دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Eric Tournié (editor)
سری: Woodhead Publishing in Electronic and Optical Materials
ISBN (شابک) : 0081027095, 9780081027097
ناشر: Woodhead Publishing
سال نشر: 2019
تعداد صفحات: 754
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 25 مگابایت
در صورت تبدیل فایل کتاب Mid-infrared Optoelectronics: Materials, Devices, and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب Optoelectronics با فروسرخ میانی: مواد ، دستگاه ها و برنامه ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
اپتوالکترونیک مادون قرمز میانی: مواد، دستگاهها و برنامهها به مواد، دستگاهها و برنامههای جدیدی که در دهه گذشته ظهور کردهاند، همراه با حوزههای تحقیقاتی هیجانانگیز میپردازد. بخشها اصول، منابع نور، آشکارسازهای نوری، رویکردهای جدید و کاربرد دستگاههای IR میانی را پوشش میدهند، با بخشهایی که درباره LED، دیودهای لیزر، و لیزرهای آبشاری کوانتومی، الکترونیک نوری فروسرخ میانی، حوزههای تحقیقاتی نوظهور، آلیاژهای بیسمید و نیترید رقیق، گروه بحث میکنند. -مواد IV، ناهمساختارهای نیترید گالیوم و مواد غیرخطی جدید. در نهایت، مرتبط ترین کاربردهای دستگاه های مادون قرمز میانی در صنعت، سنجش گاز، طیف سنجی و تصویربرداری بررسی می شود.
این کتاب یک مرجع کلیدی برای دانشمندان مواد، مهندسان و متخصصانی است که در تحقیق و توسعه در زمینه نیمه هادی ها و اپتوالکترونیک کار می کنند.
Mid-infrared Optoelectronics: Materials, Devices, and Applications addresses the new materials, devices and applications that have emerged over the last decade, along with exciting areas of research. Sections cover fundamentals, light sources, photodetectors, new approaches, and the application of mid-IR devices, with sections discussing LEDs, laser diodes, and quantum cascade lasers, mid-infrared optoelectronics, emerging research areas, dilute bismide and nitride alloys, Group-IV materials, gallium nitride heterostructures, and new nonlinear materials. Finally, the most relevant applications of mid-infrared devices are reviewed in industry, gas sensing, spectroscopy, and imaging.
This book presents a key reference for materials scientists, engineers and professionals working in R&D in the area of semiconductors and optoelectronics.
Front Cover Mid-infrared Optoelectronics: Materials, Devices, and Applications Copyright Contents Contributors Preface Part One Fundamentals 1 The physics of mid-infrared semiconductor materials and heterostructures 1.1 Introduction 1.2 Fundamental physics of interband devices 1.3 Type I QW lasers 1.3.1 Temperature dependence measurements 1.3.2 High-pressure studies 1.4 Type II QW lasers 1.4.1 InP “W” lasers 1.4.2 Type II ICLs 1.5 Emerging novel III–V materials for mid-IR device applications 1.5.1 GaAsBiN-based type I and type II heterostructures 1.5.2 InGaAsBi/InP material system for MIR applications 1.5.3 2.7- μ m GaSbBi/GaSb laser structures for MIR applications 1.6 Physical properties of mid-IR QCLs 1.7 Summary Acknowledgments References Part Two Light sources 2 Mid-infrared light-emitting diodes 2.1 Introduction 2.2 Metamorphic structures on GaAs 2.2.1 LEDs based on bulk AlInSb active regions 2.2.2 Type II InAsSb/InAs quantum well LEDs on GaAs 2.2.3 Type I InAsSb/AlInAs QW on GaAs 2.2.4 Type I InSb/AlInSb QW LEDs on GaAs 2.2.5 Quantum cascade LEDs 2.3 Resonant cavity LEDs 2.4 Summary Acknowledgments References 3 Interband mid-infrared lasers 3.1 Introduction 3.2 GaSb-based materials for interband mid-infrared lasers 3.2.1 Electronic properties 3.2.2 Epitaxial growth 3.3 GaSb-based type I Fabry-Pérot LDs 3.3.1 AlGaAsSb/GaInAsSb quantum well LDs 3.3.2 AlGaInAsSb/GaInAsSb QW LDs 3.3.3 GaSb-based type I cascade LDs 3.3.4 GaSb-based lasers integrated on GaAs and Si substrates 3.4 GaSb-based type I single-frequency LDs 3.4.1 GaSb-based type I distributed feedback LDs 3.4.1.1 Lateral metal-grating DFB lasers 3.4.1.2 Lateral sidewall corrugation DFB lasers 3.4.1.3 Buried-grating DFB lasers 3.4.1.4 Photonic crystal single-mode LDs 3.4.2 GaSb-based type I VCSELs 3.4.2.1 VCSELs emitting between 2 and 3 μ m Buried-tunnel junction VCSELs Monolithic VCSELs 3.4.2.2 VCSELs emitting above 3 μ m 3.5 GaSb-based type II ICLs 3.5.1 General overview 3.5.2 Single-frequency GaSb-based ICLs 3.6 Other materials systems 3.7 Conclusion: Perspectives Acknowledgments References Further reading 4 Quantum cascade lasers 4.1 Quantum cascade laser fundamentals 4.1.1 The structure parameters 4.1.2 Self-consistent band diagram: Doping effect 4.1.2.1 Example: A single QW structure 4.1.2.2 Example: QCL band diagram 4.1.3 Free carrier absorption 4.2 QCL fabrication 4.2.1 Introduction to fabrication 4.2.2 MBE of QCLs 4.2.2.1 Basics of MBE growth 4.2.2.2 Strained-layer epitaxy 4.2.2.3 Epitaxial structure 4.2.3 QCL chip fabrication 4.2.4 Fabrication of BH QCL 4.3 Power scaling 4.3.1 QCL properties contributing to emission power 4.3.2 Threshold current and power density as functions of cascade number 4.3.3 Thermal considerations for high power 4.3.4 CW operation with small number of cascades 4.3.5 Beam quality of broad-area CW QCLs 4.4 External cavity quantum cascade laser 4.4.1 Basics for lasing 4.4.2 Optical loss of FP-/EC-mode 4.4.3 Lasing and parasitic oscillation 4.4.4 Tunability of EC-QCL 4.4.4.1 Grating in Littrow condition 4.4.4.2 Effective reflection in EC system 4.4.4.3 Lasing condition of Littrow-type EC laser 4.4.4.4 Coating effect to power restriction 4.4.4.5 Coating effect to tunability References 5 High-brightness quantum cascade lasers 5.1 Introduction 5.2 Brightness, power, and efficiency 5.3 Active region design 5.4 QCL waveguides and transverse modes 5.5 Master oscillator power amplifier 5.6 Engineered Sidewall Losses 5.7 Cladding losses 5.8 Geometrical power scaling and temperature effects 5.9 Geometrical mode control 5.10 Summary References 6 Mid-infrared frequency conversion in quasiphase matched semiconductors 6.1 Introduction 6.2 Designing mid-IR QPM semiconductors 6.3 Fabrication of OP templates 6.3.1 Gallium arsenide 6.3.2 Gallium phosphide 6.3.3 Gallium antimonide 6.4 Epitaxial growth of bulk OP-crystals 6.4.1 Gallium arsenide 6.4.2 Gallium phosphide 6.5 Epitaxial growth of OP waveguides 6.5.1 Gallium arsenide 6.5.2 Gallium phosphide 6.5.3 Gallium antimonide 6.6 Application perspectives 6.6.1 Short pulse durations 6.6.2 Intermediate pulse durations 6.6.3 Continuous wave regimes 6.7 Conclusion Acknowledgments References Further reading Part Three Photodetectors 7 HgCdTe photodetectors 7.1 Introduction 7.2 Historical perspective 7.3 Impact of epitaxial growth on development of HgCdTe detectors 7.4 HgCdTe photodiodes 7.4.1 Junction formation 7.4.1.1 Hg in-diffusion 7.4.1.2 Ion milling 7.4.1.3 Ion implantation 7.4.1.4 Reactive ion etching 7.4.1.5 Doping during growth 7.4.1.6 Passivation 7.4.1.7 Device processing 7.4.2 Fundamental limitation to HgCdTe photodiode performance 7.4.3 Nonfundamental limitation to HgCdTe photodiode performance 7.4.3.1 Current-voltage characteristics 7.4.3.2 Dislocations and 1/ f noise 7.4.4 Avalanche photodiodes 7.4.5 Auger-suppressed photodiodes 7.4.6 Barrier photodetectors 7.5 HgCdTe FPAs 7.5.1 Trends in IR FPAs 7.5.2 IR FPA considerations 7.5.3 Influence of ROIC on photodiode array performance 7.5.4 Focal plane arrays 7.5.5 Third-generation detectors 7.6 HgCdTe future prospect 7.6.1 P-i-N HgCdTe photodiodes 7.6.2 Manufacturability of FPAs 7.7 Conclusions References Further reading 8 Quantum cascade detectors: A review 8.1 Introduction 8.2 QCD state of the art 8.3 Device physics 8.3.1 Electronic transport 8.3.1.1 Quantitative models 8.3.1.2 Insightful pictures and trends 8.3.2 Noise 8.3.2.1 Definitions 8.3.2.2 1/ f noise, infinite power NSD, and nonstationary signals 8.3.2.3 Shot and Johnson (thermal) noises 8.3.2.4 Dark and optical noises 8.4 QWIPs vs QCDs 8.5 Optical coupling 8.5.1 Brewster angle, 45 degrees, gratings, corrugation, etc 8.5.2 Nanophotonics 8.6 A toolbox for physics 8.6.1 High speed and heterodyne 8.6.2 SWIR QCDs 8.6.3 Integrated QCLD 8.7 Conclusion References Further reading 9 InAs/GaSb type II superlattices: A developing material system for third generation of IR imaging 9.1 Introduction 9.2 High-performance InAs/GaSb T2SL-based photodetectors covering whole IR spectrum 9.2.1 Short-wavelength IR photodetectors 9.2.2 Extended-SWIR photodetectors and FPAs 9.2.3 MWIR photodetectors and FPAs 9.2.4 LWIR photodetectors and FPAs 9.2.5 VLWIR photodetectors and FPAs 9.3 High-performance InAs/GaSb T2SL photodetectors and FPAs on GaAs substrate 9.4 High-performance multicolor photodetectors and FPAs 9.5 Ga-free InAs/InAs 1 − x Sb x /AlAs 1 − x Sb x type II superlattice photodetectors 9.5.1 Type II superlattices: InAs/GaSb vs. InAs/InAs 1 − x Sb x 9.5.2 High-performance SWIR photodetectors based on Ga-free T2SLs 9.5.3 High-performance LWIR photodetectors based on Ga-free T2SLs 9.5.4 High-performance VLWIR photodetectors based on Ga-free T2SLs 9.5.5 Dual-band IR detection based on Ga-free InAs/InAs 1 − x Sb x T2SLs References Further reading 10 InAsSb-based photodetectors List of Acronyms 10.1 Introduction 10.2 History and growth methods 10.3 Material properties 10.4 Photodetectors 10.5 Summary and future outlook References Further reading Part Four New approaches 11 Dilute bismide and nitride alloys for mid-IR optoelectronic devices 11.1 Dilute bismide 11.1.1 GaSbBi 11.1.1.1 MBE growth 11.1.1.2 LPE growth 11.1.1.3 Point defects 11.1.1.4 Electronic and optical properties 11.1.2 AlSbBi 11.1.3 InAsBi 11.1.3.1 MOVPE growth of InAsBi 11.1.3.2 MBE growth of InAsBi 11.1.3.3 Quarternary InAsSbBi and InGaAsBi 11.1.3.4 InSbBi 11.1.4 Theoretical simulations for dilute bismide and mid-IR devices 11.1.5 Dilute bismide mid-IR devices 11.1.6 Future outlook 11.2 Dilute nitrides 11.2.1 Electronic band structure 11.2.1.1 BAC model 11.2.1.2 N-Clusters and point defects 11.2.2 Growth and optical properties 11.2.2.1 InNAs 11.2.2.2 GaNSb 11.2.2.3 InNSb 11.2.2.4 In-rich GaInNAs 11.2.2.5 GaInNSb 11.2.2.6 InNAsSb 11.2.3 Outlook remarks Acknowledgment References 12 Group IV photonics using (Si)GeSn technology toward mid-IR applications 12.1 SiGeSn/GeSn material growth techniques 12.1.1 Challenges of growth 12.1.2 Basic material growth via CVD 12.1.3 Growth of GeSn heterostructure 12.2 GeSn/SiGeSn-based emitters 12.2.1 GeSn LED 12.2.2 GeSn optically pumped laser 12.3 GeSn SWIR and MWIR photodetectors 12.3.1 GeSn photoconductive detectors 12.3.2 GeSn p-i-n photodiode detectors 12.4 Outlook Acknowledgment References 13 Intersubband transitions in GaN-based heterostructures 13.1 Introduction 13.2 Properties of III-nitride semiconductors 13.3 Intersubband absorption in polar GaN/AlGaN quantum wells 13.4 Quantum wells in alternative crystallographic orientations 13.5 Nanowire heterostructures 13.6 Intersubband devices based on III-nitrides 13.6.1 Infrared photodetectors 13.6.2 Infrared emitters 13.7 Conclusions References 14 III–V/Si mid-IR photonic integrated circuits 14.1 Platforms addressing the mid-IR 14.1.1 Si-based platforms for mid-IR 14.1.2 Ge-based platforms for mid-IR 14.2 Alternative platforms for mid-IR and future challenges 14.3 Heterogeneous integration of III–V-on-Si PICs 14.3.1 Heterogeneous integration technology 14.3.2 Heterogeneously integrated III–V-on-Si lasers 14.3.3 Mid-IR III–V-on-Si photodetectors 14.3.4 Mid-IR III–V/Si external cavity laser References Further reading Part Five Application of mid-IR devices 15 Quartz-enhanced photoacoustic spectroscopy for gas sensing applications 15.1 Introduction 15.2 Fundamentals of QEPAS 15.2.1 Quartz tuning fork 15.2.2 Dual-tube acoustic microresonators (on-beam) 15.2.3 Wavelength modulation and dual-frequency detection 15.2.4 Amplitude modulation and broadband absorbers 15.3 QEPAS configurations 15.3.1 Off-beam 15.3.2 Fiber-coupled 15.3.3 Evanescent-wave 15.3.4 Multi-QTFs 15.3.5 Modulation cancellation method 15.3.6 Beat frequency QEPAS 15.3.7 Intracavity QEPAS 15.4 Custom QTFs for QEPAS 15.4.1 Euler-Bernoulli model 15.4.2 Damping effects 15.4.2.1 Air damping 15.4.2.2 Support losses 15.4.2.3 Thermoelastic damping losses 15.4.3 Quality factor 15.4.4 Overtone modes 15.4.5 Overview of custom QTFs performance Custom QTFs with dual-tube mR 15.5 Novel QEPAS approaches exploiting custom QTFs 15.5.1 QEPAS with QTF vibrating at the first overtone flexural mode 15.5.2 Single-tube mR systems 15.5.3 Double-antinode excited quartz-enhanced photoacoustic spectrophone 15.5.4 Simultaneous dual-gas detection 15.6 QEPAS trace gas detection results overview 15.6.1 Long-term stability and Allan variance 15.6.2 Comparison with existing optical techniques 15.6.3 Examples of real-world applications 15.6.3.1 Environmental monitoring 15.6.3.2 Leak detection 15.6.3.3 Hydrocarbon detection 15.6.3.4 Breath sensing 15.7 Conclusions and future developments References 16 Mid-infrared gas-sensing systems and applications 16.1 Application areas and markets for mid-infrared gas-sensing systems 16.2 Fundamentals of absorption spectroscopy 16.3 Properties of gases with high sensing demand 16.3.1 CO 2 16.3.2 CO 16.3.3 H 2 S 16.3.4 CH 4 16.3.5 SO 2 16.3.6 NH 3 16.3.7 NO 2 16.4 MIR gas sensors and measurement systems using incoherent radiation 16.5 Applications of MIR gas sensors and systems using incoherent radiation 16.5.1 Environmental monitoring systems 16.5.2 Hazardous gases 16.5.3 Leak detection 16.5.4 Automotive applications 16.5.5 Breath analysis 16.6 MIR laser-based systems 16.6.1 Narrow-band tunable laser spectroscopy systems 16.6.2 Broadband laser spectroscopy systems 16.6.3 Photoacoustic detection with lasers 16.6.4 Frequency comb-based gas-sensing systems 16.6.5 Alternative detection techniques 16.7 Applications of laser-based systems 16.7.1 Hazardous gas detection and monitoring systems 16.7.1.1 Leak detection of natural gas 16.7.1.2 Toxic gas detection at industrial infrastructures and area surveillance CO H 2 S SO 2 Formaldehyde, CH 2 O NH 3 Phosgene 16.7.2 Process gas measurement 16.7.2.1 Composition of natural gas 16.7.2.2 Ethylene production 16.7.2.3 Desulfurization of oil and gas: H 2 S and SO 2 16.7.2.4 Combustion processes 16.7.3 Automotive exhaust emission measurement 16.7.4 Plasma processes 16.7.5 Research systems 16.7.5.1 Atmospheric trace gases 16.7.5.2 Soil gas emissions 16.7.5.3 Breath analysis 16.8 Conclusion and outlook References Further reading Index Back Cover