دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Francesco Fioranelli (editor), Hugh Griffiths (editor), Matthew Ritchie (editor), Alessio Balleri (editor) سری: ISBN (شابک) : 1785619330, 9781785619335 ناشر: Institution of Engineering and Technology سال نشر: 2020 تعداد صفحات: 423 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 42 مگابایت
در صورت تبدیل فایل کتاب Micro-Doppler Radar and its Applications (Radar, Sonar and Navigation) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب رادار میکرو داپلر و کاربردهای آن (رادار، سونار و ناوبری) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب آخرین پیشرفتها در امضاهای میکرو داپلر راداری و تشخیص غیرهمکاری اهداف متحرک را برای محققان و دانشجویان پیشرفته سیستمهای راداری پوشش میدهد. امضاهای میکرو داپلر یک موضوع بسیار گسترده با کاربرد در مراقبت های بهداشتی، امنیت و نظارت است. این کتاب که توسط محققان برجسته در این زمینه ویرایش شده است شامل مجموعه ای از فصل ها با مشارکت گروه های مختلف نویسندگان متخصص بین المللی در موضوعات خود است. رویکردهای رادار غیرفعال برای مراقبت های بهداشتی؛ روش های پراکنده برای تشخیص و طبقه بندی میکرو داپلر. شبکه های عصبی عمیق برای طبقه بندی امضای میکرو داپلر رادار. طبقه بندی پرسنل برای نظارت بر زمین؛ سنجش چندوجهی برای زندگی کمکی با استفاده از رادار. تجزیه و تحلیل میکرو داپلر اهداف بالستیک؛ هواپیماهای بدون سرنشین کوچک و نشانه های پرنده به عنوان اهداف در حال ظهور. توسعه سخت افزار و کاربردهای رادارهای قابل حمل FMCW؛ رادار دیجیتال-IF CW داپلر و سنجش مراقبت های بهداشتی بدون تماس آن. مولفه اصلی هنجار L1 و تجزیه و تحلیل متمایز امضاهای میکرو داپلر برای تشخیص فعالیت های انسانی در فضای داخلی. استخراج و تجزیه و تحلیل امضای میکرو داپلر برای کاربرد خودرو. در نهایت، ویراستاران یک فصل کوتاه پایانی نوشته اند که یک نمای کلی از این زمینه را گرد هم می آورد و روندهای احتمالی آینده را مورد بحث قرار می دهد.
This book covers the latest developments in radar micro-Doppler signatures and non-cooperative recognition of moving targets, for researchers and advanced students of radar systems. Micro-Doppler signatures is a very broad topic with applications in healthcare, security and surveillance. Edited by leading researchers in the field, the book consists of a series of chapters with contributions from different groups of authors who are international experts on their topics.
The following topics are covered: multistatic radar micro-Doppler; passive radar approaches for healthcare; sparsity-driven methods for micro-Doppler detection and classification; deep neural networks for radar micro-Doppler signature classification; classification of personnel for ground-based surveillance; multimodal sensing for assisted living using radar; micro-Doppler analysis of ballistic targets; small drones and bird signatures as emerging targets; hardware development and applications of portable FMCW radars; digital-IF CW Doppler radar and its contactless healthcare sensing; L1-norm principal component and discriminant analyses of micro-Doppler signatures for indoor human activity recognition; and micro-Doppler signature extraction and analysis for automotive application. Finally, the editors have written a concluding short chapter that brings together an overview of the field and discusses likely future trends.
Cover Contents About the editors List of reviewers Preface 1 Multistatic radar micro-Doppler 1.1 Introduction 1.2 Bistatic and multistatic radar properties 1.3 Description of the radars and experimental setups 1.4 Analysis of multistatic radar data 1.4.1 Micro-Doppler signatures 1.4.2 Feature diversity for multistatic radar systems 1.4.3 Multiple personnel for unarmed/armed classification 1.4.4 Simple neural networks for multistatic radar data 1.4.5 Personnel recognition using multistatic radar data 1.4.6 Multistatic drone micro-Doppler classification 1.5 Concluding remarks Acknowledgements References 2 Passive radar approaches for healthcare 2.1 Introduction 2.1.1 Ambient assisted living context 2.1.2 Sensor technologies in healthcare 2.2 Passive radar technology for human activity monitoring 2.2.1 Current radar technology research with application to healthcare 2.2.2 Passive radar technologies for activity monitoring 2.3 Human activity recognition using Wi-Fi passive radars 2.3.1 Fundamentals of Wi-Fi passive radars 2.3.2 Micro-Doppler activity recognition 2.3.2.1 Signal model 2.3.2.2 Micro-Doppler feature extraction 2.3.2.3 Classification methods 2.3.2.4 Experiments and results 2.3.2.5 Summary 2.3.3 UsingWi-Fi CSI informatics to monitor human activities 2.3.3.1 From micro-Doppler (to channel state information (CSI) 2.3.3.2 Wi-Fi CSI signal capture and parameter extraction 2.3.3.1 From micro-Doppler (μD) to channel state information (CSI) 2.3.3.3 Wi-Fi CSI-enabled healthcare applications 2.4 The future for passive radar in healthcare 2.5 Conclusions References 3 Sparsity-driven methods for micro-Doppler detection and classification 3.1 Introduction 3.2 Fundamentals of sparse signal recovery 3.2.1 Signal model 3.2.2 Typical algorithms for sparse signal recovery 3.2.2.1 Convex optimisation 3.2.2.2 Bayesian sparse signal recovery 3.2.2.3 Greedy algorithms 3.2.3 Dictionary learning 3.3 Sparsity-driven micro-Doppler feature extraction for dynamic hand gesture recognition 3.3.1 Measurement data collection 3.3.2 Sparsity-driven dynamic hand gesture recognition 3.3.2.1 Extracting time–frequency trajectory 3.3.2.2 Clustering for central time–frequency trajectory 3.3.2.3 Nearest neighbour classifier based on modified Hausdorff distance 3.3.3 Experimental results 3.3.3.1 The recognition accuracy versus the sparsity 3.3.3.2 The recognition accuracy versus the size of training dataset 3.3.3.3 Recognition accuracy for unknown personnel targets 3.3.3.4 Computational costs considerations 3.4 Sparsity-based dictionary learning of human micro-Dopplers 3.4.1 Measurement data collection 3.4.2 Single channel source separation of micro-Dopplers from multiple movers 3.4.3 Target classification based on dictionaries 3.5 Conclusions References 4 Deep neural networks for radar micro-Doppler signature classification 4.1 Radar signal model and preprocessing 4.1.1 2D Input representations 4.1.2 3D Input representations 4.1.3 Data preprocessing 4.1.3.1 Dimensionality reduction 4.1.3.2 Mitigation of clutter, interference, and noise 4.2 Classification with data-driven learning 4.2.1 Principal component analysis 4.2.2 Genetic algorithm-optimised frequency-warped cepstral coefficients 4.2.3 Autoencoders 4.2.4 Convolutional neural networks 4.2.5 Convolutional autoencoders 4.3 The radar challenge: training with few data samples 4.3.1 Transfer learning from optical imagery 4.3.2 Synthetic signature generation from MOCAP data 4.3.3 Synthetic signature generation using adversarial learning 4.3.3.1 Case study: auxiliary conditional GANs 4.3.3.2 Kinematic fidelity ofACGAN-synthesised signatures 4.3.3.3 Diversity ofACGAN-synthesised signatures 4.3.3.4 PCA-based kinematic sifting algorithm 4.4 Performance comparison of DNN architectures 4.5 RNNs and sequential classification References 5 Classification of personnel for ground-based surveillance 5.1 Introduction 5.2 Modelling and measuring human motion 5.2.1 Human gait 5.2.1.1 Human walking model 5.2.1.2 Human running model 5.2.1.3 Other gait models 5.2.2 Measuring the signature of human gait 5.2.2.1 Micro-Doppler signature 5.2.3 Visualisation of the micro-Doppler signature 5.2.4 Motion capturing activities on human motion 5.3 Model-driven classification 5.3.1 Introduction to model-driven classification methods 5.3.2 Results of model-based classification 5.3.3 Particle-filter-based techniques for human gait classification and parameter estimation 5.3.3.1 Particle filter 5.3.3.2 Human gait implementation 5.3.3.3 Classification and parameters estimation results 5.3.3.4 Conclusion 5.4 Data-driven classification 5.4.1 Deep supervised learning for human gait classification 5.4.1.1 Convolutional neural networks 5.4.1.2 Recurrent neural networks 5.4.2 Deep unsupervised learning for human gait classification 5.4.2.1 Generative Adversarial Networks 5.4.2.2 AdversarialAutoencoders 5.4.3 Conclusion 5.5 Discussion References 6 Multimodal sensing for assisted living using radar 6.1 Sensing for assisted living: fundamentals 6.1.1 Radar signal processing: spectrograms 6.1.2 Wearable sensors: basic information 6.2 Feature extraction for individual sensors 6.2.1 Features from radar data 6.2.1.1 Automatic feature extraction for radar 6.2.1.2 Handcrafted features 6.2.2 Features from wearable sensors 6.2.3 Classifiers 6.3 Multi-sensor fusion 6.3.1 Principles and approaches of sensor fusion 6.3.2 Feature selection 6.4 Multimodal activity classification for assisted living: some experimental results 6.4.1 Experimental setup 6.4.2 Heterogeneous sensor fusion: classification results for multimodal sensing approach 6.4.2.1 Magnetic sensor and radar results 6.4.2.2 IMU and radar results 6.5 More cases of multimodal information fusion 6.5.1 Sensor fusion with same sensor: multiple radar sensors 6.6 Conclusions References 7 Micro-Doppler analysis of ballistic targets 7.1 Introduction 7.2 Radar return model at radio frequency 7.2.1 Cone 7.2.1.1 Cone plus fins 7.2.2 Cylinder 7.2.3 Sphere 7.3 Laboratory experiment 7.4 Classification framework 7.4.1 Feature vector extraction 7.4.1.1 ACVD-based feature vector approach 7.4.1.2 2D Signature-based feature vectors 7.4.2 Classifier 7.5 Performance analysis 7.5.1 ACVD approach 7.5.2 pZ Moments approach 7.5.3 Kr moments approach 7.5.4 2D Gabor filter approach 7.5.5 Performance in the presence of the booster 7.5.6 Average running time 7.6 Summary References 8 Signatures of small drones and birds as emerging targets 8.1 Introduction 8.1.1 Classes and configuration of UAVs 8.1.2 Literature review 8.2 Electromagnetic predictions of birds and UAVs 8.2.1 Electromagnetic properties, size and shape 8.2.2 RCS predictions 8.3 Target analysis using radar measurements 8.3.1 Body RCS 8.3.2 Rotor RCS 8.3.3 Maximum CPI 8.3.4 Micro-Doppler analysis 8.3.5 Micro-Doppler analysis on polarimetric data 8.4 Radar system considerations 8.4.1 Carrier frequency and polarisation 8.4.2 Bandwidth 8.4.3 Waveform and coherency 8.4.4 Pulse repetition frequency 8.4.5 Pencil-beam or ubiquitous radar 8.5 Classification methods 8.6 Conclusion Acronyms References 9 Hardware development and applications of portable FMCW radars 9.1 FMCW radar fundamentals 9.2 Radar transceiver 9.2.1 Transmitter 9.2.2 Receiver 9.3 Antenna and antenna array 9.3.1 Beamforming 9.3.2 Two-way pattern and MIMO 9.4 Radar link budget analysis 9.5 FMCW radar signal processing 9.5.1 Range processing 9.5.2 Range-Doppler processing 9.5.3 Micro-Doppler 9.6 Applications of micro-Doppler effects 9.6.1 Gesture recognition 9.6.2 Fall detection 9.6.3 Human activity categorising 9.7 Summary References 10 Digital-IF CW Doppler radar and its contactless healthcare sensing 10.1 Principles of digital-IF Doppler radar 10.2 Overview of RF layer 10.3 Implementation of digital-IF layer 10.3.1 Direct IF sampling 10.3.2 Digital quadrature demodulation 10.3.3 Decimation 10.4 DC offset calibration technique 10.5 Applications to healthcare sensing 10.5.1 Contactless beat-to-beat BP estimation using Doppler radar 10.5.2 Multi-sensor-based sleep-stage classification 10.6 Summary References 11 L1-norm principal component and discriminant analyses of micro-Doppler signatures for indoor human activity recognition 11.1 Introduction 11.2 Radar signal model 11.3 L1-PCA-based classification 11.3.1 L1-norm PCA 11.3.2 L1-PCA through bit flipping 11.3.3 Classifier 11.3.4 Illustrative example 11.4 L1-LDA-based activity classification 11.4.1 Problem formulation 11.4.2 L1-LDA algorithm 11.4.3 Classifier 11.4.4 Illustrative example 11.5 Discussion 11.6 Conclusion References 12 Micro-Doppler signature extraction and analysis for automotive application 12.1 Introduction and state of the art 12.2 Micro-Doppler analysis in automotive radar 12.2.1 Target detection techniques 12.2.2 Tracking techniques 12.2.3 Track-based spectrogram extraction 12.2.4 Spectrogram processing 12.2.5 Feature extraction and classification 12.3 Experimental validation 12.3.1 Experimental radar system 12.3.2 Experimental set-up 12.3.3 Processing 12.3.3.1 Classification results 12.4 Practicality discussion 12.5 Conclusion References Conclusion Index Back Cover