دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: الکترونیک ویرایش: 7 نویسندگان: Adel S. Sedra, Kenneth C. Smith سری: The Oxford Series in Electrical and Computer Engineering ISBN (شابک) : 0199339139;97 ناشر: Oxford University Press سال نشر: 2014 تعداد صفحات: 1824 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 69 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
کلمات کلیدی مربوط به کتاب مدارهای میکروالکترونیک: است
در صورت تبدیل فایل کتاب Microelectronic Circuits به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مدارهای میکروالکترونیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب درسی پیشرو در بازار همچنان استاندارد برتری و نوآوری
است. هفتمین نسخه مدارهای میکروالکترونیک که بر اساس
پایههای آموزشی محکم عادل اس. سدرا و کنت سی. اسمیت ساخته شده
است، بهترین نسخه است. علاوه بر محتوای به روز و پوشش طراحی شده
برای انعکاس تغییرات در فناوری IC، متن همچنین جامع ترین، منعطف
ترین، دقیق ترین و طراحی محور مدارهای الکترونیکی موجود امروزی را
ارائه می دهد.
مدارهای میکروالکترونیک که با تعداد زیادی مثال نشان
داده شده و با تعداد گستردهای از مسائل و تمرینهای تمرینی پایان
فصل به خوبی طراحی شده تکمیل شده است، جدیدترین منبع موجود برای
آموزش است. مهندسان فردا چگونه مدارهای الکترونیکی را تحلیل و
طراحی کنند.
This market-leading textbook remains the standard of excellence
and innovation. Built on Adel S. Sedra's and Kenneth C. Smith's
solid pedagogical foundation, the seventh edition of
Microelectronic Circuits is the best yet. In addition
to updated content and coverage designed to reflect changes in
IC technology, the text also provides the most comprehensive,
flexible, accurate, and design-oriented treatment of electronic
circuits available today.
Amply illustrated by a wealth of examples and complemented by
an expanded number of well-designed end-of-chapter problems and
practice exercises, Microelectronic Circuits is the
most current resource available for teaching tomorrow's
engineers how to analyze and design electronic circuits.
PART I - DEVICES AND BASIC CIRCUITS Chapter 1 - Signals and Amplifiers Introduction 1.1 Signals 1.2 Frequency Spectrum of Signals 1.3 Analog and Digital Signals 1.4 Amplifiers 1.4.1 Signal Amplification 1.4.2 Amplifier Circuit Symbol 1.4.3 Voltage Gain 1.4.4 Power Gain and Current Gain 1.4.5 Expressing Gain in Decibels 1.4.6 The Amplifier Power Supplies 1.4.7 Amplifier Saturation 1.4.8 Symbol Convention 1.5 Circuit Models for Amplifiers 1.5.1 Voltage Amplifiers 1.5.2 Cascaded Amplifiers 1.5.3 Other Amplifier Types 1.5.4 Relationships between the Four Amplifier Models 1.5.5 Determining R_i and R_o 1.5.6 Unilateral Models 1.6 Frequency Response of Amplifiers 1.6.1 Measuring the Amplifier Frequency Response 1.6.2 Amplifier Bandwidth 1.6.3 Evaluating the Frequency Response of Amplifiers 1.6.4 Single-Time-Constant Networks 1.6.5 Classification of Amplifiers Based on Frequency Response Summary Problems Chapter 2 - Operational Amplifiers Introduction 2.1 The Ideal Op Amp 2.1.1 The Op-Amp Terminals 2.1.2 Function and Characteristics of the Ideal Op Amp 2.1.3 Differential and Common-Mode Signals 2.2 The Inverting Configuration 2.2.1 The Closed-Loop Gain 2.2.2 Effect of the Finite Open-Loop Gain 2.2.3 Input and Output Resistances 2.2.4 An Important Application—The Weighted Summer 2.3 The Noninverting Configuration 2.3.1 The Closed-Loop Gain 2.3.2 Effect of Finite Open-Loop Gain 2.3.3 Input and Output Resistance 2.3.4 The Voltage Follower 2.4 Difference Amplifiers 2.4.1 A Single-Op-Amp Difference Amplifier 2.4.2 A Superior Circuit—The Instrumentation Amplifier 2.5 Integrators and Differentiators 2.5.1 The Inverting Configuration with General Impedances 2.5.2 The Inverting Integrator 2.5.3 The Op-Amp Differentiator 2.6 DC Imperfections 2.6.1 Offset Voltage 2.6.2 Input Bias and Offset Currents 2.6.3 Effect of V_OS and I_OS on the Operation of the Inverting Integrator 2.7 Effect of Finite Open-Loop Gain and Bandwidth on Circuit Performance 2.7.1 Frequency Dependence of the Open-Loop Gain 2.7.2 Frequency Response of Closed-Loop Amplifiers 2.8 Large-Signal Operation of Op Amps 2.8.1 Output Voltage Saturation 2.8.2 Output Current Limits 2.8.3 Slew Rate 2.8.4 Full-Power Bandwidth Summary Problems Chapter 3 - Semiconductors Introduction 3.1 Intrinsic Semiconductors 3.2 Doped Semiconductors 3.3 Current Flow in Semiconductors 3.3.1 Drift Current 3.3.2 Diffusion Current 3.3.3 Relationship between D and μ 3.4 The pn Junction 3.4.1 Physical Structure 3.4.2 Operation with Open-Circuit Terminals 3.5 The pn Junction with an Applied Voltage 3.5.1 Qualitative Description of Junction Operation 3.5.2 The Current–Voltage Relationship of the Junction 3.5.3 Reverse Breakdown 3.6 Capacitive Effects in the pn Junction 3.6.1 Depletion or Junction Capacitance 3.6.2 Diffusion Capacitance Summary Problems Chapter 4 - Diodes Introduction 4.1 The Ideal Diode 4.1.1 Current–Voltage Characteristic 4.1.2 A Simple Application: The Rectifier 4.1.3 Another Application: Diode Logic Gates 4.2 Terminal Characteristics of Junction Diodes 4.2.1 The Forward-Bias Region 4.2.2 The Reverse-Bias Region 4.2.3 The Breakdown Region 4.3 Modeling the Diode Forward Characteristic 4.3.1 The Exponential Model 4.3.2 Graphical Analysis Using the Exponential Model 4.3.3 Iterative Analysis Using the Exponential Model 4.3.4 The Need for Rapid Analysis 4.3.5 The Constant-Voltage-Drop Model 4.3.6 The Ideal-Diode Model 4.3.7 The Small-Signal Model 4.3.8 Use of the Diode Forward Drop in Voltage Regulation 4.4 Operation in the Reverse Breakdown Region—Zener Diodes 4.4.1 Specifying and Modeling the Zener Diode 4.4.2 Use of the Zener as a Shunt Regulator 4.4.3 Temperature Effects 4.4.4 A Final Remark 4.5 Rectifier Circuits 4.5.1 The Half-Wave Rectifier 4.5.2 The Full-Wave Rectifier 4.5.3 The Bridge Rectifier 4.5.4 The Rectifier with a Filter Capacitor—The Peak Rectifier 4.5.5 Precision Half-Wave Rectifier—The Superdiode 4.6 Limiting and Clamping Circuits 4.6.1 Limiter Circuits 4.6.2 The Clamped Capacitor or DC Restorer 4.6.3 The Voltage Doubler 4.7 Special Diode Types 4.7.1 The Schottky-Barrier Diode (SBD) 4.7.2 Varactors 4.7.3 Photodiodes 4.7.4 Light-Emitting Diodes (LEDs) Summary Problems Chapter 5 - MOS Field-Effect Transistors (MOSFETs) Introduction 5.1 Device Structure and Physical Operation 5.1.1 Device Structure 5.1.2 Operation with Zero Gate Voltage 5.1.3 Creating a Channel for Current Flow 5.1.4 Applying a Small v_DS 5.1.5 Operation as v DS Is Increased 5.1.6 Operation for v_DS ≥ V_OV: Channel Pinch-Off and Current Saturation 5.1.7 The p-Channel MOSFET 5.1.8 Complementary MOS or CMOS 5.1.9 Operating the MOS Transistor in the Subthreshold Region 5.2 Current–Voltage Characteristics 5.2.1 Circuit Symbol 5.2.2 The i_D–v_DS Characteristics 5.2.3 The i_D–v_GS Characteristic 5.2.4 Finite Output Resistance in Saturation 5.2.5 Characteristics of the p-Channel MOSFET 5.3 MOSFET Circuits at DC 5.4 The Body Effect and Other Topics 5.4.1 The Role of the Substrate—The Body Effect 5.4.2 Temperature Effects 5.4.3 Breakdown and Input Protection 5.4.4 Velocity Saturation 5.4.5 The Depletion-Type MOSFET Summary Problems Chapter 6 - Bipolar Junction Transistors (BJTs) Introduction 6.1 Device Structure and Physical Operation 6.1.1 Simplified Structure and Modes of Operation 6.1.2 Operation of the npn Transistor in the Active Mode 6.1.3 Structure of Actual Transistors 6.1.4 Operation in the Saturation Mode 6.1.5 The pnp Transistor 6.2 Current–Voltage Characteristics 6.2.1 Circuit Symbols and Conventions 6.2.2 Graphical Representation of Transistor Characteristics 6.2.3 Dependence of i_C on the Collector Voltage—The Early Effect 6.2.4 An Alternative Form of the Common-Emitter Characteristics 6.3 BJT Circuits at DC 6.4 Transistor Breakdown and Temperature Effects 6.4.1 Transistor Breakdown 6.4.2 Dependence of β on I_C and Temperature Summary Problems Chapter 7 - Transistor Amplifiers Introduction 7.1 Basic Principles 7.1.1 The Basis for Amplifier Operation 7.1.2 Obtaining a Voltage Amplifier 7.1.3 The Voltage-Transfer Characteristic (VTC) 7.1.4 Obtaining Linear Amplification by Biasing the Transistor 7.1.5 The Small-Signal Voltage Gain 7.1.6 Determining the VTC by Graphical Analysis 7.1.7 Deciding on a Location for the Bias Point Q 7.2 Small-Signal Operation and Models 7.2.1 The MOSFET Case 7.2.2 The BJT Case 7.2.3 Summary Tables 7.3 Basic Configurations 7.3.1 The Three Basic Configurations 7.3.2 Characterizing Amplifiers 7.3.3 The Common-Source (CS) and Common-Emitter (CE) Amplifiers 7.3.4 The Common-Source (Common-Emitter) Amplifier with a Source (Emitter) Resistance 7.3.5 The Common-Gate (CG) and the Common-Base (CB) Amplifiers 7.3.6 The Source and Emitter Followers 7.3.7 Summary Tables and Comparisons 7.3.8 When and How to Include the Transistor Output Resistance r_o 7.4 Biasing 7.4.1 The MOSFET Case 7.4.2 The BJT Case 7.5 Discrete-Circuit Amplifiers 7.5.1 A Common-Source (CS) Amplifier 7.5.2 A Common-Emitter (CE) Amplifier 7.5.3 A Common-Emitter Amplifier with an Emitter Resistance R_e 7.5.4 A Common-Base (CB) Amplifier 7.5.5 An Emitter Follower 7.5.6 The Amplifier Frequency Response Summary Problems PART II - INTEGRATED-CIRCUIT AMPLIFIERS Chapter 8 - Building Blocks of Integrated-Circuit Amplifiers Introduction 8.1 IC Design Philosophy 8.2 IC Biasing—Current Sources, Current Mirrors, and Current-Steering Circuits 8.2.1 The Basic MOSFET Current Source 8.2.2 MOS Current-Steering Circuits 8.2.3 BJT Circuits 8.2.4 Small-Signal Operation of Current Mirrors 8.3 The Basic Gain Cell 8.3.1 The CS and CE Amplifiers with Current-Source Loads 8.3.2 The Intrinsic Gain 8.3.3 Effect of the Output Resistance of the Current-Source Load 8.3.4 Increasing the Gain of the Basic Cell 8.4 The Common-Gate and Common-Base Amplifiers 8.4.1 The CG Circuit 8.4.2 Output Resistance of a CS Amplifier with a Source Resistance 8.4.3 The Body Effect 8.4.4 The CB Circuit 8.4.5 Output Resistance of an Emitter-Degenerated CE Amplifier 8.5 The Cascode Amplifier 8.5.1 Cascoding 8.5.2 The MOS Cascode Amplifier 8.5.3 Distribution of Voltage Gain in a Cascode Amplifier 8.5.4 Double Cascoding 8.5.5 The Folded Cascode 8.5.6 The BJT Cascode 8.6 Current-Mirror Circuits with Improved Performance 8.6.1 Cascode MOS Mirrors 8.6.2 The Wilson Current Mirror 8.6.3 The Wilson MOS Mirror 8.6.4 The Widlar Current Souce 8.7 Some Useful Transistor Pairings 8.7.1 The CC–CE, CD–CS, and CD–CE Configurations 8.7.2 The Darlington Configuration 8.7.3 The CC–CB and CD–CG Configurations Summary Problems Chapter 9 - Differential and Multistage Amplifiers Introduction 9.1 The MOS Differential Pair 9.1.1 Operation with a Common-Mode Input Voltage 9.1.2 Operation with a Differential Input Voltage 9.1.3 Large-Signal Operation 9.1.4 Small-Signal Operation 9.1.5 The Differential Amplifier with Current-Source Loads 9.1.6 Cascode Differential Amplifier 9.2 The BJT Differential Pair 9.2.1 Basic Operation 9.2.2 Input Common-Mode Range 9.2.3 Large-Signal Operation 9.2.4 Small-Signal Operation 9.3 Common-Mode Rejection 9.3.1 The MOS Case 9.3.2 The BJT Case 9.4 DC Offset 9.4.1 Input Offset Voltage of the MOS Differential Amplifier 9.4.2 Input Offset Voltage of the Bipolar Differential Amplifier 9.4.3 Input Bias and Offset Currents of the Bipolar Differential Amplifier 9.4.4 A Concluding Remark 9.5 The Differential Amplifier with a Current-Mirror Load 9.5.1 Differential to Single-Ended Conversion 9.5.2 The Current-Mirror-Loaded MOS Differential Pair 9.5.3 Differential Gain of the Current-Mirror-Loaded MOS Pair 9.5.4 The Bipolar Differential Pair with a Current-Mirror Load 9.5.5 Common-Mode Gain and CMRR 9.6 Multistage Amplifiers 9.6.1 A Two-Stage CMOS Op Amp 9.6.2 A Bipolar Op Amp Summary Problems Chapter 10 - Frequency Response Introduction 10.1 Low-Frequency Response of Discrete-Circuit Common-Source and Common-Emitter Amplifiers 10.1.1 The CS Amplifier 10.1.2 The Method of Short-Circuit Time-Constants 10.1.3 The CE Amplifier 10.2 Internal Capacitive Effects and the High-Frequency Model of the MOSFET and the BJT 10.2.1 The MOSFET 10.2.2 The BJT 10.3 High-Frequency Response of the CS and CE Amplifiers 10.3.1 The Common-Source Amplifier 10.3.2 The Common-Emitter Amplifier 10.3.3 Miller’s Theorem 10.3.4 Frequency Response of the CS Amplifier When R_sig Is Low 10.4 Useful Tools for the Analysis of the High-Frequency Response of Amplifiers 10.4.1 The High-Frequency Gain Function 10.4.2 Determining the 3-dB Frequency f_H 10.4.3 The Method of Open-Circuit Time Constants 10.4.4 Application of the Method of Open-Circuit Time Constants to the CS Amplifier 10.4.5 Application of the Method of Open-Circuit Time Constants to the CE Amplifier 10.5 High-Frequency Response of the Common-Gate and Cascode Amplifiers 10.5.1 High-Frequency Response of the CG Amplifier 10.5.2 High-Frequency Response of the MOS Cascode Amplifier 10.5.3 High-Frequency Response of the Bipolar Cascode Amplifier 10.6 High-Frequency Response of the Source and Emitter Followers 10.6.1 The Source-Follower Case 10.6.2 The Emitter-Follower Case 10.7 High-Frequency Response of Differential Amplifiers 10.7.1 Analysis of the Resistively Loaded MOS Amplifier 10.7.2 Analysis of the Current-Mirror-Loaded MOS Amplifier 10.8 Other Wideband Amplifier Configurations 10.8.1 Obtaining Wideband Amplification by Source and Emitter Degeneration 10.8.2 The CD–CS, CC–CE, and CD–CE Configurations 10.8.3 The CC–CB and CD–CG Configurations Summary Problems Chapter 11 - Feedback Introduction 11.1 The General Feedback Structure 11.1.1 Signal-Flow Diagram 11.1.2 The Closed-Loop Gain 11.1.3 The Loop Gain 11.1.4 Summary 11.2 Some Properties of Negative Feedback 11.2.1 Gain Desensitivity 11.2.2 Bandwidth Extension 11.2.3 Interference Reduction 11.2.4 Reduction in Nonlinear Distortion 11.3 The Feedback Voltage Amplifier 11.3.1 The Series–Shunt Feedback Topology 11.3.2 Examples of Series–Shunt Feedback Amplifiers 11.3.3 Analysis of the Feedback Voltage Amplifier Utilizing the Loop Gain 11.3.4 A Final Remark 11.4 Systematic Analysis of Feedback Voltage Amplifiers 11.4.1 The Ideal Case 11.4.2 The Practical Case 11.5 Other Feedback Amplifier Types 11.5.1 Basic Principles 11.5.2 The Feedback Transconductance Amplifier (Series–Series) 11.5.3 The Feedback Transresistance Amplifier (Shunt–Shunt) 11.5.4 The Feedback Current Amplifier (Shunt–Series) 11.6 Summary of the Feedback Analysis Method 11.7 The Stability Problem 11.7.1 Transfer Function of the Feedback Amplifier 11.7.2 The Nyquist Plot 11.8 Effect of Feedback on the Amplifier Poles 11.8.1 Stability and Pole Location 11.8.2 Poles of the Feedback Amplifier 11.8.3 Amplifier with a Single-Pole Response 11.8.4 Amplifier with a Two-Pole Response 11.8.5 Amplifiers with Three or More Poles 11.9 Stability Study Using Bode Plots 11.9.1 Gain and Phase Margins 11.9.2 Effect of Phase Margin on Closed-Loop Response 11.9.3 An Alternative Approach for Investigating Stability 11.10 Frequency Compensation 11.10.1 Theory 11.10.2 Implementation 11.10.3 Miller Compensation and Pole Splitting Summary Problems Chapter 12 - Output Stages and Power Amplifiers Introduction 12.1 Classification of Output Stages 12.2 Class A Output Stage 12.2.1 Transfer Characteristic 12.2.2 Signal Waveforms 12.2.3 Power Dissipation 12.2.4 Power-Conversion Efficiency 12.3 Class B Output Stage 12.3.1 Circuit Operation 12.3.2 Transfer Characteristic 12.3.3 Power-Conversion Efficiency 12.3.4 Power Dissipation 12.3.5 Reducing Crossover Distortion 12.3.6 Single-Supply Operation 12.4 Class AB Output Stage 12.4.1 Circuit Operation 12.4.2 Output Resistance 12.5 Biasing the Class AB Circuit 12.5.1 Biasing Using Diodes 12.5.2 Biasing Using the V BE Multiplier 12.6 Variations on the Class AB Configuration 12.6.1 Use of Input Emitter Followers 12.6.2 Use of Compound Devices 12.6.3 Short-Circuit Protection 12.6.4 Thermal Shutdown 12.7 CMOS Class AB Output Stages 12.7.1 The Classical Configuration 12.7.2 An Alternative Circuit Utilizing Common-Source Transistors 12.8 IC Power Amplifiers 12.8.1 A Fixed-Gain IC Power Amplifier 12.8.2 The Bridge Amplifier 12.9 Class D Power Amplifiers 12.10 Power Transistors 12.10.1 Packages and Heat Sinks 12.10.2 Power BJTs 12.10.3 Power MOSFETs 12.10.4 Thermal Considerations Summary Problems Chapter 13 - Operational-Amplifier Circuits Introduction 13.1 The Two-Stage CMOS Op Amp 13.1.1 The Circuit 13.1.2 Input Common-Mode Range and Output Swing 13.1.3 DC Voltage Gain 13.1.4 Common-Mode Rejection Ratio (CMRR) 13.1.5 Frequency Response 13.1.6 Slew Rate 13.1.7 Power-Supply Rejection Ratio (PSRR) 13.1.8 Design Trade-Offs 13.1.9 A Bias Circuit for the Two-Stage CMOS Op Amp 13.2 The Folded-Cascode CMOS Op Amp 13.2.1 The Circuit 13.2.2 Input Common-Mode Range and Output Swing 13.2.3 Voltage Gain 13.2.4 Frequency Response 13.2.5 Slew Rate 13.2.6 Increasing the Input Common-Mode Range: Rail-to-Rail Input Operation 13.2.7 Increasing the Output Voltage Range: The Wide-Swing Current Mirror 13.3 The 741 BJT Op Amp 13.3.1 The 741 Circuit 13.3.2 DC Analysis 13.3.3 Small-Signal Analysis 13.3.4 Frequency Response 13.3.5 Slew Rate 13.4 Modern Techniques for the Design of BJT Op Amps 13.4.1 Special Performance Requirements 13.4.2 Bias Design 13.4.3 Design of the Input Stage to Obtain Rail-to-Rail V ICM 13.4.4 Common-Mode Feedback to Control the DC Voltage at the Output of the Input Stage 13.4.5 Output-Stage Design for Near Rail-to-Rail Output Swing 13.4.6 Concluding Remark Summary Problems PART III - DIGITAL INTEGRATED CIRCUITS Chapter 14 - CMOS Digital Logic Circuits Introduction 14.1 CMOS Logic-Gate Circuits 14.1.1 Switch-Level Transistor Model 14.1.2 The CMOS Inverter 14.1.3 General Structure of CMOS Logic 14.1.4 The Two-Input NOR Gate 14.1.5 The Two-Input NAND Gate 14.1.6 A Complex Gate 14.1.7 Obtaining the PUN from the PDN and Vice Versa 14.1.8 The Exclusive-OR Function 14.1.9 Summary of the Synthesis Method 14.2 Digital Logic Inverters 14.2.1 The Voltage-Transfer Characteristic (VTC) 14.2.2 Noise Margins 14.2.3 The Ideal VTC 14.2.4 Inverter Implementation 14.3 The CMOS Inverter 14.3.1 Circuit Operation 14.3.2 The Voltage-Transfer Characteristic (VTC) 14.3.3 The Situation When Q_N and Q_P Are Not Matched 14.4 Dynamic Operation of the CMOS Inverter 14.4.1 Propagation Delay 14.4.2 Determining the Propagation Delay of the CMOS Inverter 14.4.3 Determining the Equivalent Load Capacitance C 14.5 Transistor Sizing 14.5.1 Inverter Sizing 14.5.2 Transistor Sizing in CMOS Logic Gates 14.5.3 Effects of Fan-In and Fan-Out on Propagation Delay 14.5.4 Driving a Large Capacitance 14.6 Power Dissipation 14.6.1 Sources of Power Dissipation 14.6.2 Power–Delay and Energy–Delay Products Summary Problems Chapter 15 - Advanced Topics in Digital Integrated-Circuit Design Introduction 15.1 Implications of Technology Scaling: Issues in Deep-Submicron Design 15.1.1 Silicon Area 15.1.2 Scaling Implications 15.1.3 Velocity Saturation 15.1.4 Subthreshold Conduction 15.1.5 Temperature, Voltage, and Process Variations 15.1.6 Wiring: The Interconnect 15.2 Digital IC Technologies, Logic-Circuit Families, and Design Methodologies 15.2.1 Digital IC Technologies and Logic-Circuit Families 15.2.2 Styles for Digital System Design 15.2.3 Design Abstraction and Computer Aids 15.3 Pseudo-NMOS Logic Circuits 15.3.1 The Pseudo-NMOS Inverter 15.3.2 Static Characteristics 15.3.3 Derivation of the VTC 15.3.4 Dynamic Operation 15.3.5 Design 15.3.6 Gate Circuits 15.3.7 Concluding Remarks 15.4 Pass-Transistor Logic Circuits 15.4.1 An Essential Design Requirement 15.4.2 Operation with NMOS Transistors as Switches 15.4.3 Restoring the Value of V_OH to V_DD 15.4.4 The Use of CMOS Transmission Gates as Switches 15.4.5 Examples of Pass-Transistor Logic Circuits 15.4.6 A Final Remark 15.5 Dynamic MOS Logic Circuits 15.5.1 The Basic Principle 15.5.2 Nonideal Effects 15.5.3 Domino CMOS Logic 15.5.4 Concluding Remarks 15.6 Bipolar and BiCMOS Logic Circuits 15.6.1 Emitter-Coupled Logic (ECL) 15.6.2 BiCMOS Digital Circuits Summary Problems Chapter 16 - Memory Circuits Introduction 16.1 Latches and Flip-Flops 16.1.1 The Latch 16.1.2 The SR Flip-Flop 16.1.3 CMOS Implementation of SR Flip-Flops 16.1.4 A Simpler CMOS Implementation of the Clocked SR Flip-Flop 16.1.5 D Flip-Flop Circuits 16.2 Semiconductor Memories: Types and Architectures 16.2.1 Memory-Chip Organization 16.2.2 Memory-Chip Timing 16.3 Random-Access Memory (RAM) Cells 16.3.1 Static Memory (SRAM) Cell 16.3.2 Dynamic Memory (DRAM) Cell 16.4 Sense Amplifiers and Address Decoders 16.4.1 The Sense Amplifier 16.4.2 The Row-Address Decoder 16.4.3 The Column-Address Decoder 16.4.4 Pulse-Generation Circuits 16.5 Read-Only Memory (ROM) 16.5.1 A MOS ROM 16.5.2 Mask Programmable ROMs 16.5.3 Programmable ROMs (PROMs, EPROMs, and Flash) 16.6 CMOS Image Sensors Summary Problems PART IV - FILTERS AND OSCILLATORS Chapter 17 - Filters and Tuned Amplifiers Introduction 17.1 Filter Transmission, Types, and Specification 17.1.1 Filter Transmission 17.1.2 Filter Types 17.1.3 Filter Specification 17.2 The Filter Transfer Function 17.3 Butterworth and Chebyshev Filters 17.3.1 The Butterworth Filter 17.3.2 The Chebyshev Filter 17.4 First-Order and Second-Order Filter Functions 17.4.1 First-Order Filters 17.4.2 Second-Order Filter Functions 17.5 The Second-Order LCR Resonator 17.5.1 The Resonator Natural Modes 17.5.2 Realization of Transmission Zeros 17.5.3 Realization of the Low-Pass Function 17.5.4 Realization of the High-Pass Function 17.5.5 Realization of the Bandpass Function 17.5.6 Realization of the Notch Functions 17.5.7 Realization of the All-Pass Function 17.6 Second-Order Active Filters Based on Inductor Replacement 17.6.1 The Antoniou Inductance-Simulation Circuit 17.6.2 The Op Amp–RC Resonator 17.6.3 Realization of the Various Filter Types 17.6.4 The All-Pass Circuit 17.7 Second-Order Active Filters Based on the Two-Integrator-Loop Topology 17.7.1 Derivation of the Two-Integrator-Loop Biquad 17.7.2 Circuit Implementation 17.7.3 An Alternative Two-Integrator-Loop Biquad Circuit 17.7.4 Final Remarks 17.8 Single-Amplifier Biquadratic Active Filters 17.8.1 Synthesis of the Feedback Loop 17.8.2 Injecting the Input Signal 17.8.3 Generation of Equivalent Feedback Loops 17.9 Sensitivity 17.10 Transconductance-C Filters 17.10.1 Methods for IC Filter Implementation 17.10.2 Transconductors 17.10.3 Basic Building Blocks 17.10.4 Second-Order G m −C Filter 17.11 Switched-Capacitor Filters 17.11.1 The Basic Principle 17.11.2 Practical Circuits 17.11.3 Final Remarks 17.12 Tuned Amplifiers 17.12.1 The Basic Principle 17.12.2 Inductor Losses 17.12.3 Use of Transformers 17.12.4 Amplifiers with Multiple Tuned Circuits 17.12.5 The Cascode and the CC–CB Cascade 17.12.6 Synchronous Tuning and Stagger Tuning Summary Problems Chapter 18 - Signal Generators and Waveform-Shaping Circuits Introduction 18.1 Basic Principles of Sinusoidal Oscillators 18.1.1 The Oscillator Feedback Loop 18.1.2 The Oscillation Criterion 18.1.3 Analysis of Oscillator Circuits 18.1.4 Nonlinear Amplitude Control 18.1.5 A Popular Limiter Circuit for Amplitude Control 18.2 Op Amp–RC Oscillator Circuits 18.2.1 The Wien-Bridge Oscillator 18.2.2 The Phase-Shift Oscillator 18.2.3 The Quadrature Oscillator 18.2.4 The Active-Filter-Tuned Oscillator 18.2.5 A Final Remark 18.3 LC and Crystal Oscillators 18.3.1 The Colpitts and Hartley Oscillators 18.3.2 The Cross-Coupled LC Oscillator 18.3.3 Crystal Oscillators 18.4 Bistable Multivibrators 18.4.1 The Feedback Loop 18.4.2 Transfer Characteristic of the Bistable Circuit 18.4.3 Triggering the Bistable Circuit 18.4.4 The Bistable Circuit as a Memory Element 18.4.5 A Bistable Circuit with Noninverting Transfer Characteristic 18.4.6 Application of the Bistable Circuit as a Comparator 18.4.7 Making the Output Levels More Precise 18.5 Generation of Square and Triangular Waveforms Using Astable Multivibrators 18.5.1 Operation of the Astable Multivibrator 18.5.2 Generation of Triangular Waveforms 18.6 Generation of a Standardized Pulse: The Monostable Multivibrator 18.7 Integrated-Circuit Timers 18.7.1 The 555 Circuit 18.7.2 Implementing a Monostable Multivibrator Using the 555 IC 18.7.3 An Astable Multivibrator Using the 555 IC 18.8 Nonlinear Waveform-Shaping Circuits 18.8.1 The Breakpoint Method 18.8.2 The Nonlinear-Amplification Method Summary Problems APPENDICES APPENDIX A - VLSI FABRICATION TECHNOLOGY Introduction A.1 IC Fabrication Steps A.1.1 Silicon Wafers A.1.2 Oxidation A.1.3 Photolithography A.1.4 Etching A.1.5 Diffusion A.1.6 Ion Implantation A.1.7 Chemical Vapor Deposition A.1.8 Metallization A.1.9 Packaging A.2 VLSI Processes A.2.1 Twin-Well CMOS Process A.2.2 Integrated Devices A.2.3 MOSFETs A.2.4 Resistors A.2.5 Capacitors A.2.6 pn Junction Diodes A.2.7 BiCMOS Process A.2.8 Lateral pnp Transistor A.2.9 p-Base and Pinched-Base Resistors A.2.10 SiGe BiCMOS Process A.3 VLSI Layout A.4 Beyond 20nm Technology Summary Bibliography APPENDIX B - SPICE DEVICE MODELS AND DESIGN SIMULATION EXAMPLES USING PSPICE AND MULTISIM Introduction B.1 SPICE Device Models B.1.1 The Op-Amp Model Linear Macromodel Nonlinear Macromodel B.1.2 The Diode Model B.1.3 The Zener Diode Model B.1.4 MOSFET Models MOSFET Model Parameters MOSFET Diode Parameters MOSFET Dimension and Gate-Capacitance Parameters B.1.5 The BJT Model The SPICE Gummel–Poon Model of the BJT The SPICE BJT Model Parameters The BJT Model Parameters BF and BR in SPICE B.2 PSpice Examples APPENDIX C - TWO-PORT NETWORK PARAMETERS Introduction C.1 Characterization of Linear Two-Port Networks C.1.1 y Parameters C.1.2 z C.1.3 h C.1.4 g C.1.5 Equivalent-Circuit Representation APPENDIX D - SOME USEFUL NETWORK THEOREMS Introduction D.1 Thévenin’s Theorem D.2 Norton’s Theorem D.3 Source-Absorption Theorem APPENDIX E - SINGLE-TIME-CONSTANT CIRCUITS Introduction E.1 Evaluating the Time Constant E.1.1 Rapid Evaluation of τ E.2 Classification of STC Circuits E.3 Frequency Response of STC Circuits E.3.1 Low-Pass Circuits E.3.2 High-Pass Circuits E.4 Step Response of STC Circuits E.4.1 Low-Pass Circuits E.4.2 High-Pass Circuits E.5 Pulse Response of STC Circuits E.5.1 Low-Pass Circuits E.5.2 High-Pass Circuits APPENDIX F - s-DOMAIN ANALYSIS: POLES, ZEROS, AND BODE PLOTS F.1 Poles and Zeros F.2 First-Order Functions F.3 Bode Plots F.4 An Important Remark APPENDIX G - COMPARISON OF THE MOSFET AND THE BJT APPENDIX G - COMPARISON OF THE MOSFET AND THE BJT G.1 Typical Values of MOSFET Parameters G.2 Typical Values of IC BJT Parameters G.3 Comparison of Important Characteristic G.3.1 Operating Conditions G.3.2 Current–Voltage Characteristics G.3.3 Low-Frequency Small-Signal Models G.3.4 The Transconductance G.3.5 Output Resistance G.3.6 Intrinsic Gain G.3.7 High-Frequency Operation G.3.8 Design Parameters G.4 Combining MOS and Bipolar Transistors—BiCMOS Circuits G.5 Validity of the Square-Law MOSFET Model APPENDIX H - DESIGN OF STAGGER-TUNED AMPLIFIERS APPENDIX I - BIBLIOGRAPHY HISTORY OF ELECTRONICS GENERAL TEXTBOOKS ON ELECTRONIC CIRCUITS CIRCUIT AND SYSTEM ANALYSIS DEVICES AND IC FABRICATION OPERATIONAL AMPLIFIERS ANALOG CIRCUITS DIGITAL CIRCUITS FILTERS AND TUNED AMPLIFIERS SPICE APPENDIX J - STANDARD RESISTANCEVALUES AND UNIT PREFIXES APPENDIX K - TYPICAL PARAMETERVALUES FOR IC DEVICES FABRICATED IN CMOS AND BIPOLAR PROCESSES APPENDIX L - ANSWERS TO SELECTED PROBLEMS INDEX BONUS TEXT TOPICS 9.7 Data Converters—An Introduction 9.7.1 Digital Processing of Signals 9.7.2 Sampling of Analog Signals 9.7.3 Signal Quantization 9.7.4 The A/D and D/A Converters as Functional Blocks 9.8 D/A Converter Circuits 9.8.1 Basic Circuit Using Binary-Weighted Resistors 9.8.2 R-2R Ladders 9.8.3 A Practical Circuit Implementation 9.8.4 Current Switches 9.9 A/D Converter Circuits 9.9.1 The Feedback-Type Converter 9.9.2 The Dual-Slope A/D Converter 9.9.3 The Parallel or Flash Converter 9.9.4 The Charge-Redistribution Converter 9.10 SPICE Simulation Example 5.11 The Junction Field-Effect Transistor (JFET) Device Structure Physical Operation Current–Voltage Characteristics The p-Channel JFET The JFET Small-Signal Model 5.12 Gallium Arsenide (GaAs) Devices—The MESFET The Basic GaAs Devices Device Operation Device Characteristics and Models 6.8 GaAs Amplifiers Current Sources A Cascode Current Source Increasing the Output Resistance by Bootstrapping A Simple Cascode Configuration–The Composite Transistor Differential Amplifiers 14.8 Gallium-Arsenide Digital Circuits Direct-Coupled FET Logic (DCFL) Logic Gates Using Depletion MESFETs Schottky Diode FET Logic (SDFL) Buffered FET Logic (BFL) 14.3 Transistor-Transistor Logic (TTL or T2L) Evolution of TTL from DTL Reasons for the Slow Response of DTL Input Circuit of the TTL Gate Output Circuit of the TTL Gate The Complete Circuit of the TTL Gate Analysis When the Input Is High Analysis When the Input Is Low Function of the 130-Ω Resistance 14.4 Characteristics of Standard TTL Transfer Characteristic Manufacturers’ Specifications Propagation Delay Dynamic Power Dissipation The TTL NAND Gate Other TTL Logic Circuits 14.5 TTL Families With Improved Performance Schottky TTL Low-Power Schottky TTL Further-Improved TTL Families 15.4 Emitter-Coupled Logic (ECL) 15.4.1 The Basic Principle 15.4.2 ECL Families 15.4.3 The Basic Gate Circuit 15.4.4 Voltage-Transfer Characteristics The OR Transfer Curve Noise Margins The NOR Transfer Curve Manufacturers’ Specifications 15.4.5 Fan-Out 15.4.6 Speed of Operation and Signal Transmission 15.4.7 Power Dissipation 15.4.8 Thermal Effects 15.4.9 The Wired-OR Capability 15.4.10 Final Remarks 15.5 BiCMOS Digital Circuits 15.5.1 The BiCMOS Inverter 15.5.2 Dynamic Operation 15.5.3 BiCMOS Logic Gates 18.9 Precision Rectifier Circuits 18.9.1 Precision Half-Wave Rectifier: The “Superdiode” 18.9.2 An Alternative Circuit 18.9.3 An Application: Measuring AC Voltages 18.9.4 Precision Full-Wave Rectifier 18.9.5 A Precision Bridge Rectifier for Instrumentation Applications 18.9.6 Precision Peak Rectifiers 18.9.7 A Buffered Precision Peak Detector 18.9.8 A Precision Clamping Circuit