دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: الکترونیک ویرایش: نویسندگان: Dehua Zheng, Wei Zhang, Solomon Netsanet, Ping Wang, Girmaw Teshager Bitew, Dan Wei, Jun Yue سری: ISBN (شابک) : 012821189X, 9780128211892 ناشر: Academic Press سال نشر: 2021 تعداد صفحات: 391 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 26 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Microgrid Protection and Control به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب حفاظت و کنترل ریزشبکه نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
محافظت و کنترل ریزشبکه نتیجه کارهای تحقیقاتی و انتشارات متعدد مهندسین تحقیق و توسعه و دانشمندان مرکز تحقیقات اینترنت میکروگرید و انرژی است. از طریق تجربه طولانی نویسندگان در صنعت اینترنت ریزشبکه و انرژی، این کتاب به مسائل حفاظتی و کنترل پیچیده مرتبط با ماهیت ویژه ریزشبکه می پردازد.
این کتاب روش های مختلف طبقه بندی انواع شبکه ها را توضیح می دهد. ریزشبکهها و باورهای غلط رایج، نگاهی به روندهای صنعتی و تحقیقاتی به همراه مسائل فنی و چالشهای مختلف پیش روی استقرار ریزشبکه در تنظیمات مختلف.
پیشبینی تقاضای کوتاهمدت و تولید انرژی تجدیدپذیر برای بهرهبرداری بهینه با تکنیکهایی پوشش داده شده است. بهبود دقیق با مثالهای کاربردی عملی پشتیبانی میشود.
با فصلهایی در مورد کنترل دینامیکی، گذرا و سوم و آزمایشهای آزمایشی و شبیهسازی، این مرجع برای همه کسانی که در تحقیقات، مهندسی و کاربرد ریزشبکهها و سیستمهای توزیع برق کار میکنند مفید است. .
Microgrid Protection and Control is the result of numerous research works and publications by R&D engineers and scientists of the Microgrid and Energy Internet Research Centre. Through the authors long-routed experience in the microgrid and energy internet industry, this book looks at the sophisticated protection and control issues connected to the special nature of microgrid.
The book explains the different ways of classifying types of microgrids and common misconceptions, looking at industrial and research trends along with the different technical issues and challenges faced with deploying microgrid in various settings.
Forecasting short-term demand and renewable generation for optimal operation is covered with techniques for accurate enhancement supported with practical application examples.
With chapters on dynamic, transient and tertiary control and experimental and simulation tests this reference is useful for all those working in the research, engineering and application of microgrids and power distribution systems.
Microgrid Protection and Control Copyright Contents Preface Acknowledgments 1 The concept of microgrid and related terminologies 1.1 Introduction 1.2 Related concepts 1.2.1 Active distribution network 1.2.2 Energy internet 1.2.3 Virtual power plant 1.3 Misconceptions about microgrid 1.4 Types of microgrid 1.5 Components of microgrids 1.5.1 Distributed Generation 1.5.2 Energy storage systems 1.5.3 Power conversion system 1.5.4 Controllers and energy management system 1.5.5 Communication system 1.5.6 Loads 1.5.7 Protection system References 2 Current industrial practice and research trends in microgrids 2.1 Introduction 2.2 The current industrial trends in microgrids 2.2.1 Microgrid global market trends 2.2.2 Microgrid application trends 2.2.3 Microgrid business models 2.2.4 Technological trends 2.2.4.1 Distributed energy resources technologies 2.2.4.2 Microgrid control and monitoring technologies 2.2.4.3 Microgrid protection technologies 2.2.4.4 Instrumentation and communication technologies 2.2.4.5 Microgrid planning, modeling, and simulation tools 2.3 Current research trends of microgrid 2.3.1 Microgrids research issues 2.3.2 Selected microgrid R&D projects 2.3.2.1 Consortium for electric reliability technology solutions 2.3.2.2 Microgrids, infrastructure resilience, and advanced controls launchpad 2.3.2.3 Renewable energy integration demonstrator singapore 2.3.2.4 Other research projects 2.3.3 International standards related to microgrids References 3 Key technical challenges in protection and control of microgrid 3.1 Introduction 3.2 Challenges in control of microgrids 3.2.1 Low system inertia 3.2.2 Low reactance to resistance (X/R) ratio 3.2.3 Uncertainty and intermittency of renewable sources 3.2.4 Different modes of operation (grid-connected and island modes) 3.2.5 Existence and (in some cases) dominance of CBGs 3.3 Challenges in protection of microgrids 3.3.1 Different short-circuit current in island and grid-connected modes 3.3.2 Reduction in reach of impedance relays 3.3.3 Bidirectional power flows and voltage profile change 3.3.4 Dominant existence of CBGs References 4 Short-term renewable generation and load forecasting in microgrids 4.1 Introduction 4.2 Basics and classification of renewable generation forecasting 4.3 Basics and classification of load forecasting 4.4 Short-term renewable generation and load forecasting techniques 4.4.1 Introduction a) Physical methods b) Time series methods 4.4.2 Physical models 4.4.2.1 Numerical weather prediction models 4.4.2.2 Sky imagery−based forecasts 4.4.3 Time series methods 4.4.3.1 Artificial neural network 4.4.3.2 Adaptive neuro-fuzzy inference system 4.4.3.3 Support vector machine 4.4.3.4 Deep neural network 4.4.3.5 Kernel function extreme learning machine 4.5 Accuracy enhancement techniques in generation and load forecasting 4.5.1 Forecast accuracy metrics 4.5.2 Factors affecting forecasting accuracy 4.5.3 Input variable selection methods 4.5.4 Data preprocessing 4.5.4.1 Fourier transform 4.5.4.2 Wavelet transform 4.5.4.3 Empirical mode decomposition 4.5.4.4 Variational mode decomposition 4.5.5 Output processing or ensembling methods 4.5.5.1 Simple averaging 4.5.5.1.1 Regression 4.5.5.1.2 Using an additional model 4.6 Application examples 4.6.1 Short-term wind forecasting using EMD and hybrid artificial intelligence technique 4.6.2 Day-ahead PV forecasting using VMD-GA-ANN 4.6.3 Short-term load forecasting using wavelet transform and LSTM References 5 Fault and disturbance analysis in microgrid 5.1 Introduction 5.2 Distinguishing faults from dynamic and transient disturbances 5.3 Fault analysis 5.4 Advanced algorithms 5.4.1 Voltage and current THD-based algorithm 5.4.2 Park transformation-based algorithm 5.4.2.1 Symmetrical fault detection 5.4.2.2 Asymmetrical fault detection 5.4.3 Wavelet transform-based algorithm 5.4.3.1 Continuous wavelet transform 5.4.3.2 Discrete wavelet transform 5.4.3.3 Wavelet transform-based fault detection 5.4.4 Other applicable algorithms References 6 Protection of microgrids 6.1 Introduction 6.2 Requirements of microgrid protection 6.3 Differences between protection of traditional power system and microgrids 6.4 Design of protection system for microgrids 6.4.1 Overcurrent protection 6.4.1.1 Coordination of overcurrent protection 6.4.2 Differential protection 6.4.3 Distance protection 6.4.4 Voltage-based protection 6.4.5 Adaptive protection 6.4.6 Machine learning-based protection schemes 6.5 Centralized protection for microgrids 6.6 Protection of looped microgrids 6.7 Earthing system in protection of microgrids References 7 Dynamic control of microgrids 7.1 Introduction 7.2 Dynamic characteristic of microgrids 7.3 Modeling of dynamic disturbance system for microgrid 7.3.1 Modeling of power control loop 7.3.1.1 Modeling of phase angle generation 7.3.1.2 Modeling of reactive power control (voltage amplitude generation) 7.3.1.3 Modeling of double loop control (voltage and current control loops) 7.3.1.4 Modeling of low-pass filter 7.3.1.5 Modeling the distribution (microgrid) network 7.3.1.6 Modeling the load 7.3.1.7 Approximated linear model 7.4 State-space model and analysis of dynamic disturbance stability 7.4.1 Designing small-signal stability model of microgrid 7.4.1.1 Power controller 7.4.1.2 Voltage controller 7.4.1.3 Current controller 7.4.1.4 Low-pass filter 7.4.1.5 Distribution network model 7.4.1.6 Load model 7.4.1.7 Virtual resistor model 7.4.2 Eigenvalues and analysis of state-space model of dynamic control 7.4.2.1 Eigenvalue sensitivity to filter inductance Lf 7.4.2.2 Eigenvalue sensitivity to the transformer inductance Lt 7.4.2.3 Eigenvalue sensitivity to real power droop gain m 7.4.2.4 Eigenvalue sensitivity to reactive power droop gain n 7.4.2.5 Eigenvalue sensitivity to virtual resistance Rvir 7.5 Active damping and impedance reconstruction for improving dynamic stability 7.5.1 Realization of control strategy 7.5.1.1 Active damping 7.5.2 High-pass function damping References 8 Transient control of microgrids 8.1 Introduction 8.2 Transient characteristics of microgrids 8.2.1 Causes for the transient disturbances in microgrids 8.2.1.1 Switching between grid-connected and island modes 8.2.1.2 Heavy load on/off switching 8.2.1.3 Major DG on/off switching 8.2.1.4 Fault clearing 8.2.2 System parameters during transient disturbances 8.2.2.1 Voltage sag and frequency drop of microgrid 8.3 Design of transient disturbance control system 8.3.1 Objectives of transient disturbance control system of a microgrid 8.3.2 Control strategies for transient disturbances in microgrids 8.3.2.1 Frequency/voltage droop control 8.3.2.1.1 Supplementary control to the droop control strategy 8.3.2.2 Energy storage system 8.3.2.3 Virtual synchronous generator in transient disturbance control 8.3.2.3.1 Eigenvalues analysis for the damping coefficient Dω 8.3.2.3.2 Filter inductance sensitivity analysis with eigenvalues by comparing the VSG and droop control systems 8.3.3 Hardware requirements of transient control systems 8.4 Identifying different kinds of faults from transient disturbances 8.5 Frequency and voltage ride-through 8.5.1 Frequency ride-through 8.5.2 Voltage ride-through 8.6 Application examples: practical experiment and simulation of transient disturbance control system 8.6.1 Transient control 8.6.1.1 Simulation results for transient control systems 8.6.1.2 Field testing results for the transient control device References 9 Tertiary control of microgrid 9.1 Introduction 9.2 Optimal energy dispatching control in microgrids 9.2.1 Introduction 9.2.2 Mathematical modeling 9.2.2.1 Linear models 9.2.2.2 Nonlinear models 9.2.2.3 Multiobjective optimization modeling 9.2.2.4 Uncertainties modeling 9.2.2.5 Costs modeling 9.2.2.6 Constraint functions 9.2.3 Optimal energy dispatching algorithms for microgrid 9.2.3.1 Jaya algorithm 9.2.3.2 Whale optimization algorithm 9.2.3.3 Biogeography-based optimization algorithm 9.2.3.4 Markov decision process algorithm 9.2.3.5 Stackelberg game approach algorithm 9.2.3.6 Consensus theory-based algorithms 9.2.3.7 Particle swarm optimization algorithm 9.2.3.8 Imperialist competitive algorithm 9.2.4 Role of soft computing tools in microgrid control 9.3 Demand side management and control of microgrids 9.3.1 Introduction 9.3.2 Demand side management in microgrids 9.3.3 Demand response alternatives 9.3.3.1 Load management in the demand response 9.3.3.2 Price-based demand response 9.3.4 Intelligent demand response algorithms 9.3.4.1 Decision-making auction algorithm 9.3.4.2 Heuristic-based evolutionary algorithm 9.3.4.3 Greedy ratio algorithm 9.3.4.4 Distributed demand response algorithm 9.4 Energy efficiency of microgrids 9.4.1 Advanced energy efficiency services 9.4.2 Classified energy consumption data analysis 9.4.3 Energy efficiency assessment and analysis model 9.4.4 Energy efficiency diagnosis and optimization model 9.4.5 Energy efficiency data statistics report 9.5 Application example: simulation of microgrid central controller for energy management of resilient low-carbon microgrid 9.5.1 The microgrid platform and simulation model 9.5.2 Functions and overview of the MGCC 9.5.3 Operating algorithm of the MGCC 9.5.4 Testing procedure 9.5.5 Testing results References 10 Communication requirements of microgrids 10.1 Introduction 10.2 Role of communication in microgrids 10.3 Communication media for application in microgrid 10.3.1 Copper cable 10.3.2 Fiber optics 10.3.3 Wireless communication 10.4 Communication protocols for application in microgrid 10.4.1 Internet Protocol 10.4.2 Modbus 10.4.3 Distributed Network Protocol 10.4.4 IEC 61850 10.4.5 Implementation of IEC 61850-based microgrid communication 10.4.5.1 FPGA-based communication for the 10kV microgrid 10.4.5.1.1 Background 10.4.5.1.2 Brief introduction of SV/GOOSE protocol-based communication 10.4.5.1.3 Realization of SV/GOOSE message communication 10.4.5.1.4 Description of FPGA based SV/GOOSE communication 10.4.5.2 The FPGA communication module for the 10kV microgrid system 10.4.5.2.1 A mechanism between central controller and local acquisition devices 10.4.5.2.2 A mechanism between the central controller and local controllers 10.4.5.2.3 A mechanism between local control devices 10.4.5.3 Interactive data format of FPGA and DSP 10.4.5.3.1 DSP writes to data zone 10.4.5.3.2 DSP receives from data zone References 11 Application cases of industrial park microgrids' protection and control 11.1 Background 11.2 Demonstrational microgrid testbed 11.2.1 Introduction 11.2.2 Architecture and components 11.2.2.1 Wind turbines 11.2.2.2 Photovoltaic system 11.2.2.3 Microturbines 11.2.2.4 Diesel generators 11.2.2.5 Energy storage systems 11.2.3 Functional components 11.2.3.1 Data acquisition and control terminal devices 11.2.3.1.1 Electrical data acquisition terminal device 11.2.3.1.2 Thermal data acquisition terminal device 11.2.3.1.3 Gas data acquisition terminal device 11.2.3.1.4 End-user smart terminal devices 11.2.3.2 Communication system 11.2.3.3 Central monitoring and control system 11.2.3.4 Cloud computing technology 11.2.3.5 Renewable generation and load forecasting 11.2.3.6 Optimal dispatching 11.2.3.7 Dynamic and transient disturbance control systems 11.2.3.8 Protection system 11.2.4 Advanced functions 11.2.4.1 Energy conservation and efficiency services 11.2.4.2 Customized services 11.2.4.3 Grid auxiliary services 11.2.5 Operational results 11.2.5.1 Fault protection 11.2.5.2 Transient and dynamic disturbance stability 11.2.5.3 Renewable generation and load forecasting 11.3 Industrial microgrid 11.3.1 Introduction 11.3.2 Architecture and components 11.3.2.1 Photovoltaic system 11.3.2.2 Wind turbine 11.3.2.3 Energy storage system 11.3.3 Core technologies 11.3.4 Functional components 11.3.4.1 Renewable generation and load forecasting 11.3.4.2 Scheduling method 11.3.4.3 Transient and dynamic stability control systems 11.3.4.4 Demand side management 11.3.4.5 Communication network 11.3.4.6 Monitoring and control 11.3.5 Operational results 11.3.5.1 Fault and protection system 11.3.5.2 Transient disturbance suppression 11.3.5.3 Dynamic disturbance suppression 11.3.5.4 Seamless switching between grid-connected and island modes References Index