دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.]
نویسندگان: Ahmad Taher Azar
سری:
ISBN (شابک) : 0128211857, 9780128211854
ناشر: Academic Press
سال نشر: 2021
تعداد صفحات: 408
زبان: English
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 89 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Modeling and Control of Drug Delivery Systems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مدل سازی و کنترل سیستم های دارورسانی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مدلسازی و کنترل سیستمهای تحویل دارو پوشش جامعی از سیستمهای مختلف تحویل و هدفگیری دارو و کارهای مرتبط با آنها را ارائه میدهد، از تئوری تا استقرار در دنیای واقعی و دیدگاههای آینده . سیستمهای مختلف تحویل دارو و هدفگیری برای به حداقل رساندن تخریب و اثرات نامطلوب دارو و افزایش فراهمی زیستی دارو ایجاد شدهاند. تحویل داروی محل خاص ممکن است یک فرآیند فعال و/یا غیرفعال باشد. بهبود تکنیکهای تحویل که سمیت را به حداقل میرساند و کارآیی را افزایش میدهد، مزایای بالقوه قابلتوجهی را برای بیماران ارائه میکند و بازارهای جدیدی را برای شرکتهای داروسازی باز میکند.
این کتاب بسیاری از محققان را که در زمینه DDS کار میکنند، جذب خواهد کرد، زیرا منبع اطلاعاتی ضروری را برای بیماران فراهم میکند. دانشمندان داروسازی و داروشناسان شاغل در دانشگاه و همچنین در صنعت. علاوه بر این، اطلاعات مفیدی برای پزشکان داروسازی و دانشمندان در بسیاری از رشتههای درگیر در توسعه DDS، مانند مهندسی شیمی، مهندسی زیست پزشکی، مهندسی پروتئین، ژن درمانی دارد.
Modeling and Control of Drug Delivery Systems provides comprehensive coverage of various drug delivery and targeting systems and their state-of-the-art related works, ranging from theory to real-world deployment and future perspectives. Various drug delivery and targeting systems have been developed to minimize drug degradation and adverse effect and increase drug bioavailability. Site-specific drug delivery may be either an active and/or passive process. Improving delivery techniques that minimize toxicity and increase efficacy offer significant potential benefits to patients and open up new markets for pharmaceutical companies.
This book will attract many researchers working in DDS field as it provides an essential source of information for pharmaceutical scientists and pharmacologists working in academia as well as in the industry. In addition, it has useful information for pharmaceutical physicians and scientists in many disciplines involved in developing DDS, such as chemical engineering, biomedical engineering, protein engineering, gene therapy.
Front Cover Modeling and Control of Drug Delivery Systems Copyright Contents Contributors Preface About the book Objectives of the book Organization of the book Book features Audience Acknowledgments Chapter 1: Hepatitis C Virus Epidemic Control Using a Nonlinear Adaptive Strategy 1. Introduction 2. Related Research Work 3. Dynamic Model of Hepatitis C Virus Epidemic 4. Nonlinear Adaptive Controller Formulation for Epidemiology of HCV 4.1. Nonlinear Adaptive Control Laws 4.2. Stability Proof and Adaptation Laws 5. Results and Discussion 5.1. System Response to Different Uncertainty Levels 6. Conclusion Appendix. Barbalat's Lemma References Chapter 2: Integral Sliding Mode Control of Immune Response for Kidney Transplantation 1. Introduction 2. Mathematical Model of Transplant Recipients 3. Control Scheme 3.1. Design of an Integral Sliding Mode Controller 3.2. Lyapunov Stability Proof 4. Simulation Results 4.1. Primary Infection Case 4.2. Reactivation Case 4.3. Control Signals 4.4. Sensitivity Analysis 4.5. Possible Antiviral Therapy Strategies 5. Conclusion Remarks References Chapter 3: Smart Drug Delivery Systems 1. Introduction 2. pH-Responsive Drug Delivery Systems 3. Redox-Responsive Drug Delivery Systems 4. Thermoresponsive Drug Delivery Systems 5. Hypoxia-Responsive Drug Delivery Systems 6. Other External Stimuli-Responsive Systems 7. Conclusions References Chapter 4: Polymeric Transdermal Drug Delivery Systems 1. Introduction 2. Skin Structure and Wounds 3. Wound Dressings 4. Different Drug Types 4.1. Hydrophilic Drugs 4.2. Hydrophobic Drugs 4.3. Metal-Based Nanoparticles 5. Thermodynamic/Kinetic of Drug Delivery Systems 5.1. Parameters Affecting the Drug Release 5.2. Principles of Drug-Polymer Solubility Based on Thermodynamics of Mixing 5.2.1. The primary solubility parameter approach 5.2.2. The melting point depression method 5.2.3. The polymer in solution method 5.2.4. Calculation the activity coefficient of the drug based on FH lattice theory 5.3. The Relationship Between the Thermodynamic and Kinetic Principles of Drug Release 6. Polymeric Transdermal Drug Delivery Systems 6.1. Film-Based Dressings 6.2. Hydrogels 6.3. Hydrocolloid-Based Dressings 6.4. Electrospun Nanofibers 6.5. Micro/Nanoparticles 6.6. Biofoams 6.7. Microneedles 7. Concluding Remarks References Chapter 5: Stimuli-Responsive Polymers as Smart Drug Delivery Systems 1. Introduction 2. Polymers as Responsive Drug Delivery Systems 2.1. Thermoresponsive Polymeric Drug Delivery Systems 2.1.1. Poly(methyl vinyl ether) 2.1.2. Poly (N-ethyl oxazoline) 2.1.3. Polypeptides 2.1.4. Poly(N-vinylcaprolactam) 2.1.5. Poly(N-isopropylacrylamide) 2.1.6. Poly(acrylic acid-co-acrylamide) 2.2. pH-Responsive Polymeric Drug Delivery Systems 2.3. Biological-Responsive Polymeric Drug Delivery Systems 2.4. Ultrasound-Responsive Polymeric Drug Delivery Systems 2.5. Electro-Responsive Polymeric Drug Delivery Systems 2.6. Other Responsive Polymeric Drug Delivery Systems 3. Future Trend and Conclusion References Chapter 6: Efficacy of Polymer-Based Wound Dressings in Chronic Wounds 1. Introduction 2. Types of Wounds and Healing Phase 3. Wound Dressings 3.1. Hydrogels 3.2. Hydrocolloids 3.3. Foams 3.4. Films 3.5. Dermal Patches 3.6. Nanofibers 3.7. Membranes 3.8. Polymer-Drug Conjugates 4. Conclusion References Website References Chapter 7: Recent Progress of Transdermal Drug Delivery Systems for Biomedical Applications 1. Introduction 2. Skin Morphology 2.1. Epidermis 2.1.1. Stratum corneum (the horny layer) 2.2. Dermis 2.3. Hypodermis 3. Skin Penetration 3.1. Ideal Properties of Permeation Enhancers 4. Components of Transdermal Drug Delivery Systems 4.1. Polymer Matrix/Drug Reservoir 4.2. Drug 4.3. Pressure Sensitive Adhesives (PSA) 4.4. Penetration Enhancer 4.5. Release Liner 4.6. Backing Layer 4.7. Other Excipients 5. Approaches for Developing TDDS 5.1. Membrane Permeation Controlled TDDS 5.2. Adhesive Dispersion Type 5.3. Matrix-Diffusion Controlled TDDS 5.4. Micro Sealed Dissolution Controlled System or Micro Reservoir Type 5.5. Micro Structured Transdermal System 6. Evaluation of Transdermal DDS 6.1. Physicochemical Properties 6.1.1. Weight variation test 6.1.2. Transdermal film thickness 6.1.3. Drug content 6.1.4. Percentage of moisture in the TDDS 6.1.5. Uptake of moisture 6.1.6. Tensile strength 6.1.7. Folding endurance 6.2. Evaluation of Adhesives Used in TDDS 6.2.1. Adhesive peeling off 6.2.2. Tack property Thumb tack test Rolling ball tack test Quick stick or peel-tack test Probe tack test 6.3. In Vitro Evaluation 6.3.1. In vitro drug release studies The paddle over the disc method (USP apparatus V) Cylinder modified USP basket (USP apparatus 6) Reciprocating method (USP apparatus 7) 6.3.2. Skin permeability studies: Franz diffusion cell 6.4. In Vivo Evaluation 6.4.1. Animal models Skin irritation studies 6.4.2. Human models 6.5. Stability Studies 7. Transdermal Drug Delivery Systems in the Management of Diseases 8. Miscellaneous Bio Medical Applications of TDDS 9. Conclusion References Chapter 8: Towards the Development of Delivery Systems of Bioactive Compounds With Eyes Set on Pharmacokinetics 1. Introduction 2. Drug Delivery Systems 2.1. Release Mechanisms and Classes of Delivery Systems 2.2. From the Release Dynamics to the Therapeutic Performance 3. Issues on the Pharmacology of Natural Compounds 3.1. Challenges in the Therapeutic Application 3.2. Multifactorial Actions of Natural Compounds 4. Pharmacokinetic Analysis 4.1. Essential Concepts 4.2. Pharmacokinetic Compartmental Models 4.3. Application of Pharmacokinetic Models to a Prototypical Polyphenol 5. Study Models and Application in Dermal Delivery 5.1. Studies in Franz Cell 5.1.1. Drug permeation studies 5.1.2. Drug release studies 5.2. Studies in Transwell System 6. Conclusions References Chapter 9: Nanofiber: An Immerging Novel Drug Delivery System 1. Introduction 2. Nanofiber as Prolonged-Drug Delivery System 2.1. Wound Healing 2.2. Cancer 2.3. Microbial Diseases 2.4. Cardiovascular Diseases 2.5. Macromolecules for Miscellaneous Applications 3. Clinical Applicability Challenges 4. Future Perspective 5. Conclusion References Chapter 10: Molecular Dynamics Simulations on Drug Delivery Systems 1. Introduction 2. Polymer Composites/Nanocomposites as Drug Delivery Systems 3. Graphene and Its Derivatives as Drug Delivery Systems 4. Carbon Nanotubes and Their Derivatives as Drug Delivery Systems 5. Fullerenes as Drug Delivery Systems 6. DNAs as Drug Delivery Systems 7. Peptides and Cell Penetrating Peptides as Drug Delivery Systems 8. Proteins as Drug Delivery Systems 9. Nanoparticles as Drug Delivery Systems 10. Liposomes as Drug Delivery Systems 11. Micelles as Drug Delivery Systems 12. Conclusion References Chapter 11: Nanoparticle Drug Delivery: An Advanced Approach for Highly Competent and Multifunctional Therapeutic Treatment 1. Introduction 2. Background of Nanoparticles in Human History and Drug Development 3. Types of Nanoparticles Used for Therapeutic Treatment 3.1. Metal and Metal Oxide Nanoparticles 3.2. Chitosan Nanoparticles 3.3. Solid Lipid Nanoparticles 3.4. Mesoporous Silica Nanoparticle 3.5. Liposome Nanocarrier 3.6. Polymeric Nanocarriers 3.7. Dendrimer 3.8. Polymeric Micelles Nanoparticles 4. Toxicological Profile of Nanoparticles 5. Conclusion and Future Development References Chapter 12: Targeted Drug Delivery: Advancements, Applications, and Challenges 1. Introduction 2. Active Targeting 2.1. Receptor-Mediated Active Targeting 2.1.1. Folic acid receptor 2.1.2. Integrin αvβ3 2.1.3. Epidermal growth factor-receptor 2.2. Peptides 2.3. Folic Acid 2.4. Aptamer 3. Passive Targeting 4. Comparison of Active and Passive Targeting 5. Conclusion References Chapter 13: Strategies-Based Intrathecal Targeted Drug Delivery System for Effective Therapy, Modeling, and Controlled Re ... 1. Introduction 1.1. Outline of the Chapter 2. Strategies for Intrathecal Drug Delivery 2.1. Blood-Brain Barrier Disruption by Ultrasound 2.2. BBB Disruption by Osmotic Mechanism 2.3. Overcoming Active Efflux at the BBB 2.4. Passive Diffusion of Drugs 3. Emerging Trends in Intrathecal Drug Delivery 3.1. Nanoparticulate Drug Carrier System 3.2. Hydrogels-Mediated Drug Delivery 3.3. Microbubble-Assisted Ultrasound-Based Drug Delivery 3.4. Intranasal Drug Delivery 3.5. Receptor-Mediated Opening 3.6. Carbon Nanotubes 4. Conclusion References Chapter 14: Biopolymer-Based Hydrogel Wound Dressing 1. Introduction 2. Wound Dressing and Its Ideal Properties 3. Wound Dressing Based on Biopolymers 3.1. Dextran 3.2. Collagen 3.3. Chitosan 3.4. Cellulose 3.5. Alginic Acid 3.6. Starch 3.7. Gelatin 3.8. Hyaluronan 3.9. Keratin 3.10. Silk 4. Clinical Application 5. Future Perspective References Chapter 15: Novel Controlled Release Pulmonary Drug Delivery Systems: Current updates and Challenges 1. Introduction 2. Background 2.1. Global Scenario 2.2. Anatomy and Physiology of the Lungs 3. Methods 3.1. Mechanism of Drug Administration 4. Nanocarrier Drug Delivery Systems 4.1. Advantages of Nanocarrier Drug Delivery System 4.1.1. Easy surface amendment 4.1.2. Targeted delivery 4.1.3. Regulated release of drug 5. Drug Delivery Approaches for Pulmonary Respiratory Disease 5.1. Liposomes 5.2. Niosomes 5.3. Nanoparticles 5.3.1. Magnetic nanoparticles 5.4. Polymeric Nanoparticles 5.5. Solid Lipid Nanoparticles 5.6. Dendrimers 5.7. Micelles 5.8. Micro-emulsions 5.9. Carbon Nanotubes 5.10. Quantum Dots Challenges associated with controlled drug delivery Clinical studies of drug delivery system 6. Future Directions 7. Conclusion References Chapter 16: Nanoparticle Formulations and Delivery Strategies for Sustained Drug Release in the Lungs 1. Introduction 2. Benefits and Drawbacks of the Pulmonary Route Over Other Administration Routes 3. Marketed Inhalable Products and Patient Compliance 3.1. Inhalable Drugs Commercially Available in US and UE Markets 3.2. Patient Compliance to Aerosol Therapy 4. The Role of Formulation for Controlled PDD 5. The Role of Inhaler Devices for Controlled PDD 5.1. pMDIs 5.2. Accessories of the pMDIs 5.3. Breath-Actuated MDI Devices (BA-MDIs) 5.4. DPIs 5.5. Nebulizers 5.6. SMIs 6. Nanobiotechnology Solutions Against Asthma and COPD 7. Nanobiotechnology Solutions Against Pulmonary Infections and Cancer 8. Conclusions References Chapter 17: Current Perspectives on Mycosynthesis of Nanoparticles and Their Biomedical application 1. Introduction 2. Microbial Green synthesis: A Novel and Eco-friendly Approach 2.1. Fungi, An Efficient System for the Biosynthesis of NPs 2.2. The Probable Mechanism of Myconanoparticles Synthesis 2.3. Achieving Different Sizes of Myconanoparticles 2.4. Role of NPs in the Treatment of Infectious Diseases 3. Mycosynthesis of Various NPs and Their Biomedical Applications 3.1. Silver Myconanoparticles Synthesis 3.2. Application of Myco-synthesized Silver NPs 3.3. Gold Myconanoparticles (AuNPs) 3.4. Application of Myco-synthesized Gold NPs 3.5. Other Metal and Metal Oxide Myconanoparticles and Their Applications 4. Conclusion and Future Prospects References Chapter 18: Solid Oral Controlled-Release Formulations 1. Introduction 2. Need for Controlled-Release Dosage Forms 3. Terminologies Used for Describing Controlled-Release Formulations 3.1. Conventional Release Dosage Form 3.2. Modified Drug-Release Dosage Form 3.3. Prolonged-Release Dosage Form 3.4. Controlled-Drug Release Dosage Form 3.5. Delayed-Drug Release Dosage Form 4. Polymers used in Controlled-Release Systems 4.1. Hydrophilic Polymers 4.1.1. Hydroxypropyl methylcellulose 4.1.2. Sodium carboxymethylcellulose 4.1.3. Sodium alginate 4.1.4. Carbomers 4.2. Hydrophobic Polymers 4.2.1. Ethyl cellulose 4.2.2. Cellulose acetate 4.2.3. Polymethacrylates 5. Types of Controlled-Release Drug Delivery Systems 5.1. Diffusion-Controlled Systems 5.1.1. Reservoir-type diffusion-controlled systems 5.1.2. Matrix-type diffusion-controlled systems 5.2. Dissolution-controlled systems 5.2.1. Reservoir-type dissolution-controlled systems 5.2.2. Matrix-type dissolution-controlled systems 5.3. Dissolution-diffusion-controlled systems or hybrid systems 6. Drug Release Characterization From Controlled-Drug Delivery Systems 6.1. Evaluation of Drug Release Characteristics From Delivery Systems 6.1.1. Statistical methods 6.1.2. Model-dependent methods Zero-order kinetics First-order kinetics Higuchi's model Hixson-Crowells model Korsmeyer-Peppas model 6.1.3. Model-independent methods 6.2. Swelling and erosion characterization for controlled-release dosage form 6.2.1. Swelling characterization 6.2.2. Erosion characterization 6.3. Pharmacokinetic Evaluation of Solid Oral-Controlled Dosage Forms 6.3.1. Rate and extent of absorption and plasma drug fluctuations 7. Conclusion 8. Future Prospects References Chapter 19: Advanced Solid Oral Controlled-Release Formulations 1. Introduction 2. Gastro-Retentive Drug Delivery Systems 2.1. Floating Systems 2.1.1. Effervescent systems 2.1.2. Noneffervescent systems 2.2. Bioadhesive or Mucoadhesive Systems 3. Colon-Targeted Drug Delivery Systems 3.1. pH-Sensitive Drug Delivery 3.2. Delayed or Time-Controlled Release Drug Delivery Systems 3.3. Microbially Targeted Colonic Delivery 3.4. Integrated Approaches for Colon-Targeted Delivery Systems 4. Feedback-Regulated Systems 4.1. Bioresponsive Systems 4.2. Self-Regulating Systems 5. Enteric Drug Delivery Systems 5.1. Reasons for Enteric Coating 5.2. Polymers Used for Enteric Coating and Its Mechanism 6. Osmotic Drug Delivery Systems 6.1. Mechanism Involved in Drug Release From Osmotic Drug Delivery Systems 6.2. Factors Affecting the Osmotic Drug Delivery Systems [54, 55, 59] 6.2.1. Solubility 6.2.2. Delivery orifice 6.2.3. Osmotic pressure 6.2.4. Membrane type 6.3. Advantages of Osmotic Drug Delivery Systems 7. 3D Printing-Based Controlled-Release Formulations 8. Ultra-Long Acting Formulations 9. Patented Technologies 10. Future Perspective 11. Conclusion References Chapter 20: Mucoadhesive Polymers: Gateway to Innovative Drug Delivery 1. Introduction 2. Mechanism of Mucoadhesion 3. Mucus Gel Layer 3.1. Mucins 3.2. Production 4. Evaluation of Mucoadhesive Properties 4.1. Force Determination Methods 4.1.1. Texture analyzer 4.1.2. Tensile strength 4.1.3. Atomic force microscopy 4.2. Molecular Interaction Methods 4.2.1. Rheological methods 4.2.2. DSC thermograms 4.2.3. Ellipsometry 4.2.4. Quartz crystal microbalance 4.2.5. Resonant mirror biosensor 4.2.6. Surface plasmon resonance 4.2.7. Nuclear magnetic resonance 4.2.8. Zeta potential change 4.2.9. Residual mucin 4.3. Rinse Methods 4.3.1. Half-pipe method 4.3.2. Wash-off test 4.3.3. Adhesion number 4.3.4. Rotating cylinder 4.3.5. Immersion 4.4. Cellular Methods 4.4.1. Cell adhesion studies 4.5. Optical Methods 4.5.1. Confocal laser scanning microscopy 4.5.2. Turbidimetry 5. Mucoadhesive Polymers 5.1. Classification of Mucoadhesive Polymers 5.1.1. Classification based on the interfacial forces Noncovalent binding polymers Nonionic polymers Anionic polymers Cationic polymers Covalent binding polymers 5.2. Classification Based on the Source of Polymer 5.2.1. Natural polymers and ligands Polysaccharides Protein ligands Lectins Milk proteins Silk proteins Bacterial protein Catechol and its derivatives 5.2.2. Synthetic and semisynthetic polymers Cellulose derivatives Polyacrylic acid and its derivatives Poloxamers Polyethylene glycol Polyvinylpyrrolidone Polyvinyl alcohol Thiomers First-generation thiomers Second-generation thiomers Third-generation thiomers 6. Factors Affecting Mucoadhesion 6.1. Polymer Backbone 6.1.1. Solubility 6.1.2. Swellability 6.1.3. Crosslinking 6.1.4. Concentration 6.2. Physiological Factors 6.2.1. pH at the site of action 6.2.2. Availability of water 6.2.3. Mucus turnover 6.2.4. Disease state 6.2.5. Type of mucin 7. Mucoadhesive Drug Delivery Systems 7.1. In Situ Gelling Formulations 7.2. Electrospun Nanofibers 7.3. Mucoadhesive Nanoparticles 7.4. Films 7.5. Tablets 7.6. Beads 7.7. Mucoadhesive Microsphere 7.8. Polymeric Micelles 7.9. Polymer-Coated Liposomes 7.10. Self-Emulsifying Drug Delivery System 8. Marketed Mucoadhesive Products 9. Future Perspectives of Mucoadhesive Drug Delivery Systems 10. Conclusion References Index Back Cover