 7.5.1 Jitter modeling by self-similar and multifractal processes 7.5.2 Packet-loss modeling by Markov models 7.5.3 Packet-loss simulation and proposed model 7.6 Conclusions References 8 Exploratory and validated agent-based modeling levels case study: Internet of Things 8.1 Introduction 8.1.1 Agent-based modeling framework 8.1.1.1 Exploratory agent-based level 8.1.2 Agent-based simulator 8.1.2.1 Simulator: NetLogo 8.1.2.2 Research questions 8.1.3 Case study: 5G networks and Internet of Things 8.1.3.1 Modeling approach and design 8.1.3.2 Implementation 8.1.4 Results and discussion 8.1.4.1 Simulation parameters 8.1.4.2 Behavior space experiments 8.1.4.3 Descriptive statistics 8.1.4.4 Discussion 8.1.5 Conclusion 8.2 Validated agent-based modeling level case study: Internet of Things 8.2.1 Introduction 8.2.2 Validated agent-based level 8.2.2.1 Validation techniques 8.2.2.2 Virtual overlay multi-agent system 8.2.2.3 Research questions 8.2.3 Case study: 5G networks and Internet of Things 8.2.3.1 Modeling approach and design 8.2.3.2 Basic simulation model 8.2.3.3 IoT creation module 8.2.3.4 Basic IoT module 8.2.3.5 VOMAS agent design 8.2.4 Results and discussion 8.2.4.1 Simulation parameters 8.2.5 Validation discussion 8.2.6 Conclusion References 9 Descriptive agent-based modeling of the “Chord” P2P protocol 9.1 Introduction 9.2 Background and literature review 9.2.1 CAS literature 9.2.2 Modeling and simulation of CACOONS 9.2.2.1 Agent-based modeling 9.2.2.2 Complex network modeling 9.2.3 Chord P2P protocol 9.2.3.1 Architecture and working 9.2.4 Hashing and key mapping 9.2.5 Node joining 9.2.6 Finger table 9.2.7 Stabilization 9.2.8 Performance of chord 9.2.9 PeerSim 9.2.10 Literature review 9.2.10.1 Security-based chord 9.2.10.2 Peer data management-based chord 9.2.10.3 Mobility-based chord 9.2.10.4 Hierarchy-based chord 9.2.10.5 Routing and latency-based chord 9.2.10.6 Load distribution and resource allocation based Chord 9.2.10.7 Other chord-based approaches 9.3 ODD model of a “Chord” 9.3.1 Purpose 9.3.2 Entities, state variables, and scales 9.3.2.1 Agents/Individuals 9.3.2.2 Spatial units 9.3.2.3 Environment 9.3.2.4 Collectives 9.3.3 Process overview and scheduling 9.3.4 Design concepts 9.3.4.1 Basic principles 9.3.4.2 Emergence 9.3.4.3 Adaptation 9.3.4.4 Objectives 9.3.4.5 Learning 9.3.4.6 Sensing 9.3.4.7 Stochasticity 9.3.4.8 Interaction 9.3.4.9 Collectives 9.3.4.10 Observation 9.3.5 Initialization 9.3.6 Input data 9.3.7 Sub-models 9.3.7.1 Set-up 9.3.7.2 Init-node 9.3.7.3 Create-network 9.3.7.4 Go 9.4 DREAM model of a “Chord” 9.4.1 Agent design 9.4.1.1 State charts (of agents) 9.4.2 Activity diagrams 9.4.3 Flowchart 9.4.4 Pseudo-code based specification 9.4.4.1 Agents and breed 9.4.4.2 Globals 9.4.4.3 Procedures 9.4.4.4 Experiments 9.5 Results and discussion 9.5.1 Metrics (table and description) 9.5.2 PeerSim results 9.5.3 ABM results 9.5.4 Comparison of PeerSim and ABM 9.5.5 DREAM network models 9.5.5.1 Plots of centralities 9.5.5.2 Plots of centralities using power-law 9.5.6 Discussion (ODD vs. DREAM pros and cons of both) and which is more useful for modeling the chosen P2P protocol 9.5.7 Chord and theory of computation 9.5.7.1 Complexity theory 9.6 Conclusions and future work References 10 Descriptive agent-based modeling of Kademlia peer-to-peer protocol 10.1 Introduction 10.2 Background and literature review 10.2.1 Complex adaptive systems 10.2.2 Cognitive agent-based computing 10.2.3 Complex network modeling 10.2.4 Architecture of the “Kademlia” protocol 10.2.4.1 Introduction 10.2.4.2 System description 10.2.4.3 Distance calculation 10.2.4.4 Node 10.2.4.5 Protocol 10.2.4.6 Node Look up 10.2.4.7 Routing table 10.2.5 Literature review 10.3 Model design 10.3.1 ODD model of “Kademlia” 10.3.2 Overview 10.3.3 Design concept 10.3.4 Details 10.3.5 Activity diagrams of “Kademlia” 10.3.6 DREAM model of “Kademlia” 10.3.7 Network model 10.3.8 Pseudo-code description 10.4 Results and discussion 10.4.1 Evaluation metrics 10.4.2 Power law plots of centrality measures 10.4.3 PeerSim simulation using existing code in PeerSim 10.4.4 ABM simulation 10.4.4.1 Configuration 10.4.4.2 Results 10.4.5 Comparison of PeerSim and ABM results 10.4.6 Discussion 10.4.6.1 Comparison of ODD and DREAM 10.4.6.2 Kademlia relation with theory of computation 10.5 Conclusion and future work References 11 Descriptive agent-based modeling of the “BitTorrent” P2P protocol 11.1 Introduction 11.1.1 Contributions 11.2 Background and literature review 11.2.1 Complex adaptive systems 11.2.2 Modeling and simulation of CACOONS 11.2.2.1 Agent-based modeling 11.2.2.2 Cognitive agent-based computing 11.2.2.3 Complex network modeling 11.3 BitTorrent peer-to-peer protocol 11.3.1 BitTorrent history overview 11.3.2 Content publishing in BitTorrent 11.3.3 Joining swarm and peers discovery in BitTorrent 11.3.4 Delivery procedure BitTorrent 11.3.5 BitTorrent architecture and working 11.3.5.1 Peer 11.3.5.2 Swarm 11.3.5.3 Tracker 11.3.5.4 Leecher 11.3.5.5 Seeder 11.3.5.6 Mechanism and architecture 11.3.5.7 Limitations of BitTorrent 11.4 BitTorrent literature review 11.4.1 PeerSim 11.4.1.1 Scalability 11.4.1.2 Modularity 11.5 Model design 11.5.1 ODD approach 11.5.1.1 Entities, state variables and scales 11.5.1.2 Process overview and scheduling 11.5.1.3 Design concepts 11.5.2 Overview of the proposed model 11.5.2.1 Problem statement 11.5.2.2 Node agents 11.5.2.3 States of node agents 11.5.2.4 Activity diagrams 11.5.2.5 Sequence diagrams 11.5.3 DREAM model 11.5.4 Pseudocode-based specification 11.5.4.1 Agents and breeds 11.5.5 Globals 11.5.6 Procedures 11.5.6.1 Check-if-segment-is-available 11.5.6.2 Check-if-segment-is-needed-by-others 11.5.6.3 Do-plots 11.5.6.4 Generate-random-segment-number 11.5.6.5 Go 11.5.6.6 Make-turtles 11.5.6.7 Makes-new-seeds-green 11.5.6.8 Selfish-green-turtles-dropout 11.5.6.9 Setup 11.5.6.10 Upload-file-segment 11.5.7 Experiments 11.5.8 Results and discussions 11.5.8.1 Metrics table and description 11.5.9 PeerSim results 11.5.10 ABM results 11.5.11 Comparison of both 11.5.12 DREAM network models 11.5.12.1 Plots of centralities 11.6 Discussion (ODD vs DREAM) 11.7 Conclusion References 12 Social networks—a scientometric visual survey 12.1 Introduction 12.2 Background 12.2.1 Social networks—an overview 12.2.2 Citation networks 12.2.3 Co-citation networks 12.2.4 Bibliographic coupling 12.2.5 Coauthorship networks 12.2.6 Co-occurrence networks 12.3 Materials and methods 12.3.1 Data collection 12.3.2 CiteSpace—a science mapping tool 12.4 Results and discussion 12.4.1 Cited-references co-citation network analysis 12.4.1.1 Identification of largest cluster in cited references 12.4.2 Authors collaboration network analysis 12.4.3 Institution collaboration network analysis 12.4.4 Country collaboration network analysis 12.4.5 Keywords co-occurrence network analysis 12.4.6 Category co-occurrence network analysis 12.4.7 Journal co-citation network analysis 12.5 Summary of results 12.6 Conclusions and future work References Index Back Cover