دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Rajeev Kumar Chauhan, Kalpana Chauhan, Sri Niwas Singh سری: IET Energy Engineering 160 ISBN (شابک) : 9781785619984, 9781785619991 ناشر: The Institution of Engineering and Technology سال نشر: 2020 تعداد صفحات: 521 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 32 مگابایت
در صورت تبدیل فایل کتاب Microgrids for Rural Areas: Research and Case Studies به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب شبکه های کوچک برای مناطق روستایی: تحقیقات و مطالعات موردی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Contents About the editors Preface Acknowledgements Part I. Fundamentals 1 Overview of microgrids for rural areas and low-voltage applications 1.1 Overview 1.2 Importance of microgrids 1.3 Classification of microgrids 1.3.1 AC microgrid system 1.3.2 Hybrid AC–DC microgrid system 1.3.3 DC microgrid system 1.4 Electric vehicles 1.4.1 What are the electric vehicles? 1.4.2 Hybrid electric vehicle control system 1.4.3 Advantages and disadvantages of electric vehicles over conventional vehicles 1.5 Standards 1.5.1 Standards for microgrid with PV and battery interconnection 1.5.2 Standards for electric vehicles when they are used as a source 1.5.3 Agency-related standards 1.6 Conclusion References 2 Microgrid architectures 2.1 Introduction to microgrids 2.2 AC microgrids architectures 2.2.1 Structures 2.2.2 MG point of common coupling 2.2.3 MG distribution network configuration 2.2.4 MG control system 2.2.5 Control philosophy of AC microgrids 2.3 DC and hybrid AC–DC microgrid architectures 2.3.1 DC microgrids 2.3.2 Hybrid AC–DC microgrids 2.4 Multi-MGs in smart distribution networks 2.5 Review of MGs applications and research purposes 2.6 Conclusion References 3 The microgrid investment and planning in rural locations 3.1 Introduction 3.2 Microgrid planning problem 3.2.1 Microgrid investment planning tools and methods 3.3 Basic formulation 3.4 Addressing the specific characteristics of rural microgrids 3.4.1 Multi-energy characteristic 3.4.2 Multi-node characteristic 3.4.2.1 Heat network 3.4.2.2 Electricity network 3.4.2.3 Illustrative case study 3.4.3 Remote microgrids 3.4.3.1 N – 1 contingencies 3.4.4 Multi-objective 3.5 Remote multi-energy microgrid case study 3.6 Conclusions References Part II. Optimization, control and storage 4 Assessment of energy saving for integrated CVR control with large-scale electric vehicle connections in microgrids 4.1 Introduction 4.2 Coordinated voltage reduction control model 4.2.1 Coordinated voltage reduction control algorithm 4.2.2 OLTC control 4.2.3 Capacitor control 4.2.4 Coordination 4.2.5 Impact metrics 4.2.5.1 Energy reduction, dV (%) 4.2.5.2 Energy reduction, dE (%) 4.2.5.3 CVRC factor, CVRCf 4.2.5.4 Transformer utilization factor, UF (%) 4.2.5.5 Voltage problems, VP (%) 4.3 Modeling 4.3.1 Microgrid modeling 4.3.2 Load modeling 4.3.3 Electric vehicle modeling 4.4 Result analysis 4.4.1 Analysis of energy reduction 4.5 Analysis of EV penetration capability 4.6 Conclusion References 5 Application of energy storage technologies on energy management of microgrids 5.1 Introduction 5.2 Energy storage technologies 5.2.1 Compressed air energy storage 5.2.2 Pumped hydroelectric energy storage 5.2.3 Cryogenic energy storage 5.2.4 Battery energy storage systems 5.2.4.1 The nickel–cadmium (Ni–Cd) battery 5.2.4.2 Lithium-ion (Li-ion) battery 5.2.4.3 Lead–acid (PbA) battery 5.2.4.4 Sodium–sulfur (NaS) battery 5.2.5 Thermal energy storage 5.2.6 Flywheel energy storage 5.2.7 Hydrogen energy storage 5.2.8 Superconducting magnetic energy storage 5.3 Comparison of energy storage technologies 5.4 Conclusion References 6 Control technique for integration of smart dc microgrid to the utility grid 6.1 Introduction 6.2 Proposed architecture of smart dc microgrid 6.3 Modeling of smart dc microgrid 6.4 Modeling of three-phase VSI with LCL filter 6.5 Determination of transfer functions of three-phase VSI 6.6 Proposed control technique of three-phase VSI for integrating dc microgrid to utility grid 6.7 Operational analysis with simulation results 6.7.1 Case 1: variable generations and variable loads 6.7.2 Case 2: fault on the utility grid 6.7.3 Case 3: dc (L-G) fault on the dc microgrid 6.8 Conclusions References 7 Energy management system of a microgrid using particle swarm optimization (PSO) and communication system Nomenclature 7.1 Introduction 7.2 Microgrid management system 7.3 Microgrid energy management systems 7.3.1 Centralized energy management 7.3.2 Decentralized energy management 7.3.3 Comparison between centralized and decentralized EMS 7.4 MG EMS solution 7.4.1 EMS based on linear and nonlinear programming methods 7.4.2 EMS based on dynamic programming and rule-based methods 7.4.3 EMS based on meta-heuristic approaches 7.4.4 EMS based on artificial intelligent methods 7.4.5 EMS based on multi-agent systems (MAS) 7.5 MG EMS-wireless communication 7.6 MG EMS-test case 7.6.1 Modeling of the microgrid 7.6.2 Mathematical model of the system 7.6.2.1 Generators cost functions 7.6.2.2 Solar generation cost function 7.6.2.3 Wind generation cost function 7.6.2.4 Energy storage cost function 7.6.2.5 Constraint functions 7.6.3 Results of PSO 7.6.3.1 First case study: grid-connected mode 7.6.3.2 Second case study: islanded mode 7.7 Conclusion References 8 Reconfiguration of distribution network using different optimization techniques Nomenclature 8.1 Introduction 8.2 Optimal network reconfiguration 8.2.1 Problem formulation 8.3 Augmented grey wolf optimization algorithm 8.4 Test results of IEEE 33-bus distribution system 8.5 Conclusion References 9 Intelligent optimization scheduling of isolated microgrids considering energy storage integration, traditional generation, and renewable energy uncertainty costs 9.1 Introduction 9.2 Background of the study 9.2.1 Generation resources modelling 9.2.1.1 Wind generation 9.2.1.2 Photovoltaic generation 9.2.1.3 Batteries model 9.2.1.4 Diesel generation model 9.2.2 Economic analysis 9.2.2.1 Modified generation cost 9.2.2.2 Batteries life loss cost 9.2.2.3 Uncertainty cost of renewable resources 9.3 Intelligent scheduling without consideration of uncertainty cost 9.3.1 Plentiful renewable primary energy sources 9.3.2 Sparse of renewable primary energy sources 9.4 Intelligent scheduling considering the uncertainty cost functions 9.4.1 Optimization results with uncertainty cost analysis of wind energy 9.4.2 Uncertainty costs for wind and solar generation case 9.5 Conclusion References 10 ADMM-based consensus droop control and distributed pinning droop control of isolated AC microgrids 10.1 Introduction 10.1.1 Average consensus-based droop control 10.1.2 Distributed pining-based droop control 10.2 Droop control in isolated AC MGs 10.2.1 Problem formulation 10.2.2 Model descriptions 10.3 Average consensus through ADMM 10.3.1 Basic concepts 10.3.2 Distributed implementations 10.3.2.1 Method A 10.3.2.2 Method B 10.4 Consensus-based droop control 10.4.1 Optimal stable equilibrium point 10.4.2 Consensus optimization 10.4.3 ADMM implementations 10.4.3.1 Method A 10.4.3.2 Method B 10.4.4 ADMM implementations with flexible droop gain ratios 10.5 Stability analysis of closed-loop MG systems with consensus-based droop-controlled VSGs 10.5.2 ADMM implementations 10.5.3 ADMM implementations with flexible droop gain ratios 10.6 Real-time simulations of ADMM-based consensus droop control 10.7 Distributed pinning control 10.7.1 Basic concepts 10.7.2 Distributed pinning control 10.8 Distributed pinning-based droop control 10.8.1 MAS development 10.8.2 Pinning localization and grid partition 10.8.3 Pinning-based droop control 10.8.4 Stability criteria 10.9 Simulation verifications of the pinning-based droop control 10.9.1 Test-bed descriptions and partition 10.9.1.1 System development and testing 10.9.1.2 Simulation results 10.9.2 Possible limitations 10.10 Conclusions Appendix A Formulations of M, D, Â, and Âf Appendix B Validity of EF W(y,z) References Part III. Converters 11 Extendable multiple outputs hybrid converter for AC/DC microgrid 11.1 Introduction 11.2 State of the art of hybrid multiple-output converters 11.3 Proposed generalized hybrid multi-output converters 11.3.1 Nonshoot-through interval (DsTs ≤ t ≤ (1 – Ds)Ts) 11.3.2 Shoot-through interval (0 ≤ t ≤ DsTs) 11.4 Steady-state behaviour of hybrid multi-output converters 11.4.1 Series-connected inverter bridges expression 11.4.2 Parallel-connected inverter bridges expression 11.4.3 Voltage stress and current expression 11.5 Hybrid PWM control techniques 11.6 Design consideration 11.7 Simulation and experimental verifications 11.7.1 Steady-state results of series topology-based converter 11.7.2 Steady-state results of a parallel topology-based converter 11.7.3 Analysis and comparison 11.8 Conclusion References 12 Multi-input converters for distributed energy resources in microgrids 12.1 Overview 12.2 Magnetically coupled multi-input converters 12.2.1 Buck-boost multi-input converter 12.2.2 Double-input full-bridge converter 12.2.3 Multi-port bidirectional converter 12.2.4 Full-bridge boost DC–DC converter based on the distributed transformers 12.2.5 Dual-transformer-based asymmetrical triple-port active bridge isolated DC–DC converter 12.2.6 Summary 12.3 Electrically coupled multi-input converters 12.3.1 Series or parallel of two DC/DC converters 12.3.2 Double input fundamental converter (buck/buck-boost converter) 12.3.3 Multi-input DC boost converter supplemented by hybrid PV/FC/battery power system 12.3.4 Three-input DC–DC boost converter 12.3.5 ZVS multi-input converter 12.3.6 Non-isolated multi-input multi-output DC/DC boost converter 12.3.7 Non-isolated multi-input single-output DC/DC buck/boost-boost converter 12.3.8 Switched-capacitor-based multi-input voltage-summation converter 12.3.9 SEPIC-based multi-input DC/DC converter 12.3.10 Bridge-type dual-input DC–DC converters 12.3.11 Three-input DC/DC converter for hybrid PV/FC/battery applications 12.3.12 Modular non-isolated multi-input high step-up DC–DC converter with reduced normalized voltage stress and component count 12.3.13 Multi-input converter with high-voltage gain and two-input boost stage 12.3.14 Soft-switched non-isolated, high step-up three-port DC–DC converter for hybrid energy systems 12.3.15 Summary 12.4 Electrically-magnetically coupled multi-input converters 12.4.1 Combined DC link and magnetic-coupled converter 12.4.2 Direct charge converter 12.4.3 Boost-integrated phase-shift full-bridge converter 12.4.4 Tri-modal half-bridge converter 12.4.5 Full-bridge three-port converters with wide input voltage range 12.4.6 Isolated multi-port DC–DC converter for simultaneous power management 12.4.7 Multi-input three-level DC/DC converter 12.4.8 Summary 12.5 Comparative study and assessment 12.6 Conclusion References 13 Modeling and control of DC–DC converters for DC microgrid application 13.1 Introduction 13.2 Interfacing of PV source to DC bus 13.3 Analysis of non-ideal DC–DC buck converter 13.3.1 Semiconductor switch is on (time interval 0 < t ≤ DT) 13.3.2 Semiconductor switch is off (time interval DT< t ≤ T) 13.3.3 Steady-state analysis 13.4 Mathematical modeling of PV-source fed non-ideal DC–DC buck converter system 13.5 Closed-loop control of the PV system 13.5.1 Tuning of PI controller 13.6 Design example 13.7 Case studies with simulation and experimental results 13.7.1 Change in PV voltage 13.7.2 Change in DC load 13.7.3 Change in reference DC bus voltage 13.8 Conclusion References Part IV. Case studies 14 Case studies of microgrids systems 14.1 Introduction to energy optimization with microgrids 14.2 Net present cost 14.3 Internal rate of return 14.4 Discounted payback time 14.5 Levelized cost of electricity 14.6 Battery wear cost 14.7 Load and generation modelling in MGs 14.7.1 MG's typical radial architecture 14.7.2 Modelling of loads in MGs 14.7.3 Modelling of renewable output power in MGs 14.7.3.1 PV generators modelling 14.7.3.2 Wind generators modelling 14.8 Case study 1: MG for energy efficiency 14.8.1 Case study description 14.8.1.1 PV plant 14.8.1.2 Mini WT 14.8.1.3 Diesel generator 14.8.1.4 Storage 14.8.1.5 MG components sizing options 14.8.1.6 Cost of energy from the public network 14.9 Results 14.10 Case study 2: MGs for rural electrification 14.10.1 Case study description 14.10.2 Loads 14.10.3 PV and wind generation 14.10.4 ESS 14.10.5 Diesel generator 14.11 Case study 3: MG as an alternative to grid extension 14.11.1 Case study description 14.11.2 Break-even grid distance 14.12 Case study 4: industrial district with MG arrangement 14.12.1 Case study description 14.13 Economic analysis 14.13.1 Case 1: no DG is installed in the area 14.13.2 Cases 2–4: different DG configuration 14.13.3 Case 5: Case 2 without wind generation 14.13.4 Discussion 14.14 Conclusion References 15 Smart grid road map and challenges for Turkey Nomenclature 15.1 Introduction 15.2 Comparison of conventional and smart grid 15.3 Grid modernization and current trends 15.4 Smart grid integration and its definitions 15.4.1 Integration of distributed energy resources 15.4.2 Interoperability challenges 15.4.3 Challenges in communication 15.5 Communication technologies and protocols in smart grid 15.6 Case study: smart grid applications, market and policy in Turkey 15.6.1 History of the Turkish electricity market 15.6.2 Coal market 15.6.3 Gas market 15.6.4 Hydropower market 15.6.5 Wind market 15.7 Policy state and progress relevant to smart grid in Turkey 15.8 Smart grid opportunities in Turkey 15.9 Energy from waste and biomass market opportunity and partner selection study in Turkey 15.10 Strategic analysis of the wind power services market in Turkey 15.11 Strategy of Turkish electricity transmission system operator (TEIAS) 15.12 Key trends in the Turkish market References 16 Nanogrids: good practices and challenges in the projects in Colombia 16.1 Introduction 16.2 Literature review 16.3 Nanogrids projects in Colombia 16.3.1 On-grid system 16.3.2 Off-grid system 16.3.3 Hybrid system 16.3.4 Solar water pumping 16.3.5 Aqueducts 16.3.6 Household 16.3.7 Pumping water for irrigation 16.3.8 Banana sector 16.3.9 Others 16.4 Problematic situations 16.4.1 Growth of the demand 16.4.2 Rational use of energy/water 16.4.3 Changes in habits 16.4.4 Without current problems 16.4.5 Number of users 16.5 General methodology to overcome current issues 16.5.1 Identifying the problem 16.5.2 Propose a solution 16.5.3 Implementing the solution 16.5.4 Monitoring and review 16.6 Solutions for each type of issues 16.6.1 Monitoring and review 16.6.2 Limit the load 16.6.3 Load shifting 16.6.4 Increase generation and backup 16.6.5 Rational use of energy/water 16.6.6 Changes in habits 16.7 Conclusions, lessons learned, and perspectives References 17 Distributed generation deployment in the Libyan MV network: adverse impacts on practised protection scheme in the DN 17.1 Introduction 17.1.1 Protection issues in DPGS 17.1.1.1 Variation in fault current directions and levels 17.1.1.2 Protection blinding 17.1.1.3 Sympathetic tripping 17.1.1.4 Nuisance tripping of DG 17.1.1.5 Failed reclosing 17.1.1.6 Loss of fuse-saving scheme: furthermore, the presence 17.1.1.7 The effect of infeed on the distance protection 17.1.1.8 Loss of protection coordination 17.1.1.9 Impact of interconnection transformer 17.1.1.10 Interconnection standards 17.2 Recommendations and suggestions 17.3 Conclusion References 18 Conclusions and future scopes 18.1 Conclusions 18.1.1 Overview of microgrids for rural areas and low-voltage applications 18.1.2 Microgrid architectures 18.1.3 The microgrid investment and planning in rural locations 18.1.4 Assessment of energy saving for integrated CVR control with large-scale electric vehicle connections in microgrids 18.1.5 Application of energy storage technologies on energy management of microgrids 18.1.6 Control technique for integration of smart DC microgrid to the utility grid 18.1.7 Energy management system of a microgrid using particle swarm optimization (PSO) and communication system 18.1.8 Reconfiguration of distribution network using different optimization 18.1.9 Intelligent optimization scheduling of isolated microgrids considering energy storage integration, traditional generation, and renewable energy uncertainty costs 18.1.10 ADMM-based consensus droop control and distributed pinning droop control of isolated AC microgrids 18.1.11 Extendable multiple outputs hybrid converter for AC/DC microgrid 18.1.12 Multi-input converters for distributed energy resources in microgrids 18.1.13 Modeling and control of DC–DC converters for DC microgrid application 18.1.14 Case studies of microgrids systems 18.1.15 Smart grid road map and challenges for Turkey 18.1.16 Nanogrids: good practices and challenges projects in Colombia 18.1.17 Distributed generation deployment in the Libyan MV network: adverse impacts on practised protection scheme in the DN 18.2 Future scopes 18.2.1 Overview of microgrids for rural areas and low-voltage applications 18.2.2 Microgrid architectures 18.2.3 The microgrid investment and planning in rural locations 18.2.4 Assessment of energy saving for integrated CVR control with large scale electric vehicle connections in microgrids 18.2.5 Application of energy storage technologies on energy management of microgrids 18.2.6 Control technique for integration of smart DC microgrid to the utility grid 18.2.7 Energy management system of a microgrid using particle swarm optimization (PSO) and communication system 18.2.8 Reconfiguration of distribution network using different optimization 18.2.9 Intelligent optimization scheduling of isolated microgrids considering energy storage integration, traditional generation, and renewable energy uncertainty costs 18.2.10 ADMM-based consensus droop control and distributed pinning droop control of isolated AC microgrids 18.2.11 Extendable multiple outputs hybrid converter for AC/DC microgrid 18.2.12 Multi-input converters for distributed energy resources in microgrids 18.2.13 Modeling and control of DC–DC converters for DC microgrid application 18.2.14 Case studies of microgrids systems 18.2.15 Smart grid road map and challenges for Turkey 18.2.16 Nanogrids: good practices and challenges projects in Colombia 18.2.17 Distributed generation deployment in the Libyan MV network: adverse impacts on practised protection scheme in the DN Index Back Cover