دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: علم شیمی ویرایش: نویسندگان: Chunhua Yang. Bei Sun سری: Emerging Methodologies and Applications in Modelling, Identification and Control ISBN (شابک) : 0128195924, 9780128195925 ناشر: Academic Press سال نشر: 2021 تعداد صفحات: 228 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 18 مگابایت
در صورت تبدیل فایل کتاب Modeling, Optimization, and Control of Zinc Hydrometallurgical Purification Process به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مدلسازی، بهینهسازی و کنترل فرآیند تصفیه هیدرومتالورژی روی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مدلسازی، بهینهسازی و کنترل فرآیند تصفیه هیدرومتالورژی روی تصویر واضحی در مورد چگونگی توسعه یک مدل ریاضی برای فرآیندهای پیچیده صنعتی، نحوه طراحی استراتژی بهینهسازی و نحوه اعمال روشهای کنترلی به منظور دستیابی به هدف تولید مورد نظر این کتاب ایدهها/روششناسی/الگوریتمهای اخیر نویسندگان را در مورد تولید هوشمند فرآیندهای پیچیده صنعتی به اشتراک میگذارد، به عنوان مثال، چگونگی توسعه یک چارچوب توصیفی که میتواند دیجیتالی کردن و تجسم یک فرآیند را امکانپذیر کند و چگونه میتوان کنترلکننده را در زمانی که مدل فرآیند است توسعه داد. در دسترس نیست.
Modeling, Optimization and Control of Zinc Hydrometallurgical Purification Process provides a clear picture on how to develop a mathematical model for complex industrial processes, how to design the optimization strategy, and how to apply control methods in order to achieve desired production target. This book shares the authors’ recent ideas/methodologies/algorithms on the intelligent manufacturing of complex industry processes, e.g., how to develop a descriptive framework which could enable the digitalization and visualization of a process and how to develop the controller when the process model is not available.
Front-Mat_2021_Modeling--Optimization--and-Control-of-Zinc-Hydrometallurgica Copyrig_2021_Modeling--Optimization--and-Control-of-Zinc-Hydrometallurgical- Content_2021_Modeling--Optimization--and-Control-of-Zinc-Hydrometallurgical- Contents About-the-au_2021_Modeling--Optimization--and-Control-of-Zinc-Hydrometallurg About the authors Prefac_2021_Modeling--Optimization--and-Control-of-Zinc-Hydrometallurgical-P Preface Acknowledgm_2021_Modeling--Optimization--and-Control-of-Zinc-Hydrometallurgi Acknowledgments Chapter-1---Intr_2021_Modeling--Optimization--and-Control-of-Zinc-Hydrometal 1 Introduction 1.1 Overview 1.2 Zinc hydrometallurgy technologies 1.2.1 Roasting-leaching-electrowinning zinc hydrometallurgy technology 1.2.1.1 Roasting process 1.2.1.2 Leaching and purification processes 1.2.1.3 Electrowinning process 1.2.2 Atmospheric direct leaching zinc hydrometallurgy technology 1.3 Solution purification process 1.4 Organization and scope of text References Chapter-2---Modeling-and-optimal-cont_2021_Modeling--Optimization--and-Contr 2 Modeling and optimal control framework for the solution purification process 2.1 Problem analysis 2.1.1 Challenges in the modeling of the solution purification process 2.1.2 Challenges in the optimal control of the solution purification process 2.2 Modeling and optimal control framework 2.2.1 Process modeling based on fusion of reaction kinetics and production data 2.2.1.1 Definition of a comprehensive state space descriptive system 2.2.1.2 Typical modeling approaches State space-based first-principle modeling Machine learning-based input/output modeling Comparison between SS-FPM and ML-IOM 2.2.1.3 Hybrid first-principle/machine learning modeling frameworks Naive integration of a kinetic model and a data-driven compensation model Integration of a subkinetic model and a subdata-driven compensation model Weighted hybrid kinetic model and data-driven compensation model with time-varying weights Comprehensive hybrid modeling framework 2.2.2 Cooperative optimization and control of cascaded metallurgical reactors References Chapter-3---Kinetic-modeling-of-th_2021_Modeling--Optimization--and-Control- 3 Kinetic modeling of the competitive-consecutive reaction system 3.1 Process description and analysis 3.2 Kinetics of copper removal reactions 3.2.1 Influencing factor analysis 3.2.1.1 Temperature 3.2.1.2 Reaction time 3.2.1.3 pH 3.2.1.4 Composition of leaching solution 3.2.1.5 Zinc powder dosage 3.2.1.6 Solid content of underflow 3.2.2 Copper cementation kinetics 3.2.3 Cuprous oxide precipitation kinetics 3.3 Modeling of the competing reactions system 3.3.1 Model structure determination 3.3.2 Model parameter identification 3.3.2.1 Data sample labeling and classification 3.3.2.2 Data sample balancing 3.3.2.3 Parameter identification based on EA-PSO 3.3.2.4 Results References Chapter-4---Additive-requirement-ra_2021_Modeling--Optimization--and-Control 4 Additive requirement ratio estimation using trend distribution features 4.1 Definition of additive requirement ratio 4.2 Case-based prediction with trend distribution features for ARR 4.2.1 Variation trend extraction and classification 4.2.1.1 Smoothing and normalization of process variables 4.2.1.2 Differentiation of process variables and setting primitive thresholds 4.2.1.3 Identifying trends 4.2.2 Extracting trend distribution features 4.2.2.1 Sorting the qualitative primitives 4.2.2.2 Estimating the trend distribution probability 4.2.3 Case-based prediction with a trend distribution feature 4.2.3.1 Similarity measurements for the trend distributions and industrial variables 4.2.3.2 Prediction of ARR 4.3 Results References Chapter-5---Real-time-adjustment-o_2021_Modeling--Optimization--and-Control- 5 Real-time adjustment of zinc powder dosage based on fuzzy logic 5.1 Copper removal performance evaluation based on ORP 5.1.1 Relationship between copper ion concentration and ORP 5.1.2 ORP-based process evaluation 5.2 Controllable domain-based fuzzy rule extraction for copper removal 5.2.1 Data preparation 5.2.2 Controllable domain determination 5.3 Results References Chapter-6---Integrated-modelin_2021_Modeling--Optimization--and-Control-of-Z 6 Integrated modeling of the cobalt removal process 6.1 Process description and analysis 6.2 Kinetics of cobalt removal reactions 6.2.1 Influencing factor analysis 6.2.1.1 Temperature Reaction rate Reaction product morphology Distribution of cathode current 6.2.1.2 Dosage of arsenic trioxide 6.2.1.3 Dosage of zinc powder 6.2.1.4 Flow rate of spent acid 6.2.1.5 Concentration of zinc ions and copper ions 6.2.1.6 Other influencing factors 6.2.2 Analysis of reaction type and steps 6.2.3 Relation between ORP and reaction rate 6.2.4 Kinetic model construction 6.3 First-principle/machine learning integrated process modeling 6.3.1 Integrated modeling framework 6.3.2 Working condition classification 6.3.2.1 Deep feature extraction 6.3.2.2 Deep feature space partitioning Rough division using a KD-Tree Fine division based on LR 6.3.3 Model performance evaluation References Chapter-7---Intelligent-optimal-se_2021_Modeling--Optimization--and-Control- 7 Intelligent optimal setting control of the cobalt removal process 7.1 Problem analysis 7.2 Normal-state economical optimization 7.2.1 Problem formulation 7.2.1.1 Zinc powder utilization efficiency factor 7.2.1.2 Cobalt removal ratio 7.2.1.3 Optimization problem formulation Gradient optimization of ACP 7.2.2 Two-layer gradient optimization under normal-state conditions 7.2.2.1 Online estimation of ZPUF 7.2.2.2 Rolling gradient optimization of ACP 7.3 Abnormal-state adjustment 7.3.1 Data-driven online operating state monitoring 7.3.2 CBR-based adjustment under abnormal-state conditions 7.4 Results References Chapter-8---Control-of-the-cobalt-r_2021_Modeling--Optimization--and-Control 8 Control of the cobalt removal process under multiple working conditions 8.1 Problem analysis 8.2 Robust adaptive control under model–plant mismatch 8.2.1 Nominal process model 8.2.2 Model–plant mismatch analysis 8.2.3 Design of a robust adaptive tracking controller 8.2.4 Control performance analysis 8.3 Adaptive dynamic programming for working conditions with unknown model parameters 8.3.1 Problem formulation 8.3.2 Model-free zinc powder dosage controller 8.3.3 Control performance analysis References Chapter-9---Intelligent-con_2021_Modeling--Optimization--and-Control-of-Zinc 9 Intelligent control system development 9.1 Framework of intelligent control systems 9.2 Data acquisition and management 9.3 Process monitoring and control Chapter-10---Conclusions-_2021_Modeling--Optimization--and-Control-of-Zinc-H 10 Conclusions and future research 10.1 Summary 10.2 Future research directions 10.2.1 Autonomous control of reactors 10.2.2 Plant-wide intelligent cooperation 10.2.3 Epilogue References Inde_2021_Modeling--Optimization--and-Control-of-Zinc-Hydrometallurgical-Pur Index