دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.]
نویسندگان: Fatima Merchant. Kenneth Castleman
سری:
ISBN (شابک) : 0128210494, 9780128210499
ناشر: Academic Press
سال نشر: 2022
تعداد صفحات: 526
[528]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 33 Mb
در صورت تبدیل فایل کتاب Microscope Image Processing به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پردازش تصویر با میکروسکوپ نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
پردازش تصویر میکروسکوپ، ویرایش دوم، اصول
اولیه تشکیل تصویر در میکروسکوپ را معرفی میکند، از جمله اهمیت
دیجیتالی کردن تصویر و نمایش، که کلید تجسم با کیفیت هستند.
پردازش و تحلیل تصویر به تفصیل مورد بحث قرار می گیرد تا ابزارهای
لازم برای بهبود کیفیت بصری تصاویر و استخراج اطلاعات کمی را در
اختیار خوانندگان قرار دهد. تکنیکهای اساسی مانند بهبود تصویر،
فیلتر کردن، تقسیمبندی، اندازهگیری اشیا، و تشخیص الگو، مفاهیم
جدایی ناپذیر پردازش تصویر را پوشش میدهند. علاوه بر این،
فصلهایی درباره تکنیکهای خاص میکروسکوپ مدرن مانند تصویربرداری
فلورسانس، تصویربرداری چند طیفی، تصویربرداری سه بعدی و
تصویربرداری با گذشت زمان، این حوزههای کلیدی را با تأکید بر
تفاوتهای میان تکنیکهای مختلف معرفی میکنند.
ویرایش جدید. درباره پیشرفتهای اخیر در میکروسکوپ مانند
میکروسکوپ ورق نوری، میکروسکوپ دیجیتال، تصویربرداری از کل
اسلاید، و استفاده از تکنیکهای یادگیری عمیق برای تقسیمبندی و
تجزیه و تحلیل تصویر با انفورماتیک و مدیریت تصویر دادههای بزرگ
بحث میکند.
پردازش تصویر میکروسکوپی، ویرایش
دوم، مناسب برای مهندسان، دانشمندان، پزشکان،
دانشجویان فوق لیسانس و دانشجویان فارغ التحصیل در مهندسی زیستی،
مهندسی زیست پزشکی، زیست شناسی، پزشکی، شیمی، فارماکولوژی و زمینه
های مرتبط است. از میکروسکوپ ها در کار خود استفاده می کنند و
مایلند روش ها و قابلیت های جدیدترین تکنیک های پردازش تصویر
دیجیتال را درک کنند یا می خواهند الگوریتم ها و نرم افزارهای
پردازش تصویر خود را برای کاربردهای خاص توسعه دهند.
Microscope Image Processing, Second Edition,
introduces the basic fundamentals of image formation in
microscopy including the importance of image digitization and
display, which are key to quality visualization. Image
processing and analysis are discussed in detail to provide
readers with the tools necessary to improve the visual quality
of images, and to extract quantitative information. Basic
techniques such as image enhancement, filtering, segmentation,
object measurement, and pattern recognition cover concepts
integral to image processing. In addition, chapters on specific
modern microscopy techniques such as fluorescence imaging,
multispectral imaging, three-dimensional imaging and time-lapse
imaging, introduce these key areas with emphasis on the
differences among the various techniques.
The new edition discusses recent developments in microscopy
such as light sheet microscopy, digital microscopy, whole slide
imaging, and the use of deep learning techniques for image
segmentation and analysis with big data image informatics and
management.
Microscope Image Processing, Second
Edition, is suitable for engineers, scientists,
clinicians, post-graduate fellows and graduate students working
in bioengineering, biomedical engineering, biology, medicine,
chemistry, pharmacology and related fields, who use microscopes
in their work and would like to understand the methodologies
and capabilities of the latest digital image processing
techniques or desire to develop their own image processing
algorithms and software for specific applications.
Front Cover Microscope Image Processing Copyright Contents Foreword to the First Edition Reference Foreword to the Second Edition Preface to the First Edition Preface to the Second Edition Acknowledgments Chapter One: Introduction 1.1. The Microscope and Image Processing 1.2. The Scope of This Book 1.3. Our Approach 1.3.1. The Four Types of Images 1.3.1.1. The Optical Image 1.3.1.2. The Continuous Image 1.3.1.3. The Digital Image 1.3.1.4. The Displayed Image 1.3.2. The Result 1.3.2.1. Analytic Functions 1.3.3. The Sampling Theorem 1.4. The Challenge 1.5. Modern Microscopy 1.6. Nomenclature 1.7. Summary of Important Points References Chapter Two: Fundamentals of Microscopy 2.1. The Origins of the Microscope 2.2. Optical Imaging 2.2.1. Image Formation by a Lens 2.2.1.1. Imaging a Point Source 2.2.1.2. Focal Length 2.2.1.3. Magnification 2.2.1.4. Numerical Aperture 2.2.1.5. Lens Shape 2.3. Diffraction Limited Optical Systems 2.3.1. Linear System Analysis 2.4. Incoherent Illumination 2.4.1. The Point Spread Function 2.4.2. The Optical Transfer Function 2.5. Coherent Illumination 2.5.1. The Coherent Point Spread Function 2.5.2. The Coherent Optical Transfer Function 2.6. Resolution 2.6.1. The Abbe Distance 2.6.2. The Rayleigh Distance 2.6.3. Size Calculations 2.7. Aberration 2.8. Calibration 2.8.1. Spatial Calibration 2.8.2. Photometric Calibration 2.9. Summary of Important Points References Chapter Three: Image Digitization and Display 3.1. Introduction 3.2. Digitizing Images 3.2.1. Resolution 3.2.2. Sampling 3.2.3. Interpolation 3.2.4. Aliasing 3.2.5. Noise 3.2.6. Shading 3.2.7. Photometry 3.2.8. Geometric Distortion 3.3. Overall System Design 3.3.1. Cumulative Resolution 3.3.2. Design Rules of Thumb 3.3.2.1. Pixel Spacing 3.3.2.2. Resolution 3.3.2.3. Noise 3.3.2.4. Photometry 3.3.2.5. Distortion 3.4. Image Display 3.4.1. Volatile Displays 3.4.2. Displayed Image Size 3.4.3. Aspect Ratio 3.4.4. Photometric Resolution 3.4.5. Grayscale Linearity 3.4.6. Low-frequency Response 3.4.7. High-frequency Response 3.4.7.1. Sampling for Display Purposes 3.4.7.2. Oversampling 3.4.7.3. Resampling 3.4.8. Noise 3.5. Summary of Important Points References Chapter Four: Geometric Transformations 4.1. Introduction 4.2. Implementation 4.3. Gray Level Interpolation 4.3.1. Nearest Neighbor Interpolation 4.3.2. Bilinear Interpolation 4.3.3. Bicubic Interpolation 4.3.4. Higher-order Interpolation 4.4. The Spatial Transformation 4.4.1. Control Grid Mapping 4.5. Applications 4.5.1. Distortion Removal 4.5.2. Image Registration 4.5.3. Stitching 4.6. Summary of Important Points References Chapter Five: Image Enhancement 5.1. Introduction 5.2. Spatial Domain Enhancement Methods 5.2.1. Contrast Stretching 5.2.2. Clipping and Thresholding 5.2.3. Image Subtraction and Averaging 5.2.4. Histogram Equalization 5.2.5. Histogram Specification 5.2.6. Spatial Filtering 5.2.7. Directional and Steerable Filtering 5.2.8. Median Filter 5.2.9. Anisotropic Diffusion Filter 5.3. Fourier Transform Methods 5.3.1. Wiener Filtering and Wiener Deconvolution 5.3.2. Deconvolution Using a Least Squares Approach 5.3.3. Low-Pass Filtering 5.3.4. High-pass and Band-pass Filtering 5.4. Wavelet Transform Methods 5.4.1. Wavelet Thresholding 5.4.2. Differential wavelet transform and multiscale pointwise product 5.5. Color Image Enhancement 5.5.1. Pseudo-Color Transformations 5.5.2. Color Image Smoothing 5.5.3. Color Image Sharpening 5.6. Summary of Important Points References Chapter Six: Morphological Image Processing 6.1. Introduction 6.2. Binary Morphology 6.2.1. Binary Erosion and Dilation 6.2.2. Binary Opening and Closing 6.2.3. Binary Morphological Reconstruction From Markers 6.2.3.1. Connectivity 6.2.3.2. Markers 6.2.3.3. A Priori Selection Using the Image Border for Marker Placement 6.2.3.4. Reconstruction From Opening 6.2.4. Reconstruction Using Area Opening and Closing 6.2.5. Skeletonization 6.3. Grayscale Operations 6.3.1. Threshold Sets and Level Sets 6.3.2. Grayscale Erosion and Dilation 6.3.2.1. Morphological Gradient 6.3.3. Grayscale Opening and Closing 6.3.3.1. The Top-Hat Concept 6.3.3.2. Grayscale Image Filtering 6.3.4. Component Filters and Grayscale Morphological Reconstruction 6.3.4.1. The Reconstruction Process 6.3.4.2. Grayscale Area Opening and Closing 6.3.4.3. Edge-Off Operators 6.3.4.4. h-Maxima and h-Minima Operations 6.3.4.5. Regional Maxima 6.3.4.6. Marker Extraction 6.4. Watershed Segmentation 6.4.1. The Classical Watershed Transform 6.4.2. Filtering the Minima 6.4.3. Texture Detection 6.4.4. Watershed From Markers 6.4.5. Segmentation of Overlapped Convex Cells 6.4.6. Inner and Outer Markers 6.5. Summary of Important Points References Chapter Seven: Image Segmentation 7.1. Introduction 7.1.1. Pixel Connectivity 7.2. Region-Based Segmentation 7.2.1. Thresholding 7.2.1.1. Global Thresholding 7.2.1.2. Adaptive Thresholding 7.2.1.3. Threshold Selection Histogram Smoothing The ISODATA Algorithm The Background Symmetry Algorithm The Triangle Algorithm Gradient-Based Algorithms 7.2.1.4. Thresholding Circular Spots 7.2.1.5. Thresholding Noncircular and Noisy Spots Noncircular Spots Objects of General Shape 7.2.2. Morphological Processing 7.2.2.1. Hole Filling 7.2.2.2. Border Object Removal 7.2.2.3. Separation of Touching Objects 7.2.2.4. The Watershed Algorithm 7.2.3. Region Growing 7.2.4. Region Splitting 7.3. Boundary-Based Segmentation 7.3.1. Boundaries and Edges 7.3.2. Boundary Tracking Based on Maximum Gradient Magnitude 7.3.3. Boundary Finding Based on Gradient Image Thresholding 7.3.4. Boundary Finding Based on Laplacian Image Thresholding 7.3.5. Boundary Finding Based on Edge Detection and Linking 7.3.5.1. Edge Detection The Roberts Edge Detector The Sobel Edge Detector The Prewitt edge detector The Canny Edge Detector 7.3.5.2. Edge Linking and Boundary Refinement Heuristic Search Curve Fitting The Hough Transform Active Contours 7.3.6. Encoding Segmented Images 7.3.6.1. The Object Label Map 7.3.6.2. The Boundary Chain Code 7.4. Summary of Important Points References Chapter Eight: Object Measurement 8.1. Introduction 8.2. Measures for Binary Objects 8.2.1. Size Measures 8.2.1.1. Area 8.2.1.2. Perimeter 8.2.1.3. Area and Perimeter of a Polygon 8.2.2. Pose Measures 8.2.2.1. Centroid 8.2.2.2. Orientation 8.2.3. Shape Measures 8.2.3.1. Thinness Ratio 8.2.3.2. Rectangularity 8.2.3.3. Circularity 8.2.3.4. Euler Number 8.2.3.5. Moments Central Moments Object Dispersion Rotationally Invariant Moments Zernike Moments 8.2.3.6. Elongation 8.2.4. Shape Descriptors 8.2.4.1. The Differential Chain Code 8.2.4.2. Fourier Descriptors 8.2.4.3. The Medial Axis Transform 8.2.4.4. Graph Representations Minimum Spanning Tree Delaunay Triangulation 8.3. Distance Measures 8.3.1. Euclidean Distance 8.3.2. City-Block Distance 8.3.3. Chessboard Distance 8.4. Gray Level Object Measures 8.4.1. Intensity Measures 8.4.1.1. Integrated Optical Density 8.4.1.2. Average Optical Intensity 8.4.1.3. Contrast 8.4.2. Histogram Measures 8.4.2.1. Mean Gray Level 8.4.2.2. Standard Deviation of Gray Levels 8.4.2.3. Skew 8.4.2.4. Entropy 8.4.2.5. Energy 8.4.3. Texture Measures 8.4.3.1. Statistical Texture Measures The Gray Level Co-Occurrence Matrix 8.4.3.2. Power Spectrum Features 8.5. Object Measurement Considerations 8.6. Summary of Important Points References Chapter Nine: Object Classification 9.1. Introduction 9.2. The Classification Process 9.2.1. Bayes Rule 9.3. The Single-Feature, Two-Class Case 9.3.1. A Priori Probabilities 9.3.2. Conditional Probabilities 9.3.3. Bayes Theorem 9.4. The Three-Feature, Three-Class Case 9.4.1. The Bayes Classifier 9.4.1.1. Prior Probabilities 9.4.1.2. Classifier Training 9.4.1.3. The Mean Vector 9.4.1.4. Covariance 9.4.1.5. Variance and Standard Deviation 9.4.1.6. Correlation 9.4.1.7. The pdf 9.4.1.8. Classification 9.4.1.9. Log Likelihoods 9.4.1.10. The Mahalanobis Distance Classifier 9.4.1.11. Uncorrelated features 9.4.2. A Numerical Example 9.5. Classifier Performance 9.5.1. The Confusion Matrix 9.6. Bayes Risk 9.6.1. The Minimum-Risk Classifier 9.7. Relationships Among Bayes Classifiers 9.8. The Choice of a Classifier 9.8.1. Subclassing 9.8.2. Feature Normalization 9.9. Nonparametric Classifiers 9.9.1. Nearest-Neighbor Classifiers 9.10. Feature Selection 9.10.1. Feature Reduction 9.10.1.1. Principal Component Analysis 9.10.1.2. Linear Discriminant Analysis 9.11. Neural Networks 9.12. Summary of Important Points References Chapter Ten: Multispectral Fluorescence Imaging 10.1. Introduction 10.2. Basics of Fluorescence Imaging 10.2.1. Image Formation in Fluorescence Imaging 10.3. Optics in Fluorescence Imaging 10.4. Limitations in Fluorescence Imaging 10.4.1. Instrumentation-Based Aberrations 10.4.1.1. Photon Shot Noise 10.4.1.2. Dark Current 10.4.1.3. Auxiliary Noise Sources 10.4.1.4. Quantization Noise 10.4.1.5. Other Noise Sources 10.4.2. Sample-Based Aberrations 10.4.2.1. Photobleaching 10.4.2.2. Autofluorescence 10.4.2.3. Absorption and Scattering of the Medium 10.4.3. Sample and Instrumentation Handling-Based Aberrations 10.5. Image Corrections in Fluorescence Microscopy 10.5.1. Background Shading Correction 10.5.2. Correction Using the Recorded Image 10.5.3. Correction Using Calibration Images 10.5.3.1. Two-Image Calibration 10.5.3.2. Background Subtraction 10.5.4. Correction Using Surface Fitting 10.5.5. Autofluorescence Correction 10.5.6. Spectral Overlap Correction 10.5.7. Photobleaching Correction 10.6. Quantifying Fluorescence 10.6.1. Fluorescence Intensity and Fluorophore Concentration 10.7. Fluorescence Imaging Techniques 10.7.1. Immunofluorescence 10.7.2. Fluorescence In Situ Hybridization (FISH) 10.7.3. Quantitative Colocalization Analysis 10.7.4. Fluorescence Ratio Imaging (RI) 10.7.5. Fluorescence Resonance Energy Transfer (FRET) 10.7.6. Fluorescence Lifetime Imaging (FLIM) FRET 10.7.6.1. Time Correlated Single Photon Counting (TCSPC) FLIM-FRET 10.7.7. Fluorescence Recovery After Photobleaching (FRAP) 10.7.8. Total Internal Reflectance Fluorescence Microscopy (TIRFM) 10.7.9. Fluorescence Correlation Spectroscopy (FCS) 10.8. Summary of Important Points References Chapter Eleven: Three-Dimensional Imaging 11.1. Introduction 11.2. Image Acquisition 11.2.1. Wide-Field 3D Microscopy 11.2.2. Confocal Microscopy 11.2.3. Multiphoton Microscopy 11.2.4. Microscope Configuration 11.2.5. Other 3D Microscopy Techniques 11.3. 3D Image Data 11.3.1. 3D Image Representation 11.3.1.1. 3D Image Notation 11.4. Image Restoration and Deblurring 11.4.1. The Point Spread Function 11.4.1.1. Theoretical Model of the Psf 11.4.1.2. Approximate Methods 11.4.2. Models for Microscope Image Formation 11.4.2.1. Poisson Noise 11.4.2.2. Gaussian Noise 11.4.3. Algorithms for Deblurring and Restoration 11.4.3.1. No-Neighbor Methods 11.4.3.2. Nearest-Neighbor Method 11.4.3.3. Linear Methods Inverse Filtering Wiener Deconvolution Linear Least Squares Regularization Tikhonov Regularization 11.4.3.4. Nonlinear Methods Jansson-van Cittert Method The Nonlinear Constrained Least Squares Method The Carrington Algorithm The Iterative Constrained Tikhonov-Miller Algorithm 11.4.3.5. Maximum Likelihood Restoration The EM-ML Algorithm The Richardson-Lucy Algorithm Maximum Penalized Likelihood Method Maximum A Posteriori Method 11.4.3.6. Blind Deconvolution 11.4.3.7. Space-Variant Deconvolution 11.4.3.8. Interpretation of Deconvolved Images 11.4.3.9. Commercial and Free Deconvolution Packages 11.5. Image Fusion 11.6. Three-Dimensional Image Processing 11.7. Geometric Transformations 11.8. Pointwise Operations 11.9. Histogram Operations 11.10. Filtering 11.10.1. Linear Filters 11.10.1.1. Finite Impulse Response Filters 11.10.2. Nonlinear Filters 11.10.2.1. Median Filter 11.10.2.2. Weighted Median Filter 11.10.2.3. Minimum and Maximum Filters 11.10.2.4. α-Trimmed Mean Filters 11.10.3. Edge Detection Filters 11.11. Morphological Operators 11.11.1. Binary Morphology 11.11.2. Grayscale Morphology 11.12. Segmentation 11.12.1. Point-Based Segmentation 11.12.2. Edge-Based Segmentation 11.12.3. Region-Based Segmentation 11.12.3.1. Connectivity 11.12.3.2. Region Growing 11.12.3.3. Region Splitting And Merging 11.12.4. Deformable Models 11.13. Comparing 3D Images 11.14. Registration 11.15. Object Measurements in 3D 11.15.1. Euler Number 11.15.2. Bounding Box 11.15.3. Center of Mass 11.15.4. Surface Area Estimation 11.15.4.1. Surface Estimation Using Superquadric Primitives 11.15.4.2. Surface Estimation Using Spherical Harmonics 11.15.5. Length Estimation 11.15.6. Curvature Estimation 11.15.6.1. The Surface Triangulation Method 11.15.6.2. The Cross Patch Method 11.15.7. Volume Estimation 11.15.8. Texture 11.16. 3D Image Display 11.16.1. Montage 11.16.2. Projected Images 11.16.2.1. Voxel Projection 11.16.2.2. Ray Casting 11.16.3. Surface and Volume Rendering 11.16.3.1. Surface Rendering 11.16.3.2. Volume Rendering 11.16.4. Stereo Pairs 11.16.5. Color Anaglyphs 11.16.6. Animations 11.17. Summary of Important Points References Chapter Twelve: Superresolution Image Processing 12.1. Introduction 12.2. The Diffraction Limit 12.3. Deconvolution 12.3.1. Signals and Noise 12.3.2. Extrapolating Beyond the Diffraction Limit 12.3.2.1. Statistical Methods 12.3.2.2. Machine Learning Methods 12.4. Superresolution Imaging Techniques 12.4.1. Analytic Continuation 12.4.2. Stimulated Emission Depletion Microscopy 12.4.3. Expansion Microscopy 12.4.4. Single Molecule Localization Microscopy 12.4.5. Structured Illumination Microscopy 12.4.6. Synthetic Superresolution with Machine Learning 12.5. Summary of Important Points References Chapter Thirteen: Localization Microscopy 13.1. Introduction 13.1.1. A Brief History of Localization Microscopy 13.2. Overcoming the Diffraction Limit 13.2.1. Diffraction-Limited Resolution 13.2.2. Photoswitching Mechanisms 13.3. Localizing Molecular Position 13.3.1. Spot Candidate Selection 13.3.1.1. Local Intensity Maxima 13.3.1.2. Nonmaximum Suppression 13.3.1.3. Centroid Estimation 13.3.1.4. The Intensity Threshold 13.3.2. Gaussian Model Fitting 13.3.2.1. Least Squares Fitting 13.3.2.2. The Method of Steepest Descent 13.3.2.3. Newtons Method 13.3.2.4. The Levenberg-Marquardt Method 13.3.2.5. Maximum Likelihood Fitting 13.3.3. Localization Methods 13.3.3.1. Spot Centroid Calculation 13.3.3.2. The Radial Symmetry Method 13.3.3.3. Spline and Complex Model Fitting 13.3.4. Visualization of Localization Data 13.3.4.1. Scatterplots 13.3.4.2. Two-dimensional Histograms Jittering 13.3.4.3. Intensity Interpolation to Neighboring Pixels Averaged Shifted Histograms 13.3.4.4. Gaussian Rendering 13.3.5. Localization and Image Artifacts in SMLM 13.4. Three-Dimensional Localization Microscopy 13.4.1. Calibration Measurements 13.4.2. Multiplane Imaging 13.4.3. Point Spread Function Engineering 13.4.4. Intensity-Based Approaches 13.4.4.1. Supercritical Angle Localization 13.4.4.2. Photometric Localization 13.5. Quantitative Localization Microscopy 13.5.1. Quality Control of Localization Data 13.5.1.1. Temporal Drift Correction Fiducial Markers Self-Alignment Cross-Correlation Analysis 13.5.2. Localization Precision and Image Resolution 13.5.2.1. Theoretical Localization Precision 13.5.2.2. Experimental Precision and Resolution Analyzing Isolated Emitter Spots Tracing and Tracking Localization Precision, Resolution, and Sampling Fourier-Ring Correlation 13.5.3. Localization-Based Cluster Analysis 13.5.3.1. Statistical SMLM Cluster Analysis Ripleys Functions Correlation-Based Clustering 13.5.3.2. Density-Based Clustering (DBSCAN) 13.5.3.3. K-means Clustering 13.5.3.4. Voronoi Tessellation 13.5.3.5. Bayesian Cluster Analysis 13.5.4. Particle Averaging 13.6. Implementation and Applications of SMLM 13.6.1. Machine and Deep Learning for SMLM 13.6.2. MINFLUX 13.6.3. Applications of SMLM 13.7. Summary of Important Points References Chapter Fourteen: Motion Tracking and Analysis 14.1. Introduction 14.2. Image Acquisition 14.2.1. Microscope Setup 14.2.2. Spatial Dimensionality 14.2.3. Temporal Resolution 14.3. Image Preprocessing 14.3.1. Image Denoising 14.3.2. Image Deconvolution 14.3.3. Image Registration 14.4. Image Analysis 14.4.1. Cell Tracking 14.4.1.1. Cell Segmentation 14.4.1.2. Cell Association 14.4.2. Particle Tracking 14.4.2.1. Particle Detection 14.4.2.2. Particle Association 14.5. Trajectory Analysis 14.5.1. Geometry Measurements 14.5.2. Diffusivity Measurements 14.5.3. Velocity Measurements 14.6. Sample Algorithms 14.6.1. Cell Tracking 14.6.2. Particle Tracking 14.7. Summary of Important Points References Chapter Fifteen: Deep Learning 15.1. Introduction 15.1.1. Basic Components of Neural Networks 15.1.2. A Timeline of Convolutional Neural Network Development 15.1.3. A Timeline of Deep Learning in Microscopy 15.2. Deep Learning Concepts 15.2.1. Training 15.2.2. Activation Functions 15.2.3. Cost Functions 15.2.4. Convolutional Neural Networks 15.3. Practical Applications 15.3.1. Classification 15.3.2. Detection 15.3.3. Segmentation 15.4. Software Frameworks 15.5. Training Deep Learning Networks 15.5.1. Data Augmentation 15.5.2. Transfer Learning 15.6. Application of Deep Learning for Cell Nuclei Detection 15.7. Challenges 15.8. Summary of Important Points References Chapter Sixteen: Image Informatics 16.1. Introduction 16.2. Open-source Software Ecosystems 16.2.1. Java Libraries and Tools 16.2.2. Python Tools 16.2.3. C++ Tools 16.2.4. Tool Interoperation 16.3. Image Acquisition 16.3.1. Image Processing and Analysis 16.3.2. Machine Learning Platforms 16.4. Image Storage and Curation 16.4.1. Data Curation 16.4.2. Storage Backend 16.5. Visualization 16.6. Community 16.7. Conclusion 16.8. Summary of Important Points References Glossary Further reading Index Back Cover