ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Mid-infrared Optoelectronics: Materials, Devices, and Applications

دانلود کتاب Optoelectronics با فروسرخ میانی: مواد ، دستگاه ها و برنامه ها

Mid-infrared Optoelectronics: Materials, Devices, and Applications

مشخصات کتاب

Mid-infrared Optoelectronics: Materials, Devices, and Applications

ویرایش:  
نویسندگان:   
سری: Woodhead Publishing in Electronic and Optical Materials 
ISBN (شابک) : 0081027095, 9780081027097 
ناشر: Woodhead Publishing 
سال نشر: 2019 
تعداد صفحات: 754 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 25 مگابایت 

قیمت کتاب (تومان) : 32,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 17


در صورت تبدیل فایل کتاب Mid-infrared Optoelectronics: Materials, Devices, and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب Optoelectronics با فروسرخ میانی: مواد ، دستگاه ها و برنامه ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب Optoelectronics با فروسرخ میانی: مواد ، دستگاه ها و برنامه ها



اپتوالکترونیک مادون قرمز میانی: مواد، دستگاه‌ها و برنامه‌ها به مواد، دستگاه‌ها و برنامه‌های جدیدی که در دهه گذشته ظهور کرده‌اند، همراه با حوزه‌های تحقیقاتی هیجان‌انگیز می‌پردازد. بخش‌ها اصول، منابع نور، آشکارسازهای نوری، رویکردهای جدید و کاربرد دستگاه‌های IR میانی را پوشش می‌دهند، با بخش‌هایی که درباره LED، دیودهای لیزر، و لیزرهای آبشاری کوانتومی، الکترونیک نوری فروسرخ میانی، حوزه‌های تحقیقاتی نوظهور، آلیاژهای بیسمید و نیترید رقیق، گروه بحث می‌کنند. -مواد IV، ناهمساختارهای نیترید گالیوم و مواد غیرخطی جدید. در نهایت، مرتبط ترین کاربردهای دستگاه های مادون قرمز میانی در صنعت، سنجش گاز، طیف سنجی و تصویربرداری بررسی می شود.

این کتاب یک مرجع کلیدی برای دانشمندان مواد، مهندسان و متخصصانی است که در تحقیق و توسعه در زمینه نیمه هادی ها و اپتوالکترونیک کار می کنند.


توضیحاتی درمورد کتاب به خارجی

Mid-infrared Optoelectronics: Materials, Devices, and Applications addresses the new materials, devices and applications that have emerged over the last decade, along with exciting areas of research. Sections cover fundamentals, light sources, photodetectors, new approaches, and the application of mid-IR devices, with sections discussing LEDs, laser diodes, and quantum cascade lasers, mid-infrared optoelectronics, emerging research areas, dilute bismide and nitride alloys, Group-IV materials, gallium nitride heterostructures, and new nonlinear materials. Finally, the most relevant applications of mid-infrared devices are reviewed in industry, gas sensing, spectroscopy, and imaging.

This book presents a key reference for materials scientists, engineers and professionals working in R&D in the area of semiconductors and optoelectronics.



فهرست مطالب

Front Cover
Mid-infrared Optoelectronics: Materials, Devices, and Applications
Copyright
Contents
Contributors
Preface
Part One   Fundamentals
	1 The physics of mid-infrared semiconductor materials and heterostructures
		1.1  Introduction
		1.2  Fundamental physics of interband devices
		1.3  Type I QW lasers
			1.3.1  Temperature dependence measurements
			1.3.2  High-pressure studies
		1.4  Type II QW lasers
			1.4.1  InP “W” lasers
			1.4.2  Type II ICLs
		1.5  Emerging novel III–V materials for mid-IR device applications
			1.5.1  GaAsBiN-based type I and type II heterostructures
			1.5.2  InGaAsBi/InP material system for MIR applications
			1.5.3  2.7- μ m GaSbBi/GaSb laser structures for MIR applications
		1.6  Physical properties of mid-IR QCLs
		1.7  Summary
		Acknowledgments
		References
Part Two   Light sources
	2 Mid-infrared light-emitting diodes
		2.1  Introduction
		2.2  Metamorphic structures on GaAs
			2.2.1  LEDs based on bulk AlInSb active regions
			2.2.2  Type II InAsSb/InAs quantum well LEDs on GaAs
			2.2.3  Type I InAsSb/AlInAs QW on GaAs
			2.2.4  Type I InSb/AlInSb QW LEDs on GaAs
			2.2.5  Quantum cascade LEDs
		2.3  Resonant cavity LEDs
		2.4  Summary
		Acknowledgments
		References
	3 Interband mid-infrared lasers
		3.1  Introduction
		3.2  GaSb-based materials for interband mid-infrared lasers
			3.2.1  Electronic properties
			3.2.2  Epitaxial growth
		3.3  GaSb-based type I Fabry-Pérot LDs
			3.3.1  AlGaAsSb/GaInAsSb quantum well LDs
			3.3.2  AlGaInAsSb/GaInAsSb QW LDs
			3.3.3  GaSb-based type I cascade LDs
			3.3.4  GaSb-based lasers integrated on GaAs and Si substrates
		3.4  GaSb-based type I single-frequency LDs
			3.4.1  GaSb-based type I distributed feedback LDs
				3.4.1.1  Lateral metal-grating DFB lasers
				3.4.1.2  Lateral sidewall corrugation DFB lasers
				3.4.1.3  Buried-grating DFB lasers
				3.4.1.4  Photonic crystal single-mode LDs
			3.4.2  GaSb-based type I VCSELs
				3.4.2.1  VCSELs emitting between 2 and 3  μ m
					Buried-tunnel junction VCSELs
					Monolithic VCSELs
				3.4.2.2  VCSELs emitting above 3  μ m
		3.5  GaSb-based type II ICLs
			3.5.1  General overview
			3.5.2  Single-frequency GaSb-based ICLs
		3.6  Other materials systems
		3.7  Conclusion: Perspectives
		Acknowledgments
		References
		Further reading
	4 Quantum cascade lasers
		4.1  Quantum cascade laser fundamentals
			4.1.1  The structure parameters
			4.1.2  Self-consistent band diagram: Doping effect
				4.1.2.1  Example: A single QW structure
				4.1.2.2  Example: QCL band diagram
			4.1.3  Free carrier absorption
		4.2  QCL fabrication
			4.2.1  Introduction to fabrication
			4.2.2  MBE of QCLs
				4.2.2.1  Basics of MBE growth
				4.2.2.2  Strained-layer epitaxy
				4.2.2.3  Epitaxial structure
			4.2.3  QCL chip fabrication
			4.2.4  Fabrication of BH QCL
		4.3  Power scaling
			4.3.1  QCL properties contributing to emission power
			4.3.2  Threshold current and power density as functions of cascade number
			4.3.3  Thermal considerations for high power
			4.3.4  CW operation with small number of cascades
			4.3.5  Beam quality of broad-area CW QCLs
		4.4  External cavity quantum cascade laser
			4.4.1  Basics for lasing
			4.4.2  Optical loss of FP-/EC-mode
			4.4.3  Lasing and parasitic oscillation
			4.4.4  Tunability of EC-QCL
				4.4.4.1  Grating in Littrow condition
				4.4.4.2  Effective reflection in EC system
				4.4.4.3  Lasing condition of Littrow-type EC laser
				4.4.4.4  Coating effect to power restriction
				4.4.4.5  Coating effect to tunability
		References
	5 High-brightness quantum cascade lasers
		5.1  Introduction
		5.2  Brightness, power, and efficiency
		5.3  Active region design
		5.4  QCL waveguides and transverse modes
		5.5  Master oscillator power amplifier
		5.6  Engineered Sidewall Losses
		5.7  Cladding losses
		5.8  Geometrical power scaling and temperature effects
		5.9  Geometrical mode control
		5.10  Summary
		References
	6 Mid-infrared frequency conversion in quasiphase matched semiconductors
		6.1  Introduction
		6.2  Designing mid-IR QPM semiconductors
		6.3  Fabrication of OP templates
			6.3.1  Gallium arsenide
			6.3.2  Gallium phosphide
			6.3.3  Gallium antimonide
		6.4  Epitaxial growth of bulk OP-crystals
			6.4.1  Gallium arsenide
			6.4.2  Gallium phosphide
		6.5  Epitaxial growth of OP waveguides
			6.5.1  Gallium arsenide
			6.5.2  Gallium phosphide
			6.5.3  Gallium antimonide
		6.6  Application perspectives
			6.6.1  Short pulse durations
			6.6.2  Intermediate pulse durations
			6.6.3  Continuous wave regimes
		6.7  Conclusion
		Acknowledgments
		References
		Further reading
Part Three   Photodetectors
	7 HgCdTe photodetectors
		7.1  Introduction
		7.2  Historical perspective
		7.3  Impact of epitaxial growth on development of HgCdTe detectors
		7.4  HgCdTe photodiodes
			7.4.1  Junction formation
				7.4.1.1  Hg in-diffusion
				7.4.1.2  Ion milling
				7.4.1.3  Ion implantation
				7.4.1.4  Reactive ion etching
				7.4.1.5  Doping during growth
				7.4.1.6  Passivation
				7.4.1.7  Device processing
			7.4.2  Fundamental limitation to HgCdTe photodiode performance
			7.4.3  Nonfundamental limitation to HgCdTe photodiode performance
				7.4.3.1  Current-voltage characteristics
				7.4.3.2  Dislocations and 1/ f noise
			7.4.4  Avalanche photodiodes
			7.4.5  Auger-suppressed photodiodes
			7.4.6  Barrier photodetectors
		7.5  HgCdTe FPAs
			7.5.1  Trends in IR FPAs
			7.5.2  IR FPA considerations
			7.5.3  Influence of ROIC on photodiode array performance
			7.5.4  Focal plane arrays
			7.5.5  Third-generation detectors
		7.6  HgCdTe future prospect
			7.6.1  P-i-N HgCdTe photodiodes
			7.6.2  Manufacturability of FPAs
		7.7  Conclusions
		References
		Further reading
	8 Quantum cascade detectors: A review
		8.1  Introduction
		8.2  QCD state of the art
		8.3  Device physics
			8.3.1  Electronic transport
				8.3.1.1  Quantitative models
				8.3.1.2  Insightful pictures and trends
			8.3.2  Noise
				8.3.2.1  Definitions
				8.3.2.2  1/ f noise, infinite power NSD, and nonstationary signals
				8.3.2.3  Shot and Johnson (thermal) noises
				8.3.2.4  Dark and optical noises
		8.4  QWIPs vs QCDs
		8.5  Optical coupling
			8.5.1  Brewster angle, 45 degrees, gratings, corrugation, etc
			8.5.2  Nanophotonics
		8.6  A toolbox for physics
			8.6.1  High speed and heterodyne
			8.6.2  SWIR QCDs
			8.6.3  Integrated QCLD
		8.7  Conclusion
		References
		Further reading
	9 InAs/GaSb type II superlattices: A developing material system for third generation of IR imaging
		9.1  Introduction
		9.2  High-performance InAs/GaSb T2SL-based photodetectors covering whole IR spectrum
			9.2.1  Short-wavelength IR photodetectors
			9.2.2  Extended-SWIR photodetectors and FPAs
			9.2.3  MWIR photodetectors and FPAs
			9.2.4  LWIR photodetectors and FPAs
			9.2.5  VLWIR photodetectors and FPAs
		9.3  High-performance InAs/GaSb T2SL photodetectors and FPAs on GaAs substrate
		9.4  High-performance multicolor photodetectors and FPAs
		9.5  Ga-free InAs/InAs 1 − x Sb x /AlAs 1 − x Sb x type II superlattice photodetectors
			9.5.1  Type II superlattices: InAs/GaSb vs. InAs/InAs 1 − x Sb x
			9.5.2  High-performance SWIR photodetectors based on Ga-free T2SLs
			9.5.3  High-performance LWIR photodetectors based on Ga-free T2SLs
			9.5.4  High-performance VLWIR photodetectors based on Ga-free T2SLs
			9.5.5  Dual-band IR detection based on Ga-free InAs/InAs 1 − x Sb x T2SLs
		References
		Further reading
	10 InAsSb-based photodetectors
		List of Acronyms
		10.1  Introduction
		10.2  History and growth methods
		10.3  Material properties
		10.4  Photodetectors
		10.5  Summary and future outlook
		References
		Further reading
Part Four   New approaches
	11 Dilute bismide and nitride alloys for mid-IR optoelectronic devices
		11.1  Dilute bismide
			11.1.1  GaSbBi
				11.1.1.1  MBE growth
				11.1.1.2  LPE growth
				11.1.1.3  Point defects
				11.1.1.4  Electronic and optical properties
			11.1.2  AlSbBi
			11.1.3  InAsBi
				11.1.3.1  MOVPE growth of InAsBi
				11.1.3.2  MBE growth of InAsBi
				11.1.3.3  Quarternary InAsSbBi and InGaAsBi
				11.1.3.4  InSbBi
			11.1.4  Theoretical simulations for dilute bismide and mid-IR devices
			11.1.5  Dilute bismide mid-IR devices
			11.1.6  Future outlook
		11.2  Dilute nitrides
			11.2.1  Electronic band structure
				11.2.1.1  BAC model
				11.2.1.2  N-Clusters and point defects
			11.2.2  Growth and optical properties
				11.2.2.1  InNAs
				11.2.2.2  GaNSb
				11.2.2.3  InNSb
				11.2.2.4  In-rich GaInNAs
				11.2.2.5  GaInNSb
				11.2.2.6  InNAsSb
			11.2.3  Outlook remarks
			Acknowledgment
		References
	12 Group IV photonics using (Si)GeSn technology toward mid-IR applications
		12.1  SiGeSn/GeSn material growth techniques
			12.1.1  Challenges of growth
			12.1.2  Basic material growth via CVD
			12.1.3  Growth of GeSn heterostructure
		12.2  GeSn/SiGeSn-based emitters
			12.2.1  GeSn LED
			12.2.2  GeSn optically pumped laser
		12.3  GeSn SWIR and MWIR photodetectors
			12.3.1  GeSn photoconductive detectors
			12.3.2  GeSn p-i-n photodiode detectors
		12.4  Outlook
		Acknowledgment
		References
	13 Intersubband transitions in GaN-based heterostructures
		13.1  Introduction
		13.2  Properties of III-nitride semiconductors
		13.3  Intersubband absorption in polar GaN/AlGaN quantum wells
		13.4  Quantum wells in alternative crystallographic orientations
		13.5  Nanowire heterostructures
		13.6  Intersubband devices based on III-nitrides
			13.6.1  Infrared photodetectors
			13.6.2  Infrared emitters
		13.7  Conclusions
		References
	14 III–V/Si mid-IR photonic integrated circuits
		14.1  Platforms addressing the mid-IR
			14.1.1  Si-based platforms for mid-IR
			14.1.2  Ge-based platforms for mid-IR
		14.2  Alternative platforms for mid-IR and future challenges
		14.3  Heterogeneous integration of III–V-on-Si PICs
			14.3.1  Heterogeneous integration technology
			14.3.2  Heterogeneously integrated III–V-on-Si lasers
			14.3.3  Mid-IR III–V-on-Si photodetectors
			14.3.4  Mid-IR III–V/Si external cavity laser
		References
		Further reading
Part Five   Application of mid-IR devices
	15 Quartz-enhanced photoacoustic spectroscopy for gas sensing applications
		15.1  Introduction
		15.2  Fundamentals of QEPAS
			15.2.1  Quartz tuning fork
			15.2.2  Dual-tube acoustic microresonators (on-beam)
			15.2.3  Wavelength modulation and dual-frequency detection
			15.2.4  Amplitude modulation and broadband absorbers
		15.3  QEPAS configurations
			15.3.1  Off-beam
			15.3.2  Fiber-coupled
			15.3.3  Evanescent-wave
			15.3.4  Multi-QTFs
			15.3.5  Modulation cancellation method
			15.3.6  Beat frequency QEPAS
			15.3.7  Intracavity QEPAS
		15.4  Custom QTFs for QEPAS
			15.4.1  Euler-Bernoulli model
			15.4.2  Damping effects
				15.4.2.1  Air damping
				15.4.2.2  Support losses
				15.4.2.3  Thermoelastic damping losses
			15.4.3  Quality factor
			15.4.4  Overtone modes
			15.4.5  Overview of custom QTFs performance
				Custom QTFs with dual-tube mR
		15.5  Novel QEPAS approaches exploiting custom QTFs
			15.5.1  QEPAS with QTF vibrating at the first overtone flexural mode
			15.5.2  Single-tube mR systems
			15.5.3  Double-antinode excited quartz-enhanced photoacoustic spectrophone
			15.5.4  Simultaneous dual-gas detection
		15.6  QEPAS trace gas detection results overview
			15.6.1  Long-term stability and Allan variance
			15.6.2  Comparison with existing optical techniques
			15.6.3  Examples of real-world applications
				15.6.3.1  Environmental monitoring
				15.6.3.2  Leak detection
				15.6.3.3  Hydrocarbon detection
				15.6.3.4  Breath sensing
		15.7  Conclusions and future developments
		References
	16 Mid-infrared gas-sensing systems and applications
		16.1  Application areas and markets for mid-infrared gas-sensing systems
		16.2  Fundamentals of absorption spectroscopy
		16.3  Properties of gases with high sensing demand
			16.3.1  CO 2
			16.3.2  CO
			16.3.3  H 2 S
			16.3.4  CH 4
			16.3.5  SO 2
			16.3.6  NH 3
			16.3.7  NO 2
		16.4  MIR gas sensors and measurement systems using incoherent radiation
		16.5  Applications of MIR gas sensors and systems using incoherent radiation
			16.5.1  Environmental monitoring systems
			16.5.2  Hazardous gases
			16.5.3  Leak detection
			16.5.4  Automotive applications
			16.5.5  Breath analysis
		16.6  MIR laser-based systems
			16.6.1  Narrow-band tunable laser spectroscopy systems
			16.6.2  Broadband laser spectroscopy systems
			16.6.3  Photoacoustic detection with lasers
			16.6.4  Frequency comb-based gas-sensing systems
			16.6.5  Alternative detection techniques
		16.7  Applications of laser-based systems
			16.7.1  Hazardous gas detection and monitoring systems
				16.7.1.1  Leak detection of natural gas
				16.7.1.2  Toxic gas detection at industrial infrastructures and area surveillance
					CO
					H 2 S
					SO 2
					Formaldehyde, CH 2 O
					NH 3
					Phosgene
			16.7.2  Process gas measurement
				16.7.2.1  Composition of natural gas
				16.7.2.2  Ethylene production
				16.7.2.3  Desulfurization of oil and gas: H 2 S and SO 2
				16.7.2.4  Combustion processes
			16.7.3  Automotive exhaust emission measurement
			16.7.4  Plasma processes
			16.7.5  Research systems
				16.7.5.1  Atmospheric trace gases
				16.7.5.2  Soil gas emissions
				16.7.5.3  Breath analysis
		16.8  Conclusion and outlook
		References
		Further reading
Index
Back Cover




نظرات کاربران