دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.]
نویسندگان: Samir Mekid
سری:
ISBN (شابک) : 1119721733, 9781119721734
ناشر: Wiley-ASME Press Series
سال نشر: 2021
تعداد صفحات: 400
[397]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 18 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Metrology and Instrumentation: Practical Applications for Engineering and Manufacturing (Wiley-ASME Press Series) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مترولوژی و ابزار دقیق: کاربردهای عملی برای مهندسی و تولید (سری مطبوعات Wiley-ASME) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
اندازهشناسی و ابزار دقیق: کاربردهای عملی برای مهندسی و ساخت به دانشآموزان و متخصصان پایهای در دسترس در تکنیکهای اندازهشناسی، ابزارآلات و استانداردهای حاکم مورد استفاده در مهندسی مکانیک و ساخت میدهد. کتاب با مروری بر واحدهای اندازهشناسی و مقیاس آغاز میشود، سپس به توضیح موضوعاتی مانند منابع خطا، سیستمهای کالیبراسیون، عدم قطعیت، و سیستمهای اندازهگیری ابعادی، مکانیکی و ترمودینامیکی میپردازد. فصلی درباره انباشتههای تلورانس GD&T، ASME Y14.5-2018، و استاندارد ISO برای تلورانسهای عمومی را پوشش میدهد، در حالی که فصلی در مورد اندازهگیریهای دیجیتال، اندازهشناسی را به برنامههای جدیدتر صنعت 4.0 متصل میکند.
Metrology and Instrumentation: Practical Applications for Engineering and Manufacturing provides students and professionals with an accessible foundation in the metrology techniques, instruments, and governing standards used in mechanical engineering and manufacturing. The book opens with an overview of metrology units and scale, then moves on to explain topics such as sources of error, calibration systems, uncertainty, and dimensional, mechanical, and thermodynamic measurement systems. A chapter on tolerance stack-ups covers GD&T, ASME Y14.5-2018, and the ISO standard for general tolerances, while a chapter on digital measurements connects metrology to newer, Industry 4.0 applications.
Cover Title Page Copyright Contents Preface Acknowledgments About the Author Chapter 1 Fundamental Units and Constants in Metrology 1.1 Introduction 1.2 Current Definitions of the Main SI Units 1.3 New Definition of Seven Base Units of the SI 1.4 Derived International System (SI) Units 1.5 SI Conversion 1.6 Fundamental Constants 1.7 Common Measurements 1.8 Principles and Practices of Traceability 1.8.1 Definition of Traceability 1.8.2 Accreditation and Conformity Assessment Multiple Choice Questions of this Chapter References Chapter 2 Scales of Metrology 2.1 Introduction to Practical Metrology across All Scales 2.2 Nanometrology 2.2.1 Introduction and Need in Industry 2.2.2 Definition of Nanometrology 2.2.3 Importance of Nanometrology in Science and Technology 2.3 Standards 2.4 Micrometrology 2.4.1 Introduction and Need in Industry 2.4.2 Definition of Micrometrology 2.4.3 Examples of Micrometrology of Microparts 2.5 Macroscale Metrology 2.5.1 Standards 2.6 Large‐Scale Metrology and Large‐Volume Metrology 2.6.1 Introduction and Need in Industry 2.6.2 Definition 2.6.3 Verification Standards 2.7 Instruments Techniques 2.7.1 Large Coordinate Measuring Machines 2.7.2 Laser Trackers 2.7.3 Theodolite Multiple Choice Questions of this Chapter References Chapter 3 Applied Math and Statistics 3.1 Introduction 3.2 Scientific and Engineering Notation 3.3 Imperial/Metric Conversions 3.4 Ratio 3.5 Linear Interpolation 3.6 Number Bases 3.7 Significant Figures, Rounding, and Truncation 3.8 Geometry and Volumes 3.8.1 Perimeter 3.8.2 Volume and Area 3.9 Angular Conversions 3.10 Graphs and Plots 3.11 Statistical Analysis and Common Distributions 3.11.1 Definition of Measurement Data 3.11.2 Statistical Measurements 3.11.3 Statistical Analysis of Measurements 3.11.4 Probability 3.11.5 Sample and Population 3.11.6 Formulation of Mean and Variance for Direct Measurements 3.11.7 Mean and Variance Based on Samples 3.11.8 The Standard Deviation of the Mean 3.12 Formulation of the Standard Uncertainty and Average of Indirect Measurements 3.12.1 How to Determine the Measured Value and Random Error? 3.12.2 Repeated Measurements of One Single Quantity 3.12.3 Normal Distribution 3.12.4 Student's t‐distribution Multiple Choice Questions of this Chapter Chapter 4 Errors and their Sources Introduction 4.1 Definition of the Error and Their Types 4.1.1 Systematic Errors 4.1.2 Random Errors 4.1.3 Components of Motion Error Assessment 4.2 Measurement Characteristics 4.2.1 Characterization of the Measurement 4.2.2 Resolution, Error Uncertainty, and Repeatability 4.2.3 Model of Measurement 4.3 Propagation of Errors 4.4 Sources of Errors 4.4.1 Static Errors and Dynamic Errors 4.5 Error Budget 4.5.1 Components of the Error Budget 4.5.2 Example of Error‐Budget Table 4.6 Error Elimination Techniques 4.6.1 Methods 4.7 Model of Errors in CNC Using HTM 4.8 Case Study of Errors Budget 4.8.1 Description of the Designed System 4.8.2 Error Modeling and Experimental Testing 4.9 Solved Problems Multiple Choice Questions of this Chapter References Chapter 5 Measurement and Measurement Systems 5.1 Introduction 5.2 What Can Be Standard in a Measurement? 5.3 Definitions of Key Measurement Components 5.3.1 Measurement System 5.3.2 Measurement System Analysis 5.3.3 Measurement Process 5.4 Physical Measurement Process (PMP) 5.5 Difference between Number and an Analysis Model 5.6 Measurement Methods 5.6.1 Metrology and Measurement 5.6.2 Metrological Characteristics of Measuring Instruments 5.7 Instrumentation for Measurement 5.7.1 Background 5.7.2 Measurement Instrumentations 5.7.3 Digital Measuring Device Fundamentals 5.8 Non‐Portable Dimensional Measuring Devices 5.8.1 Laser Interferometry, Application to CNC Machines 5.8.2 Coordinate Measuring Machine (CMM) 5.9 Metrology Laboratory Test for Students Multiple Choice Questions of this Chapter References Chapter 6 Tolerance Stack‐Up Analysis 6.1 Introduction 6.1.1 Importance of Tolerance Stack‐Up Analysis 6.1.2 Need for Tolerance Stack‐Up Analysis in Assemblies 6.1.3 Manufacturing Considerations in Engineering Design 6.1.4 Technical Drawing 6.1.5 Definitions, Format, and Workflow of Tolerance Stack‐Up 6.2 Brief Introduction to Geometric Dimensioning and Tolerancing (GD&T) 6.2.1 Notation and Problem Formulation 6.2.2 Dimension Types 6.2.3 Coordinate Dimensioning 6.2.4 Tolerance Types 6.2.5 Characteristics of Features and Their Tolerances 6.3 Tolerance Format and Decimal Places 6.4 Converting Plus/Minus Dimensions and Tolerances into Equal‐Bilaterally Toleranced Dimensions 6.5 Tolerance Stack Analysis 6.5.1 Worst‐Case Tolerance Analysis 6.5.2 Rules for Assembly Shift 6.5.3 Worst‐Case Tolerance Stack‐Up in Symmetric Dimensional Tolerance 6.5.4 Worst‐Case Tolerance Stack‐Up in Asymmetric Dimensional Tolerance 6.6 Statistical Tolerance Analysis 6.6.1 Definition of Statistical Tolerance Analysis 6.6.2 Worst‐Case Analysis vs RSS (Root‐Sum Squared) Statistical Analysis 6.6.3 Second‐Order Tolerance Analysis 6.6.4 Cases Discussions 6.6.5 Understanding Material Condition Modifiers Appendix A from ISO and ASME Y14 Symbols Multiple Choice Questions of this Chapter References Chapter 7 Instrument Calibration Methods 7.1 Introduction 7.2 Definition of Calibration 7.3 Need for Calibration 7.4 Characteristics of Calibration 7.5 Calibration Overall Requirements and Procedures 7.5.1 Calibration Methods/Procedures 7.6 Calibration Laboratory Requirements 7.7 Industry Practices and Regulations 7.8 Calibration and Limitations of a Digital System 7.9 Verification and Calibration of CNC Machine Tool 7.10 Inspection of the Positioning Accuracy of CNC Machine Tools 7.11 CNC Machine Error Assessment and Calibration 7.12 Assessment of the Contouring in the CNC Machine Using a Kinematic Ballbar System 7.13 Calibration of 3‐axis CNC Machine Tool 7.14 Calibration of a Coordinate Measuring Machine (CMM) 7.14.1 CMM Performance Verification 7.14.2 Accreditation of Calibration Laboratories Section 1: Scope and Description Section 2: Calibration Requirements Section 3: Preliminary Operations Section 4: Calibration Process Section 5: Data Analysis Section 6: Calibration Report Multiple Choice Questions of this Chapter References Chapter 8 Uncertainty in Measurements 8.1 Introduction and Background 8.2 Uncertainty of Measurement 8.3 Measurement Error 8.4 Why Is Uncertainty of Measurement Important? 8.5 Components and Sources of Uncertainty 8.5.1 What Causes Uncertainty? 8.5.2 Uncertainty Budget Components 8.5.3 The Errors Affecting Accuracy 8.6 Static Errors and Dynamic Errors 8.7 Types of Uncertainty 8.8 Uncertainty Evaluations and Analysis 8.9 Uncertainty Reporting 8.10 How to Report Uncertainty 8.11 Fractional Uncertainty Revisited 8.12 Propagation of Uncertainty Multiple Choice Questions of this Chapter References Chapter 9 Dimensional Measurements and Calibration 9.1 Length Measurement 9.2 Displacement Measurement 9.3 Manual Instruments 9.3.1 Caliper 9.3.2 Vernier Caliper 9.3.3 Micrometer 9.3.4 Feeler Gauge 9.3.5 Liner Measurement Tool 9.3.6 American Wire Gauge 9.3.7 Bore Gauge 9.3.8 Telescopic Feeler Gauge 9.3.9 Depth Gauge 9.3.10 Angle Plate or Tool 9.3.11 Flat Plate 9.3.12 Dial Gauge 9.3.13 Oil Gauging Tapes 9.3.14 Thread Measurement 9.3.15 Planimeter 9.4 Diameter and Roundness 9.4.1 How to Measure a Diameter? 9.4.2 Roundness 9.5 Angular Measurements 9.5.1 Line Standard Angular Measuring Devices 9.5.2 Face Standard Angular Measuring Devices 9.5.3 Measurement of Inclines 9.5.4 Optical Instruments for Angular Measurement 9.6 Metrology for Complex Geometric Features 9.6.1 Edge Detection Techniques Using a CCD Camera 9.6.2 Full Laser Scanning for Reverse Engineering 9.7 Measurement Surface Texture 9.7.1 Geometry of Surface 9.7.2 Surface Integrity 9.7.3 Specification of Surfaces 9.7.4 Sampling Length 9.7.5 Instruments and Measurement of Roughness Multiple Choice Questions of this Chapter References Chapter 10 Mechanical Measurements and Calibration 10.1 Importance of Mechanical Measurements 10.2 Mechanical Measurements and Calibration 10.3 Description of Mechanical Instruments 10.3.1 Mass Measurements 10.3.2 Force Measurements 10.3.3 Vibration Measurements 10.3.4 Volume and Density 10.3.5 Hydrometers 10.3.6 Acoustic Measurements 10.4 Calibration of Mechanical Instruments 10.4.1 When Is Equipment Calibration Needed? 10.4.2 When Is There No Need for Calibration? 10.4.3 Process of Equipment Calibration 10.5 Equipment Validation for Measurement 10.5.1 Is There a Need of Equipment Validation? 10.5.2 Features and Benefits of Validation 10.5.3 Process of Validation of Equipment 10.6 Difference between Calibration and Validation of Equipment 10.7 Difference between Calibration and Verification 10.8 Calibration of Each Instrument 10.8.1 Mass Calibration 10.8.2 Force Calibration 10.8.3 Pressure Calibration 10.8.4 Vibration Measurements 10.8.5 Volume and Density 10.8.6 Hydrometers 10.8.7 Acoustic Measurements Multiple Choice Questions of this Chapter References Chapter 11 Thermodynamic Measurements 11.1 Background 11.2 Scale of Temperature 11.2.1 Ideal Gas Law 11.2.2 Vacuum 11.2.3 Gas Constants 11.3 Power 11.4 Enthalpy 11.5 Humidity Measurements 11.6 Methods of Measuring Temperature 11.7 Temperature Measured through Thermal Expansion Materials 11.7.1 Liquid‐in‐Glass Thermometer 11.7.2 Bimetallic Thermometer 11.7.3 Electrical Resistance Thermometry 11.7.4 Resistance Temperature Detectors 11.7.5 Examples for Discussion 11.7.6 Thermistors 11.8 Thermoelectric Temperature Measurement or Thermocouples 11.8.1 Basic Thermocouples 11.8.2 Fundamental Thermocouple Laws 11.9 Thermocouple Materials 11.9.1 Advantages and Disadvantages of Thermocouple Materials 11.9.2 Thermocouple Voltage Measurement 11.10 Multi‐Junction Thermocouple Circuits 11.11 Thermopiles 11.12 Radiative Temperature Measurement Multiple Choice Questions of this Chapter References Chapter 12 Quality Systems and Standards 12.1 Introduction to Quality Management 12.2 Quality Management 12.2.1 Total Quality Management (TQM) 12.2.2 Quality Management System (QMS) 12.2.3 TQM Is Essential to Complete TQS 12.2.4 ISO‐Based QMS Certification 12.3 Components of Quality Management 12.3.1 Quality System (QS) 12.3.2 Quality Assurance (QA) 12.3.3 Quality Control (QC) 12.3.4 Quality Assessment 12.4 System Components 12.4.1 Quality Audits 12.4.2 Preventive and Corrective Action 12.4.3 Occupational Safety Requirements 12.4.4 Housekeeping Practices 12.5 Quality Standards and Guides Multiple Choice Questions of this Chapter References Chapter 13 Digital Metrology Setups and Industry Revolution I4.0 13.1 Introduction 13.1.1 What Is a Digital Measurement? 13.1.2 Metrology and Digitalization 13.1.3 Implementation Strategy 13.2 Data Acquisition 13.3 Setup Fundamentals for Measurement and Data Acquisition 13.3.1 Length Measurement in Open Loop 13.3.2 Thermal Measurement and Data‐Acquisition Considerations 13.3.3 Data Transfer to Cloud 13.3.4 Internet of Things (IoT) Metrology 13.3.5 Closed‐Loop Data Analysis‐ (In‐Process Inspection) 13.4 Digital Twin Metrology Inspection Multiple Choice Questions of this Chapter References Index EULA