ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Microelectronic Circuits

دانلود کتاب مدارهای میکروالکترونیک

Microelectronic Circuits

مشخصات کتاب

Microelectronic Circuits

دسته بندی: الکترونیک
ویرایش: 7 
نویسندگان: ,   
سری: The Oxford Series in Electrical and Computer Engineering 
ISBN (شابک) : 0199339139;97 
ناشر: Oxford University Press 
سال نشر: 2014 
تعداد صفحات: 1824 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 69 مگابایت 

قیمت کتاب (تومان) : 47,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



کلمات کلیدی مربوط به کتاب مدارهای میکروالکترونیک: است



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 3


در صورت تبدیل فایل کتاب Microelectronic Circuits به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مدارهای میکروالکترونیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مدارهای میکروالکترونیک

این کتاب درسی پیشرو در بازار همچنان استاندارد برتری و نوآوری است. هفتمین نسخه مدارهای میکروالکترونیک که بر اساس پایه‌های آموزشی محکم عادل اس. سدرا و کنت سی. اسمیت ساخته شده است، بهترین نسخه است. علاوه بر محتوای به روز و پوشش طراحی شده برای انعکاس تغییرات در فناوری IC، متن همچنین جامع ترین، منعطف ترین، دقیق ترین و طراحی محور مدارهای الکترونیکی موجود امروزی را ارائه می دهد.

مدارهای میکروالکترونیک که با تعداد زیادی مثال نشان داده شده و با تعداد گسترده‌ای از مسائل و تمرین‌های تمرینی پایان فصل به خوبی طراحی شده تکمیل شده است، جدیدترین منبع موجود برای آموزش است. مهندسان فردا چگونه مدارهای الکترونیکی را تحلیل و طراحی کنند.


توضیحاتی درمورد کتاب به خارجی

This market-leading textbook remains the standard of excellence and innovation. Built on Adel S. Sedra's and Kenneth C. Smith's solid pedagogical foundation, the seventh edition of Microelectronic Circuits is the best yet. In addition to updated content and coverage designed to reflect changes in IC technology, the text also provides the most comprehensive, flexible, accurate, and design-oriented treatment of electronic circuits available today.

Amply illustrated by a wealth of examples and complemented by an expanded number of well-designed end-of-chapter problems and practice exercises, Microelectronic Circuits is the most current resource available for teaching tomorrow's engineers how to analyze and design electronic circuits.



فهرست مطالب

PART I - DEVICES AND BASIC CIRCUITS
 Chapter 1 - Signals and Amplifiers
  Introduction
  1.1 Signals
  1.2 Frequency Spectrum of Signals
  1.3 Analog and Digital Signals
  1.4 Amplifiers
   1.4.1 Signal Amplification
   1.4.2 Amplifier Circuit Symbol
   1.4.3 Voltage Gain
   1.4.4 Power Gain and Current Gain
   1.4.5 Expressing Gain in Decibels
   1.4.6 The Amplifier Power Supplies
   1.4.7 Amplifier Saturation
   1.4.8 Symbol Convention
  1.5 Circuit Models for Amplifiers
   1.5.1 Voltage Amplifiers
   1.5.2 Cascaded Amplifiers
   1.5.3 Other Amplifier Types
   1.5.4 Relationships between the Four Amplifier Models
   1.5.5 Determining R_i and R_o
   1.5.6 Unilateral Models
  1.6 Frequency Response of Amplifiers
   1.6.1 Measuring the Amplifier Frequency Response
   1.6.2 Amplifier Bandwidth
   1.6.3 Evaluating the Frequency Response of Amplifiers
   1.6.4 Single-Time-Constant Networks
   1.6.5 Classification of Amplifiers Based on Frequency Response
  Summary
  Problems
 Chapter 2 - Operational Amplifiers
  Introduction
  2.1 The Ideal Op Amp
   2.1.1 The Op-Amp Terminals
   2.1.2 Function and Characteristics of the Ideal Op Amp
   2.1.3 Differential and Common-Mode Signals
  2.2 The Inverting Configuration
   2.2.1 The Closed-Loop Gain
   2.2.2 Effect of the Finite Open-Loop Gain
   2.2.3 Input and Output Resistances
   2.2.4 An Important Application—The Weighted Summer
  2.3 The Noninverting Configuration
   2.3.1 The Closed-Loop Gain
   2.3.2 Effect of Finite Open-Loop Gain
   2.3.3 Input and Output Resistance
   2.3.4 The Voltage Follower
  2.4 Difference Amplifiers
   2.4.1 A Single-Op-Amp Difference Amplifier
   2.4.2 A Superior Circuit—The Instrumentation Amplifier
  2.5 Integrators and Differentiators
   2.5.1 The Inverting Configuration with General Impedances
   2.5.2 The Inverting Integrator
   2.5.3 The Op-Amp Differentiator
  2.6 DC Imperfections
   2.6.1 Offset Voltage
   2.6.2 Input Bias and Offset Currents
   2.6.3 Effect of V_OS and I_OS on the Operation of the Inverting Integrator
  2.7 Effect of Finite Open-Loop Gain and Bandwidth on Circuit Performance
   2.7.1 Frequency Dependence of the Open-Loop Gain
   2.7.2 Frequency Response of Closed-Loop Amplifiers
  2.8 Large-Signal Operation of Op Amps
   2.8.1 Output Voltage Saturation
   2.8.2 Output Current Limits
   2.8.3 Slew Rate
   2.8.4 Full-Power Bandwidth
  Summary
  Problems
 Chapter 3 - Semiconductors
  Introduction
  3.1 Intrinsic Semiconductors
  3.2 Doped Semiconductors
  3.3 Current Flow in Semiconductors
   3.3.1 Drift Current
   3.3.2 Diffusion Current
   3.3.3 Relationship between D and μ
  3.4 The pn Junction
   3.4.1 Physical Structure
   3.4.2 Operation with Open-Circuit Terminals
  3.5 The pn Junction with an Applied Voltage
   3.5.1 Qualitative Description of Junction Operation
   3.5.2 The Current–Voltage Relationship of the Junction
   3.5.3 Reverse Breakdown
  3.6 Capacitive Effects in the pn Junction
   3.6.1 Depletion or Junction Capacitance
   3.6.2 Diffusion Capacitance
  Summary
  Problems
 Chapter 4 - Diodes
  Introduction
  4.1 The Ideal Diode
   4.1.1 Current–Voltage Characteristic
   4.1.2 A Simple Application: The Rectifier
   4.1.3 Another Application: Diode Logic Gates
  4.2 Terminal Characteristics of Junction Diodes
   4.2.1 The Forward-Bias Region
   4.2.2 The Reverse-Bias Region
   4.2.3 The Breakdown Region
  4.3 Modeling the Diode Forward Characteristic
   4.3.1 The Exponential Model
   4.3.2 Graphical Analysis Using the Exponential Model
   4.3.3 Iterative Analysis Using the Exponential Model
   4.3.4 The Need for Rapid Analysis
   4.3.5 The Constant-Voltage-Drop Model
   4.3.6 The Ideal-Diode Model
   4.3.7 The Small-Signal Model
   4.3.8 Use of the Diode Forward Drop in Voltage Regulation
  4.4 Operation in the Reverse Breakdown Region—Zener Diodes
   4.4.1 Specifying and Modeling the Zener Diode
   4.4.2 Use of the Zener as a Shunt Regulator
   4.4.3 Temperature Effects
   4.4.4 A Final Remark
  4.5 Rectifier Circuits
   4.5.1 The Half-Wave Rectifier
   4.5.2 The Full-Wave Rectifier
   4.5.3 The Bridge Rectifier
   4.5.4 The Rectifier with a Filter Capacitor—The Peak Rectifier
   4.5.5 Precision Half-Wave Rectifier—The Superdiode
  4.6 Limiting and Clamping Circuits
   4.6.1 Limiter Circuits
   4.6.2 The Clamped Capacitor or DC Restorer
   4.6.3 The Voltage Doubler
  4.7 Special Diode Types
   4.7.1 The Schottky-Barrier Diode (SBD)
   4.7.2 Varactors
   4.7.3 Photodiodes
   4.7.4 Light-Emitting Diodes (LEDs)
  Summary
  Problems
 Chapter 5 - MOS Field-Effect Transistors (MOSFETs)
  Introduction
  5.1 Device Structure and Physical Operation
   5.1.1 Device Structure
   5.1.2 Operation with Zero Gate Voltage
   5.1.3 Creating a Channel for Current Flow
   5.1.4 Applying a Small v_DS
   5.1.5 Operation as v DS Is Increased
   5.1.6 Operation for v_DS ≥ V_OV: Channel Pinch-Off and Current Saturation
   5.1.7 The p-Channel MOSFET
   5.1.8 Complementary MOS or CMOS
   5.1.9 Operating the MOS Transistor in the Subthreshold Region
  5.2 Current–Voltage Characteristics
   5.2.1 Circuit Symbol
   5.2.2 The i_D–v_DS Characteristics
   5.2.3 The i_D–v_GS Characteristic
   5.2.4 Finite Output Resistance in Saturation
   5.2.5 Characteristics of the p-Channel MOSFET
  5.3 MOSFET Circuits at DC
  5.4 The Body Effect and Other Topics
   5.4.1 The Role of the Substrate—The Body Effect
   5.4.2 Temperature Effects
   5.4.3 Breakdown and Input Protection
   5.4.4 Velocity Saturation
   5.4.5 The Depletion-Type MOSFET
  Summary
  Problems
 Chapter 6 - Bipolar Junction Transistors (BJTs)
  Introduction
  6.1 Device Structure and Physical Operation
   6.1.1 Simplified Structure and Modes of Operation
   6.1.2 Operation of the npn Transistor in the Active Mode
   6.1.3 Structure of Actual Transistors
   6.1.4 Operation in the Saturation Mode
   6.1.5 The pnp Transistor
  6.2 Current–Voltage Characteristics
   6.2.1 Circuit Symbols and Conventions
   6.2.2 Graphical Representation of Transistor Characteristics
   6.2.3 Dependence of i_C on the Collector Voltage—The Early Effect
   6.2.4 An Alternative Form of the Common-Emitter Characteristics
  6.3 BJT Circuits at DC
  6.4 Transistor Breakdown and Temperature Effects
   6.4.1 Transistor Breakdown
   6.4.2 Dependence of β on I_C and Temperature
  Summary
  Problems
 Chapter 7 - Transistor Amplifiers
  Introduction
  7.1 Basic Principles
   7.1.1 The Basis for Amplifier Operation
   7.1.2 Obtaining a Voltage Amplifier
   7.1.3 The Voltage-Transfer Characteristic (VTC)
   7.1.4 Obtaining Linear Amplification by Biasing the Transistor
   7.1.5 The Small-Signal Voltage Gain
   7.1.6 Determining the VTC by Graphical Analysis
   7.1.7 Deciding on a Location for the Bias Point Q
  7.2 Small-Signal Operation and Models
   7.2.1 The MOSFET Case
   7.2.2 The BJT Case
   7.2.3 Summary Tables
  7.3 Basic Configurations
   7.3.1 The Three Basic Configurations
   7.3.2 Characterizing Amplifiers
   7.3.3 The Common-Source (CS) and Common-Emitter (CE) Amplifiers
   7.3.4 The Common-Source (Common-Emitter) Amplifier with a Source (Emitter) Resistance
   7.3.5 The Common-Gate (CG) and the Common-Base (CB) Amplifiers
   7.3.6 The Source and Emitter Followers
   7.3.7 Summary Tables and Comparisons
   7.3.8 When and How to Include the Transistor Output Resistance r_o
  7.4 Biasing
   7.4.1 The MOSFET Case
   7.4.2 The BJT Case
  7.5 Discrete-Circuit Amplifiers
   7.5.1 A Common-Source (CS) Amplifier
   7.5.2 A Common-Emitter (CE) Amplifier
   7.5.3 A Common-Emitter Amplifier with an Emitter Resistance R_e
   7.5.4 A Common-Base (CB) Amplifier
   7.5.5 An Emitter Follower
   7.5.6 The Amplifier Frequency Response
  Summary
  Problems
PART II - INTEGRATED-CIRCUIT AMPLIFIERS
 Chapter 8 - Building Blocks of Integrated-Circuit Amplifiers
  Introduction
  8.1 IC Design Philosophy
  8.2 IC Biasing—Current Sources, Current Mirrors, and Current-Steering Circuits
   8.2.1 The Basic MOSFET Current Source
   8.2.2 MOS Current-Steering Circuits
   8.2.3 BJT Circuits
   8.2.4 Small-Signal Operation of Current Mirrors
  8.3 The Basic Gain Cell
   8.3.1 The CS and CE Amplifiers with Current-Source Loads
   8.3.2 The Intrinsic Gain
   8.3.3 Effect of the Output Resistance of the Current-Source Load
   8.3.4 Increasing the Gain of the Basic Cell
  8.4 The Common-Gate and Common-Base Amplifiers
   8.4.1 The CG Circuit
   8.4.2 Output Resistance of a CS Amplifier with a Source Resistance
   8.4.3 The Body Effect
   8.4.4 The CB Circuit
   8.4.5 Output Resistance of an Emitter-Degenerated CE Amplifier
  8.5 The Cascode Amplifier
   8.5.1 Cascoding
   8.5.2 The MOS Cascode Amplifier
   8.5.3 Distribution of Voltage Gain in a Cascode Amplifier
   8.5.4 Double Cascoding
   8.5.5 The Folded Cascode
   8.5.6 The BJT Cascode
  8.6 Current-Mirror Circuits with Improved Performance
   8.6.1 Cascode MOS Mirrors
   8.6.2 The Wilson Current Mirror
   8.6.3 The Wilson MOS Mirror
   8.6.4 The Widlar Current Souce
  8.7 Some Useful Transistor Pairings
   8.7.1 The CC–CE, CD–CS, and CD–CE Configurations
   8.7.2 The Darlington Configuration
   8.7.3 The CC–CB and CD–CG Configurations
  Summary
  Problems
 Chapter 9 - Differential and Multistage Amplifiers
  Introduction
  9.1 The MOS Differential Pair
   9.1.1 Operation with a Common-Mode Input Voltage
   9.1.2 Operation with a Differential Input Voltage
   9.1.3 Large-Signal Operation
   9.1.4 Small-Signal Operation
   9.1.5 The Differential Amplifier with Current-Source Loads
   9.1.6 Cascode Differential Amplifier
  9.2 The BJT Differential Pair
   9.2.1 Basic Operation
   9.2.2 Input Common-Mode Range
   9.2.3 Large-Signal Operation
   9.2.4 Small-Signal Operation
  9.3 Common-Mode Rejection
   9.3.1 The MOS Case
   9.3.2 The BJT Case
  9.4 DC Offset
   9.4.1 Input Offset Voltage of the MOS Differential Amplifier
   9.4.2 Input Offset Voltage of the Bipolar Differential Amplifier
   9.4.3 Input Bias and Offset Currents of the Bipolar Differential Amplifier
   9.4.4 A Concluding Remark
  9.5 The Differential Amplifier with a Current-Mirror Load
   9.5.1 Differential to Single-Ended Conversion
   9.5.2 The Current-Mirror-Loaded MOS Differential Pair
   9.5.3 Differential Gain of the Current-Mirror-Loaded MOS Pair
   9.5.4 The Bipolar Differential Pair with a Current-Mirror Load
   9.5.5 Common-Mode Gain and CMRR
  9.6 Multistage Amplifiers
   9.6.1 A Two-Stage CMOS Op Amp
   9.6.2 A Bipolar Op Amp
  Summary
  Problems
 Chapter 10 - Frequency Response
  Introduction
  10.1 Low-Frequency Response of Discrete-Circuit Common-Source and Common-Emitter Amplifiers
   10.1.1 The CS Amplifier
   10.1.2 The Method of Short-Circuit Time-Constants
   10.1.3 The CE Amplifier
  10.2 Internal Capacitive Effects and the High-Frequency Model of the MOSFET and the BJT
   10.2.1 The MOSFET
   10.2.2 The BJT
  10.3 High-Frequency Response of the CS and CE Amplifiers
   10.3.1 The Common-Source Amplifier
   10.3.2 The Common-Emitter Amplifier
   10.3.3 Miller’s Theorem
   10.3.4 Frequency Response of the CS Amplifier When R_sig Is Low
  10.4 Useful Tools for the Analysis of the High-Frequency Response of Amplifiers
   10.4.1 The High-Frequency Gain Function
   10.4.2 Determining the 3-dB Frequency f_H
   10.4.3 The Method of Open-Circuit Time Constants
   10.4.4 Application of the Method of Open-Circuit Time Constants to the CS Amplifier
   10.4.5 Application of the Method of Open-Circuit Time Constants to the CE Amplifier
  10.5 High-Frequency Response of the Common-Gate and Cascode Amplifiers
   10.5.1 High-Frequency Response of the CG Amplifier
   10.5.2 High-Frequency Response of the MOS Cascode Amplifier
   10.5.3 High-Frequency Response of the Bipolar Cascode Amplifier
  10.6 High-Frequency Response of the Source and Emitter Followers
   10.6.1 The Source-Follower Case
   10.6.2 The Emitter-Follower Case
  10.7 High-Frequency Response of Differential Amplifiers
   10.7.1 Analysis of the Resistively Loaded MOS Amplifier
   10.7.2 Analysis of the Current-Mirror-Loaded MOS Amplifier
  10.8 Other Wideband Amplifier Configurations
   10.8.1 Obtaining Wideband Amplification by Source and Emitter Degeneration
   10.8.2 The CD–CS, CC–CE, and CD–CE Configurations
   10.8.3 The CC–CB and CD–CG Configurations
  Summary
  Problems
 Chapter 11 - Feedback
  Introduction
  11.1 The General Feedback Structure
   11.1.1 Signal-Flow Diagram
   11.1.2 The Closed-Loop Gain
   11.1.3 The Loop Gain
   11.1.4 Summary
  11.2 Some Properties of Negative Feedback
   11.2.1 Gain Desensitivity
   11.2.2 Bandwidth Extension
   11.2.3 Interference Reduction
   11.2.4 Reduction in Nonlinear Distortion
  11.3 The Feedback Voltage Amplifier
   11.3.1 The Series–Shunt Feedback Topology
   11.3.2 Examples of Series–Shunt Feedback Amplifiers
   11.3.3 Analysis of the Feedback Voltage Amplifier Utilizing the Loop Gain
   11.3.4 A Final Remark
  11.4 Systematic Analysis of Feedback Voltage Amplifiers
   11.4.1 The Ideal Case
   11.4.2 The Practical Case
  11.5 Other Feedback Amplifier Types
   11.5.1 Basic Principles
   11.5.2 The Feedback Transconductance Amplifier (Series–Series)
   11.5.3 The Feedback Transresistance Amplifier (Shunt–Shunt)
   11.5.4 The Feedback Current Amplifier (Shunt–Series)
  11.6 Summary of the Feedback Analysis Method
  11.7 The Stability Problem
   11.7.1 Transfer Function of the Feedback Amplifier
   11.7.2 The Nyquist Plot
  11.8 Effect of Feedback on the Amplifier Poles
   11.8.1 Stability and Pole Location
   11.8.2 Poles of the Feedback Amplifier
   11.8.3 Amplifier with a Single-Pole Response
   11.8.4 Amplifier with a Two-Pole Response
   11.8.5 Amplifiers with Three or More Poles
  11.9 Stability Study Using Bode Plots
   11.9.1 Gain and Phase Margins
   11.9.2 Effect of Phase Margin on Closed-Loop Response
   11.9.3 An Alternative Approach for Investigating Stability
  11.10 Frequency Compensation
   11.10.1 Theory
   11.10.2 Implementation
   11.10.3 Miller Compensation and Pole Splitting
  Summary
  Problems
 Chapter 12 - Output Stages and Power Amplifiers
  Introduction
  12.1 Classification of Output Stages
  12.2 Class A Output Stage
   12.2.1 Transfer Characteristic
   12.2.2 Signal Waveforms
   12.2.3 Power Dissipation
   12.2.4 Power-Conversion Efficiency
  12.3 Class B Output Stage
   12.3.1 Circuit Operation
   12.3.2 Transfer Characteristic
   12.3.3 Power-Conversion Efficiency
   12.3.4 Power Dissipation
   12.3.5 Reducing Crossover Distortion
   12.3.6 Single-Supply Operation
  12.4 Class AB Output Stage
   12.4.1 Circuit Operation
   12.4.2 Output Resistance
  12.5 Biasing the Class AB Circuit
   12.5.1 Biasing Using Diodes
   12.5.2 Biasing Using the V BE Multiplier
  12.6 Variations on the Class AB Configuration
   12.6.1 Use of Input Emitter Followers
   12.6.2 Use of Compound Devices
   12.6.3 Short-Circuit Protection
   12.6.4 Thermal Shutdown
  12.7 CMOS Class AB Output Stages
   12.7.1 The Classical Configuration
   12.7.2 An Alternative Circuit Utilizing Common-Source Transistors
  12.8 IC Power Amplifiers
   12.8.1 A Fixed-Gain IC Power Amplifier
   12.8.2 The Bridge Amplifier
  12.9 Class D Power Amplifiers
  12.10 Power Transistors
   12.10.1 Packages and Heat Sinks
   12.10.2 Power BJTs
   12.10.3 Power MOSFETs
   12.10.4 Thermal Considerations
  Summary
  Problems
 Chapter 13 - Operational-Amplifier Circuits
  Introduction
  13.1 The Two-Stage CMOS Op Amp
   13.1.1 The Circuit
   13.1.2 Input Common-Mode Range and Output Swing
   13.1.3 DC Voltage Gain
   13.1.4 Common-Mode Rejection Ratio (CMRR)
   13.1.5 Frequency Response
   13.1.6 Slew Rate
   13.1.7 Power-Supply Rejection Ratio (PSRR)
   13.1.8 Design Trade-Offs
   13.1.9 A Bias Circuit for the Two-Stage CMOS Op Amp
  13.2 The Folded-Cascode CMOS Op Amp
   13.2.1 The Circuit
   13.2.2 Input Common-Mode Range and Output Swing
   13.2.3 Voltage Gain
   13.2.4 Frequency Response
   13.2.5 Slew Rate
   13.2.6 Increasing the Input Common-Mode Range: Rail-to-Rail Input Operation
   13.2.7 Increasing the Output Voltage Range: The Wide-Swing Current Mirror
  13.3 The 741 BJT Op Amp
   13.3.1 The 741 Circuit
   13.3.2 DC Analysis
   13.3.3 Small-Signal Analysis
   13.3.4 Frequency Response
   13.3.5 Slew Rate
  13.4 Modern Techniques for the Design of BJT Op Amps
   13.4.1 Special Performance Requirements
   13.4.2 Bias Design
   13.4.3 Design of the Input Stage to Obtain Rail-to-Rail V ICM
   13.4.4 Common-Mode Feedback to Control the DC Voltage at the Output of the Input Stage
   13.4.5 Output-Stage Design for Near Rail-to-Rail Output Swing
   13.4.6 Concluding Remark
  Summary
  Problems
PART III - DIGITAL INTEGRATED CIRCUITS
 Chapter 14 - CMOS Digital Logic Circuits
  Introduction
  14.1 CMOS Logic-Gate Circuits
   14.1.1 Switch-Level Transistor Model
   14.1.2 The CMOS Inverter
   14.1.3 General Structure of CMOS Logic
   14.1.4 The Two-Input NOR Gate
   14.1.5 The Two-Input NAND Gate
   14.1.6 A Complex Gate
   14.1.7 Obtaining the PUN from the PDN and Vice Versa
   14.1.8 The Exclusive-OR Function
   14.1.9 Summary of the Synthesis Method
  14.2 Digital Logic Inverters
   14.2.1 The Voltage-Transfer Characteristic (VTC)
   14.2.2 Noise Margins
   14.2.3 The Ideal VTC
   14.2.4 Inverter Implementation
  14.3 The CMOS Inverter
   14.3.1 Circuit Operation
   14.3.2 The Voltage-Transfer Characteristic (VTC)
   14.3.3 The Situation When Q_N and Q_P Are Not Matched
  14.4 Dynamic Operation of the CMOS Inverter
   14.4.1 Propagation Delay
   14.4.2 Determining the Propagation Delay of the CMOS Inverter
   14.4.3 Determining the Equivalent Load Capacitance C
  14.5 Transistor Sizing
   14.5.1 Inverter Sizing
   14.5.2 Transistor Sizing in CMOS Logic Gates
   14.5.3 Effects of Fan-In and Fan-Out on Propagation Delay
   14.5.4 Driving a Large Capacitance
  14.6 Power Dissipation
   14.6.1 Sources of Power Dissipation
   14.6.2 Power–Delay and Energy–Delay Products
  Summary
  Problems
 Chapter 15 - Advanced Topics in Digital Integrated-Circuit Design
  Introduction
  15.1 Implications of Technology Scaling: Issues in Deep-Submicron Design
   15.1.1 Silicon Area
   15.1.2 Scaling Implications
   15.1.3 Velocity Saturation
   15.1.4 Subthreshold Conduction
   15.1.5 Temperature, Voltage, and Process Variations
   15.1.6 Wiring: The Interconnect
  15.2 Digital IC Technologies, Logic-Circuit Families, and Design Methodologies
   15.2.1 Digital IC Technologies and Logic-Circuit Families
   15.2.2 Styles for Digital System Design
   15.2.3 Design Abstraction and Computer Aids
  15.3 Pseudo-NMOS Logic Circuits
   15.3.1 The Pseudo-NMOS Inverter
   15.3.2 Static Characteristics
   15.3.3 Derivation of the VTC
   15.3.4 Dynamic Operation
   15.3.5 Design
   15.3.6 Gate Circuits
   15.3.7 Concluding Remarks
  15.4 Pass-Transistor Logic Circuits
   15.4.1 An Essential Design Requirement
   15.4.2 Operation with NMOS Transistors as Switches
   15.4.3 Restoring the Value of V_OH to V_DD
   15.4.4 The Use of CMOS Transmission Gates as Switches
   15.4.5 Examples of Pass-Transistor Logic Circuits
   15.4.6 A Final Remark
  15.5 Dynamic MOS Logic Circuits
   15.5.1 The Basic Principle
   15.5.2 Nonideal Effects
   15.5.3 Domino CMOS Logic
   15.5.4 Concluding Remarks
  15.6 Bipolar and BiCMOS Logic Circuits
   15.6.1 Emitter-Coupled Logic (ECL)
   15.6.2 BiCMOS Digital Circuits
  Summary
  Problems
 Chapter 16 - Memory Circuits
  Introduction
  16.1 Latches and Flip-Flops
   16.1.1 The Latch
   16.1.2 The SR Flip-Flop
   16.1.3 CMOS Implementation of SR Flip-Flops
   16.1.4 A Simpler CMOS Implementation of the Clocked SR Flip-Flop
   16.1.5 D Flip-Flop Circuits
  16.2 Semiconductor Memories: Types and Architectures
   16.2.1 Memory-Chip Organization
   16.2.2 Memory-Chip Timing
  16.3 Random-Access Memory (RAM) Cells
   16.3.1 Static Memory (SRAM) Cell
   16.3.2 Dynamic Memory (DRAM) Cell
  16.4 Sense Amplifiers and Address Decoders
   16.4.1 The Sense Amplifier
   16.4.2 The Row-Address Decoder
   16.4.3 The Column-Address Decoder
   16.4.4 Pulse-Generation Circuits
  16.5 Read-Only Memory (ROM)
   16.5.1 A MOS ROM
   16.5.2 Mask Programmable ROMs
   16.5.3 Programmable ROMs (PROMs, EPROMs, and Flash)
  16.6 CMOS Image Sensors
  Summary
  Problems
PART IV - FILTERS AND OSCILLATORS
 Chapter 17 - Filters and Tuned Amplifiers
  Introduction
  17.1 Filter Transmission, Types, and Specification
   17.1.1 Filter Transmission
   17.1.2 Filter Types
   17.1.3 Filter Specification
  17.2 The Filter Transfer Function
  17.3 Butterworth and Chebyshev Filters
   17.3.1 The Butterworth Filter
   17.3.2 The Chebyshev Filter
  17.4 First-Order and Second-Order Filter Functions
   17.4.1 First-Order Filters
   17.4.2 Second-Order Filter Functions
  17.5 The Second-Order LCR Resonator
   17.5.1 The Resonator Natural Modes
   17.5.2 Realization of Transmission Zeros
   17.5.3 Realization of the Low-Pass Function
   17.5.4 Realization of the High-Pass Function
   17.5.5 Realization of the Bandpass Function
   17.5.6 Realization of the Notch Functions
   17.5.7 Realization of the All-Pass Function
  17.6 Second-Order Active Filters Based on Inductor Replacement
   17.6.1 The Antoniou Inductance-Simulation Circuit
   17.6.2 The Op Amp–RC Resonator
   17.6.3 Realization of the Various Filter Types
   17.6.4 The All-Pass Circuit
  17.7 Second-Order Active Filters Based on the Two-Integrator-Loop Topology
   17.7.1 Derivation of the Two-Integrator-Loop Biquad
   17.7.2 Circuit Implementation
   17.7.3 An Alternative Two-Integrator-Loop Biquad Circuit
   17.7.4 Final Remarks
  17.8 Single-Amplifier Biquadratic Active Filters
   17.8.1 Synthesis of the Feedback Loop
   17.8.2 Injecting the Input Signal
   17.8.3 Generation of Equivalent Feedback Loops
  17.9 Sensitivity
  17.10 Transconductance-C Filters
   17.10.1 Methods for IC Filter Implementation
   17.10.2 Transconductors
   17.10.3 Basic Building Blocks
   17.10.4 Second-Order G m −C Filter
  17.11 Switched-Capacitor Filters
   17.11.1 The Basic Principle
   17.11.2 Practical Circuits
   17.11.3 Final Remarks
  17.12 Tuned Amplifiers
   17.12.1 The Basic Principle
   17.12.2 Inductor Losses
   17.12.3 Use of Transformers
   17.12.4 Amplifiers with Multiple Tuned Circuits
   17.12.5 The Cascode and the CC–CB Cascade
   17.12.6 Synchronous Tuning and Stagger Tuning
  Summary
  Problems
 Chapter 18 - Signal Generators and Waveform-Shaping Circuits
  Introduction
  18.1 Basic Principles of Sinusoidal Oscillators
   18.1.1 The Oscillator Feedback Loop
   18.1.2 The Oscillation Criterion
   18.1.3 Analysis of Oscillator Circuits
   18.1.4 Nonlinear Amplitude Control
   18.1.5 A Popular Limiter Circuit for Amplitude Control
  18.2 Op Amp–RC Oscillator Circuits
   18.2.1 The Wien-Bridge Oscillator
   18.2.2 The Phase-Shift Oscillator
   18.2.3 The Quadrature Oscillator
   18.2.4 The Active-Filter-Tuned Oscillator
   18.2.5 A Final Remark
  18.3 LC and Crystal Oscillators
   18.3.1 The Colpitts and Hartley Oscillators
   18.3.2 The Cross-Coupled LC Oscillator
   18.3.3 Crystal Oscillators
  18.4 Bistable Multivibrators
   18.4.1 The Feedback Loop
   18.4.2 Transfer Characteristic of the Bistable Circuit
   18.4.3 Triggering the Bistable Circuit
   18.4.4 The Bistable Circuit as a Memory Element
   18.4.5 A Bistable Circuit with Noninverting Transfer Characteristic
   18.4.6 Application of the Bistable Circuit as a Comparator
   18.4.7 Making the Output Levels More Precise
  18.5 Generation of Square and Triangular Waveforms Using Astable Multivibrators
   18.5.1 Operation of the Astable Multivibrator
   18.5.2 Generation of Triangular Waveforms
  18.6 Generation of a Standardized Pulse: The Monostable Multivibrator
  18.7 Integrated-Circuit Timers
   18.7.1 The 555 Circuit
   18.7.2 Implementing a Monostable Multivibrator Using the 555 IC
   18.7.3 An Astable Multivibrator Using the 555 IC
  18.8 Nonlinear Waveform-Shaping Circuits
   18.8.1 The Breakpoint Method
   18.8.2 The Nonlinear-Amplification Method
  Summary
  Problems
APPENDICES
 APPENDIX A - VLSI FABRICATION TECHNOLOGY
  Introduction
  A.1 IC Fabrication Steps
   A.1.1 Silicon Wafers
   A.1.2 Oxidation
   A.1.3 Photolithography
   A.1.4 Etching
   A.1.5 Diffusion
   A.1.6 Ion Implantation
   A.1.7 Chemical Vapor Deposition
   A.1.8 Metallization
   A.1.9 Packaging
  A.2 VLSI Processes
   A.2.1 Twin-Well CMOS Process
   A.2.2 Integrated Devices
   A.2.3 MOSFETs
   A.2.4 Resistors
   A.2.5 Capacitors
   A.2.6 pn Junction Diodes
   A.2.7 BiCMOS Process
   A.2.8 Lateral pnp Transistor
   A.2.9 p-Base and Pinched-Base Resistors
   A.2.10 SiGe BiCMOS Process
  A.3 VLSI Layout
  A.4 Beyond 20nm Technology
  Summary
  Bibliography
 APPENDIX B - SPICE DEVICE MODELS AND DESIGN SIMULATION EXAMPLES USING PSPICE AND MULTISIM
  Introduction
  B.1 SPICE Device Models
   B.1.1 The Op-Amp Model
    Linear Macromodel
    Nonlinear Macromodel
   B.1.2 The Diode Model
   B.1.3 The Zener Diode Model
   B.1.4 MOSFET Models
    MOSFET Model Parameters
    MOSFET Diode Parameters
    MOSFET Dimension and Gate-Capacitance Parameters
   B.1.5 The BJT Model
    The SPICE Gummel–Poon Model of the BJT
    The SPICE BJT Model Parameters
    The BJT Model Parameters BF and BR in SPICE
  B.2 PSpice Examples
 APPENDIX C - TWO-PORT NETWORK PARAMETERS
  Introduction
  C.1 Characterization of Linear Two-Port Networks
   C.1.1 y Parameters
   C.1.2 z
   C.1.3 h
   C.1.4 g
   C.1.5 Equivalent-Circuit Representation
 APPENDIX D - SOME USEFUL NETWORK THEOREMS
  Introduction
  D.1 Thévenin’s Theorem
  D.2 Norton’s Theorem
  D.3 Source-Absorption Theorem
 APPENDIX E - SINGLE-TIME-CONSTANT CIRCUITS
  Introduction
  E.1 Evaluating the Time Constant
   E.1.1 Rapid Evaluation of τ
  E.2 Classification of STC Circuits
  E.3 Frequency Response of STC Circuits
   E.3.1 Low-Pass Circuits
   E.3.2 High-Pass Circuits
  E.4 Step Response of STC Circuits
   E.4.1 Low-Pass Circuits
   E.4.2 High-Pass Circuits
  E.5 Pulse Response of STC Circuits
   E.5.1 Low-Pass Circuits
   E.5.2 High-Pass Circuits
 APPENDIX F - s-DOMAIN ANALYSIS: POLES, ZEROS, AND BODE PLOTS
  F.1 Poles and Zeros
  F.2 First-Order Functions
  F.3 Bode Plots
  F.4 An Important Remark
 APPENDIX G - COMPARISON OF THE MOSFET AND THE BJT
 APPENDIX G - COMPARISON OF THE MOSFET AND THE BJT
  G.1 Typical Values of MOSFET Parameters
  G.2 Typical Values of IC BJT Parameters
  G.3 Comparison of Important Characteristic
   G.3.1 Operating Conditions
   G.3.2 Current–Voltage Characteristics
   G.3.3 Low-Frequency Small-Signal Models
   G.3.4 The Transconductance
   G.3.5 Output Resistance
   G.3.6 Intrinsic Gain
   G.3.7 High-Frequency Operation
   G.3.8 Design Parameters
  G.4 Combining MOS and Bipolar Transistors—BiCMOS Circuits
  G.5 Validity of the Square-Law MOSFET Model
 APPENDIX H - DESIGN OF STAGGER-TUNED AMPLIFIERS
 APPENDIX I - BIBLIOGRAPHY
  HISTORY OF ELECTRONICS
  GENERAL TEXTBOOKS ON ELECTRONIC CIRCUITS
  CIRCUIT AND SYSTEM ANALYSIS
  DEVICES AND IC FABRICATION
  OPERATIONAL AMPLIFIERS
  ANALOG CIRCUITS
  DIGITAL CIRCUITS
  FILTERS AND TUNED AMPLIFIERS
  SPICE
 APPENDIX J - STANDARD RESISTANCEVALUES AND UNIT PREFIXES
 APPENDIX K - TYPICAL PARAMETERVALUES FOR IC DEVICES FABRICATED IN CMOS AND BIPOLAR PROCESSES
 APPENDIX L - ANSWERS TO SELECTED PROBLEMS
INDEX
BONUS TEXT TOPICS
 9.7 Data Converters—An Introduction
  9.7.1 Digital Processing of Signals
  9.7.2 Sampling of Analog Signals
  9.7.3 Signal Quantization
  9.7.4 The A/D and D/A Converters as Functional Blocks
 9.8 D/A Converter Circuits
  9.8.1 Basic Circuit Using Binary-Weighted Resistors
  9.8.2 R-2R Ladders
  9.8.3 A Practical Circuit Implementation
  9.8.4 Current Switches
 9.9 A/D Converter Circuits
  9.9.1 The Feedback-Type Converter
  9.9.2 The Dual-Slope A/D Converter
  9.9.3 The Parallel or Flash Converter
  9.9.4 The Charge-Redistribution Converter
 9.10 SPICE Simulation Example
 5.11 The Junction Field-Effect Transistor (JFET)
  Device Structure
  Physical Operation
  Current–Voltage Characteristics
  The p-Channel JFET
  The JFET Small-Signal Model
 5.12 Gallium Arsenide (GaAs) Devices—The MESFET
  The Basic GaAs Devices
  Device Operation
  Device Characteristics and Models
 6.8 GaAs Amplifiers
  Current Sources
  A Cascode Current Source
  Increasing the Output Resistance by Bootstrapping
  A Simple Cascode Configuration–The Composite Transistor
  Differential Amplifiers
 14.8 Gallium-Arsenide Digital Circuits
  Direct-Coupled FET Logic (DCFL)
  Logic Gates Using Depletion MESFETs
  Schottky Diode FET Logic (SDFL)
  Buffered FET Logic (BFL)
 14.3 Transistor-Transistor Logic (TTL or T2L)
  Evolution of TTL from DTL
  Reasons for the Slow Response of DTL
  Input Circuit of the TTL Gate
  Output Circuit of the TTL Gate
  The Complete Circuit of the TTL Gate
  Analysis When the Input Is High
  Analysis When the Input Is Low
  Function of the 130-Ω Resistance
 14.4 Characteristics of Standard TTL
  Transfer Characteristic
  Manufacturers’ Specifications
  Propagation Delay
  Dynamic Power Dissipation
  The TTL NAND Gate
  Other TTL Logic Circuits
 14.5 TTL Families With Improved Performance
  Schottky TTL
  Low-Power Schottky TTL
  Further-Improved TTL Families
 15.4 Emitter-Coupled Logic (ECL)
  15.4.1 The Basic Principle
  15.4.2 ECL Families
  15.4.3 The Basic Gate Circuit
  15.4.4 Voltage-Transfer Characteristics
   The OR Transfer Curve
   Noise Margins
   The NOR Transfer Curve
   Manufacturers’ Specifications
  15.4.5 Fan-Out
  15.4.6 Speed of Operation and Signal Transmission
  15.4.7 Power Dissipation
  15.4.8 Thermal Effects
  15.4.9 The Wired-OR Capability
  15.4.10 Final Remarks
 15.5 BiCMOS Digital Circuits
  15.5.1 The BiCMOS Inverter
  15.5.2 Dynamic Operation
  15.5.3 BiCMOS Logic Gates
 18.9 Precision Rectifier Circuits
  18.9.1 Precision Half-Wave Rectifier: The “Superdiode”
  18.9.2 An Alternative Circuit
  18.9.3 An Application: Measuring AC Voltages
  18.9.4 Precision Full-Wave Rectifier
  18.9.5 A Precision Bridge Rectifier for Instrumentation Applications
  18.9.6 Precision Peak Rectifiers
  18.9.7 A Buffered Precision Peak Detector
  18.9.8 A Precision Clamping Circuit




نظرات کاربران