ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Methods of soil analysis. Part 4, Physical methods

دانلود کتاب روشهای آنالیز خاک بخش چهارم، روش های فیزیکی

Methods of soil analysis. Part 4, Physical methods

مشخصات کتاب

Methods of soil analysis. Part 4, Physical methods

ویرایش: 1 
نویسندگان: , ,   
سری: Number 5 in the Soil Science Society of America book series 
ISBN (شابک) : 9780891188933, 9780891188414 
ناشر: Soil Science Society of America 
سال نشر: 2002 
تعداد صفحات: 1711 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 133 مگابایت 

قیمت کتاب (تومان) : 44,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 6


در صورت تبدیل فایل کتاب Methods of soil analysis. Part 4, Physical methods به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب روشهای آنالیز خاک بخش چهارم، روش های فیزیکی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

00
	0
		Half-Title Page
		Series Page
		Title Page
		Copyright Page
		CONTENTS
		FOREWORD
		PREFACE
		CONTRIBUTORS
		Conversion Factors for SI and non-SI Units
	1
		1.2 Soil Variability
			1.2.1 Sources and Structure of Variability
				1.2.1.1 Introduction
				1.2.1.2 Properties and Processes
				1.2.1.3 Sources of Variability
				1.2.1.4 Structure of Variability
			1.2.2 Variability and Scale
				1.2.2.1 Scale of Research Domain
				1.2.2.2 Scale of Observation
			1.2.3 References
	2
		1.3 Errors, Variability, and Precision
			1.3.1 Introduction
			1.3.2 Classification of Measurement Errors
			1.3.3 Scientific Validity of Measurements
			1.3.4 Characterization of Variability
			1.3.5 Skewed Frequency Distributions
				1.3.5.1 Impact of Mathematical Distribution on Imprecision
			1.3.6 Transformations of a Random Variable or Functions of a Random (Explanatory) Variable
			1.3.7 The Estimation of Precision
			1.3.8 Precision of Derived Observations
				1.3.8.1 Case 1: A Single-Valued Function of an Observation
				1.3.8.2 Case 2: A Number Derived from Measurements of More Than One Attribute on the Same Sample
				1.3.8.3 Case 3: A Single Function of Numerous Measurements with Same Attribute
			1.3.9 Error Propagation in Modeling
			1.3.10 The Roles of Bias and Precision
			1.3.11 How to Study Errors of Observation
			1.3.12 Role of Errors of Observation in the Study of Relationships
			1.3.13 A Note on Terminology
			1.3.14 Statistical Problems and Techniques in General
			1.3.15 References
01
	3
		1.4 Sampling
			1.4.1 Designing a Sampling Scheme
				1.4.1.1 Towards Better Planning
				1.4.1.2 A Guiding Principle in Designing Sampling Schemes
				1.4.1.3 Practical Issues
				1.4.1.4 Scientific Issues
				1.4.1.5 Statistical Issues
			1.4.2 Design-Based and Model-Based Approach
			1.4.3 Design-Based Strategies
				1.4.3.1 Scope of Design-Based Strategies
				1.4.3.2 Simple Random Sampling
				1.4.3.3 Stratified Sampling
				1.4.3.4 Two-Stage Sampling
				1.4.3.5 Cluster Sampling
				1.4.3.6 Systematic Sampling
				1.4.3.7 Advanced Design-Based Strategies
			1.4.4 Model-Based Strategies
			1.4.5 Composite Sampling
			1.4.6 Sampling in Dimensions Other than Two-Dimensional Space
				1.4.6.1 Sampling in Three-Dimensional Space and at Depth
				1.4.6.2 Sampling in Time
				1.4.6.3 Sampling in Space–Time
			1.4.7 References
	4
	5
		1.6 Time and Space Series
			1.6.1 General Information
			1.6.2 Auto- and Cross-Correlation
			1.6.3 Spectral Analysis
			1.6.4 State–Space Analysis
				1.6.4.1 Autoregressive State–Space Model for Spatial Processes
				1.6.4.2 State–Space Analysis for Time Series
			1.6.5 References
	6
		1.7 Parameter Optimization and Nonlinear Fitting
			1.7.1 Introduction
			1.7.2 Maximum-Likelihood and Weighted Least-Squares Estimator
			1.7.3 Methods of Solution
			1.7.4 Correlation and Confidence Intervals
			1.7.5 Goodness of Fit
			1.7.6 Examples and Optimization Programs
			1.7.7 Discussion
			1.7.8 References
02
	7
		1.8 Newer Application Techniques
			1.8.1 Fractal Dimensions
				1.8.1.1 Theory
				1.8.1.2 Quantifying Soil Structure Using Fractal Geometry
				1.8.1.3 Applications of Fractal Geometry to Soil Physics
				1.8.1.4 Characterizing Soil Spatial Variability Using Fractal Geometry
				1.8.1.5 Future Prospects
			1.8.2 Fuzzy Sets
				1.8.2.1 The Concept of Fuzzy Sets
				1.8.2.2 Some Definitions and Examples Related to Fuzzy Sets
				1.8.2.3 Fuzzy Models of Soil Physical Processes: Example
				1.8.2.4 Application to Soil Classification, Mapping, and Land Evaluation
			1.8.3 Wavelet Analysis
				1.8.3.1 The Continuous Wavelet Transform
				1.8.3.2 The Discrete Wavelet Transform
				1.8.3.3 Prospects for Wavelet Analysis
			1.8.4 References
	8
		Chapter 2: The Solid Phase
			2.1 Bulk Density and Linear Extensibility
				2.1.1 Introduction
					2.1.1.1 Principles
					2.1.1.2 Variability
					2.1.1.3 Application
					2.1.1.4 Dealing with Rock Fragments
				2.1.2 Core Method
					2.1.2.1 Introduction
					2.1.2.2 Method
					2.1.2.3 Comments
				2.1.3 Excavation Method
					2.1.3.1 Introduction
					2.1.3.2 Method
					2.1.3.3 Comments
				2.1.4 Clod Method
					2.1.4.1 Introduction
					2.1.4.2 Equipment and Supplies
					2.1.4.3 Procedure
					2.1.4.4 Comments
				2.1.5 Radiation Methods
					2.1.5.1 Introduction
					2.1.5.2 Equipment and Procedures
					2.1.5.3 Comments
				2.1.6 Linear Extensibility
					2.1.6.1 Introduction
					2.1.6.2 Calculations
					2.1.6.3 Comments
				2.1.7 References
	9
		2.2 Particle Density
			2.2.1 Introduction
			2.2.2 Principles
			2.2.3 Methods
				2.2.3.1 Calculation from Porosity and Bulk Density
				2.2.3.2 Liquid Displacement
				2.2.3.3 Gas Displacement
				2.2.3.4. Estimation from Constituent Properties
			2.2.4 Comments
			2.2.5 References
	10
		2.3 Porosity
			2.3.1 Introduction
			2.3.2 Total Porosity
				2.3.2.1 Calculation from Particle and Bulk Densities
				2.3.2.2 Gravimetric Method with Water Saturation
				2.3.2.3 Volumetric Method with Gas Pycnometry
			2.3.3 Pore-Size Distribution
				2.3.3.1 Water-Desorption Method
				2.3.3.2 Visualization Method Using Impregnation
				2.3.3.3 Mercury-Porosimetry Method
			2.3.4 References
	11
		2.4 Particle-Size Analysis
			2.4.1 Introduction
			2.4.2 Pretreatment and Dispersion Techniques
				2.4.2.1 General Principles
				2.4.2.2 Organic Matter Removal
				2.4.2.3 Iron Oxide Removal
				2.4.2.4 Carbonate Removal
				2.4.2.5 Soluble Salts Removal
				2.4.2.6 Sample Dispersion
			2.4.3 Specific Methods of Particle-Size Analysis
				2.4.3.1 Introduction
				2.4.3.2 Analysis by Sieving
				2.4.3.3 Analysis by Gravitational Sedimentation
				2.4.3.4 Pipette Method
				2.4.3.5 Hydrometer Method
				2.4.3.6 Modern Methods for Particle-Size Measurement
			2.4.4 References
	12
		2.5 Specific Surface Area
			2.5.1 Introduction
			2.5.2 Liquid-Phase Adsorption Methods
				2.5.2.1 Principles
				2.5.2.2 Equipment and Supplies
				2.5.2.3 Experimental Procedure
				2.5.2.4 Comments
			2.5.3 Gas-Phase Adsorption Methods
				2.5.3.1 Principles
				2.5.3.2 Equipment and Supplies
				2.5.3.3 Experimental Procedure
				2.5.3.4 Comments
			2.5.4 Retention of Polar Liquids
				2.5.4.1 Principles
				2.5.4.2 Equipment and Supplies
				2.5.4.3 Experimental Procedure
				2.5.4.4 Comments
			2.5.5 Comparison of Surface Area Methods
			2.5.6 References
	13
		2.6 Aggregate Stability and Size Distribution
			2.6.1 Principles
			2.6.2 Apparatus and Procedures
				2.6.2.1 General Sample Preparation
				2.6.2.2 Modifications of Informally Standardized Methods and Apparatus
				2.6.2.3 Representation of Data
			2.6.3 Comments
			2.6.4 References
	14
		2.7 Shear Strength of Unsaturated Soils
			2.7.1 Introduction
			2.7.2 Shear Strength Equation for Unsaturated Soils
			2.7.3 Triaxial Shear Tests for Unsaturated Soils
				2.7.3.1 Test Procedures for Triaxial Tests
			2.7.4 Direct Shear Tests for Unsaturated Soils
			2.7.5 Failure Criteria for Unsaturated Soils
				2.7.5.1 Strain Rates for Triaxial and Direct Shear Tests
			2.7.6 Interpretation of Drained Test Results Using Multistage Testing Procedures
			2.7.7 Nonlinearity of Failure Envelope
			2.7.8 Interpretation of Undrained Test Results
				2.7.8.1 Confined Compression Tests
				2.7.8.2 Unconfined Compression Tests
			2.7.9 Relationship Between the Soil Water Characteristic Curve and the Shear Strength of Unsaturated Soils
			2.7.10 Procedure for Predicting the Shear Strength of Unsaturated Soils
			2.7.11 Summary
			2.7.12 References
03
	2.8
	2.9
		2.9 Atterberg Limits
			2.9.1 Introduction
			2.9.2 Liquid Limit
				2.9.2.1 Casagrande Method
				2.9.2.2 One-Point Casagrande Method
				2.9.2.3 Drop-Cone Penetrometer Method
			2.9.3 Plastic Limit
				2.9.3.1 Casagrande Method
			2.9.4 References
	2.10
		2.10 Soil Compressibility
			2.10.1 Introduction
			2.10.2 Principles
			2.10.3 Methods
				2.10.3.1 Apparatus
				2.10.3.2 Procedure
			2.10.4 Comments
			2.10.5 References
	3.1
		Chapter 3: The Soil Solution Phase
			3.1 Water Content
				3.1.1 General Information
				3.1.2 Scope of Methods and Brief Description
					3.1.2.1 Thermogravimetric Method Using Convective Oven-Drying
					3.1.2.2 Gravimetric Method Using Microwave Oven-Drying
					3.1.2.3 Time Domain Reflectometry
					3.1.2.4 Ground Penetrating Radar
					3.1.2.5 Capacitance Devices
					3.1.2.6 Radar Scatterometry or Active Microwave
					3.1.2.7 Passive Microwave
					3.1.2.8 Electromagnetic Induction
					3.1.2.9 Neutron Thermalization
					3.1.2.10 Nuclear Magnetic Resonance
					3.1.2.11 Gamma Ray Attenuation
				3.1.3 Methods for Measurement of Soil Water Content
					3.1.3.1 Thermogravimetric Using Convective Oven-Drying
					3.1.3.2 Gravimetric Using Microwave Oven-Drying
					3.1.3.3 The Basis of Electromagnetic Methods: A Wave Equation Framework
					3.1.3.4 Time Domain Reflectometry
					3.1.3.5 Ground Penetrating Radar to Measure Soil Water Content
					3.1.3.6 Capacitance Devices
					3.1.3.7 Active Microwave Remote Sensing Methods
					3.1.3.8 Passive Microwave Remote Sensing Methods
					3.1.3.9 Electromagnetic Induction
					3.1.3.10 Neutron Thermalization
					3.1.3.11 Nuclear Magnetic Resonance
				3.1.4 References
	3.2
		3.2 Water Potential
			3.2.1 Piezometry
				3.2.1.1 Introduction
				3.2.1.2 Principles
				3.2.1.3 Drilling Methods
				3.2.1.4 Installation
				3.2.1.5 Monitoring
				3.2.1.6 Technical Considerations
				3.2.1.7 References
	3.2.2
		3.2.2 Tensiometry
			3.2.2.1 Introduction
			3.2.2.2 Soil Water Matric Potential
			3.2.2.3 Principles
				3.2.2.3.a Gravitational Potential
				3.2.2.3.b Matric Potential
				3.2.2.3.c Pneumatic Potential
				3.2.2.3.d Osmotic Potential
				3.2.2.3.e Soil Overburden and Swelling Potential
				3.2.2.3.f Hydraulic Head
			3.2.2.4 Essential Components of Tensiometers
				3.2.2.4.a Porous Cup
				3.2.2.4.b Water Reservoir
				3.2.2.4.c Measurement Gauge
			3.2.2.5 Alternative Types of Tensiometers
				3.2.2.5.a Osmotic Tensiometer
				3.2.2.5.b Methanol Tensiometers
			3.2.2.6 Field and Laboratory Applications
				3.2.2.6.a Field Applications
				3.2.2.6.b Laboratory Applications
			3.2.2.7 Field Measurements
				3.2.2.7.a Equipment Suppliers
				3.2.2.7.b Fabrication and Assembly
				3.2.2.7.c Testing Tensiometer Units
				3.2.2.7.d Tensiometer Installation
				3.2.2.7.e Data Collection
				3.2.2.7.f Maintenance and Servicing
			3.2.2.8 Laboratory Measurements
				3.2.2.8.a Equipment Suppliers
				3.2.2.8.b Fabrication and Assembly
				3.2.2.8.c Testing Tensiometer Units
				3.2.2.8.d Data Collection
				3.2.2.8.e Maintenance and Servicing
			3.2.2.9 Interpretation of Tensiometric Readings
				3.2.2.9.a Calculating Matric Potential from Tensiometric Measurements
				3.2.2.9.b Calculation of Hydraulic Head Gradient
				3.2.2.9.c Bias, Precision, and Accuracy
			3.2.2.10 Gauge Calibration
			3.2.2.11 References
	3.2.3
		3.2.3 Thermocouple Psychrometry
			3.2.3.1 Principles
			3.2.3.2 Equipment
				3.2.3.2.a Sample-Chamber Sensors
				3.2.3.2.b In Situ Sensors
				3.2.3.2.c Electronics
			3.2.3.3 Procedures
				3.2.3.3.a Cleaning and Handling
				3.2.3.3.b Calibration, Signal Generation, and Signal Interpretation
				3.2.3.3.c Sample Handling and Laboratory Measurement
				3.2.3.3.d In Situ Sensor Installation and Measurement
				3.2.3.3.e Separation of Matric and Osmotic Water-Potential Components
			3.2.3.4 Comments
			3.2.3.5 Commercial Sources
				3.2.3.5.a Laboratory Sample Chambers
				3.2.3.5.b In Situ Sensors
				3.2.3.5.c Electronic Measurement and Control Equipment
			3.2.3.6 References
	3.24
		3.2.4 Miscellaneous Methods for Measuring Matric or Water Potential
			3.2.4.1 Introduction
			3.2.4.2 Heat Dissipation Sensors
				3.2.4.2.a Principles
				3.2.4.2.b Equipment
				3.2.4.2.c Calibration and Measurement
				3.2.4.2.d Errors
			3.2.4.3 Electrical Resistance Sensors
				3.2.4.3.a Principles
				3.2.4.3.b Equipment
				3.2.4.3.c Calibration and Measurement
				3.2.4.3.d Errors
			3.2.4.4 Frequency Domain and Time Domain Matric Potential Sensors
				3.2.4.4.a Principles
				3.2.4.4.b Equipment
				3.2.4.4.c Calibration
				3.2.4.4.d Errors
			3.2.4.5 Electro-Optical Switches
			3.2.4.6 Dew Point Potentiameter
				3.2.4.6.a Principles
				3.2.4.6.b Equipment
				3.2.4.6.c Measurement
				3.2.4.6.d Errors
			3.2.4.7 Filter Paper Technique
				3.2.4.7.a Principles
				3.2.4.7.b Calibration
				3.2.4.7.c Measurement
				3.2.4.7.d Errors
			3.2.4.8 Vapor Equilibration
				3.2.4.8.a Principles
				3.2.4.8.b Measurement
				3.2.4.8.c Errors
			3.2.4.9 References
	3.3
		3.3 Water Retention and Storage
			3.3.1 Introduction
				3.3.1.1 References
	3.32
		3.3.2 Laboratory
			3.3.2.1 Introduction
				3.3.2.1.a General
				3.3.2.1.b Samples
				3.3.2.1.c Sample Preparation
				3.3.2.1.d Wetting Solution
				3.3.2.1.e Sample Wetting
				3.3.2.1.f Temperature Effects
			3.3.2.2 Hanging Water Column
				3.3.2.2.a Principles
				3.3.2.2.b Equipment and Supplies
				3.3.2.2.c Procedure
				3.3.2.2.d Comments
			3.3.2.3 Pressure Cell
				3.3.2.3.a Principles
				3.3.2.3.b Equipment and Supplies
				3.3.2.3.c Procedure
				3.3.2.3.d Comments
			3.3.2.4 Pressure Plate Extractor
				3.3.2.4.a Principles
				3.3.2.4.b Equipment and Supplies
				3.3.2.4.c Procedure
				3.3.2.4.d Comments
			3.3.2.5 Long Column
				3.3.2.5.a Principles
				3.3.2.5.b Equipment and Supplies
				3.3.2.5.c Procedure
				3.3.2.5.d Comments
			3.3.2.6 Suction Table
				3.3.2.6.a Principles
				3.3.2.6.b Equipment and Supplies
				3.3.2.6.c Procedure
				3.3.2.6.d Comments
			3.3.2.7 Controlled Liquid Volume
				3.3.2.7.a Principles
				3.3.2.7.b Equipment and Supplies
				3.3.2.7.c Procedure
				3.3.2.7.d Comments
			3.3.2.8 Determination of Soil Water Characteristic by Freezing Method
				3.3.2.8.a. Introduction
				3.3.2.8.b Matric Potential in Frozen Soil
				3.3.2.8.c Liquid Water Content in Frozen Soil
				3.3.2.8.d Similarity Between Soil Freezing and Soil Moisture Characteristic
				3.3.2.8.e Comments
			3.3.2.9 Miscellaneous Methods
				3.3.2.9.a Controlled Vapor Pressure-Description and Principles
				3.3.2.9.b Measured Vapor Pressure-Description and Principles
				3.3.2.9.c Controlled Osmotic Pressure-Description and Principles
				3.3.2.9.d Comments on Vapor-and Osmotic-Based Methods
				3.3.2.9.e Transient Liquid-Phase Methods
			3.3.2.10 Computational Corrections
			3.3.2.11 Guidelines For Method Selection
			3.3.2.12 References
	3.3.3
		3.3.3 Field
			3.3.3.1 Introduction
			3.3.3.2 Field Water Capacity
				3.3.3.2.a Field Test
				3.3.3.2.b Laboratory Approximation
				3.3.3.2.c Analytical Determination of Field Water Capacity
				3.3.3.2.d Comments
			3.3.3.3 Permanent Wilting Point
			3.3.3.4 Available Water
			3.3.3.5 Specific Yield
			3.3.3.6 References
	3.3.4
		3.3.4 Parametric Models
			3.3.4.1 Introduction
			3.3.4.2 General Characteristics of Water Retention Curves and Important Parameters
			3.3.4.3 Brooks and Corey Type Power Function
			3.3.4.4 van Genuchten Type Power Function
			3.3.4.5 Exponential Function
			3.3.4.6 Lognormal Distribution Function
			3.3.4.7 Water Capacity Functions
			3.3.4.8 Unsaturated Hydraulic Conductivity Functions
			3.3.4.9 Multimodal Retention Functions
			3.3.4.10 Soil Water Hysteresis
			3.3.4.11 Model Fitting
			3.3.4.12 Comments
			3.3.4.13 References
	3.3.5
		3.3.5 Property-Transfer Models
			3.3.5.1 Physically Based Water Retention Prediction Models
				3.3.5.1.a Introduction
				3.3.5.1.b Arya-Paris Model: Principles
				3.3.5.1.c Haverkamp-Parlange Model: Principles
				3.3.5.1.d Comments
			3.3.5.2 Property Transfer from Particle and Aggregate Size to Water Retention
				3.3.5.2.a Principles
				3.3.5.2.b Procedure
				3.3.5.2.c Comments
			3.3.5.3 References
	3.3.6
		3.3.6 Air-Water Interfacial Area
			3.3.6.1 Introduction
			3.3.6.2 Principles
			3.3.6.3 Aqueous-Static Method
				3.3.6.3.a Apparatus
				3.3.6.3.b Procedure
				3.3.6.3.c Calculation
			3.3.6.4 Aqueous-Dynamic Method
				3.3.6.4.a Apparatus
				3.3.6.4.b Procedure
				3.3.6.4.c Calculations
			3.3.6.5 Gaseous-Dynamic Method
				3.3.6.5.a Apparatus
				3.3.6.5.b Procedure
				3.3.6.5.c Calculation
			3.3.6.6 Comments
			3.3.6.7 References
	3.4
		3.4 Saturated and Field-Saturated Water Flow Parameters
			3.4.1 Introduction
				3.4.1.1 Principles and Parameter Definitions
				3.4.1.2 References
	3.4.2
		3.4.2 Laboratory Methods
			3.4.2.1 Introduction
			3.4.2.2 Constant Head Soil Core (Tank) Method
			3.4.2.3 Falling Head Soil Core (Tank) Method
			3.4.2.4 Steady Flow Soil Column Method
			3.4.2.5 Other Laboratory Methods
			3.4.2.6 References
	3.4.3
		3.4.3 Field Methods (Vadose and Saturated Zone Techniques)
			3.4.3.1 Introduction
			3.4.3.2 Ring or Cylinder Infiltrometers (Vadose Zone)
	3.4.3.3
		3.4.3.3 Constant Head Well Permeameter (Vadose Zone)
			3.4.3.3.a Introduction
			3.4.3.3.b Apparatus and Procedures
			3.4.3.3.c Analyses
			3.4.3.3.d Example Calculations
			3.4.3.3.e Comments
			3.4.3.3.f References
04
	3.4.3.3
		3.4.3.4 Auger-Hole Method (Saturated Zone)
			3.4.3.4.a Introduction
			3.4.3.4.b Analysis
			3.4.3.4.c Equipment and Supplies
			3.4.3.4.d Procedure
			3.4.3.4.e Layered Soils
			3.4.3.4.f Example Calculations
			3.4.3.4.g Comments
			3.4.3.4.h References
	3.4.3.5
		3.4.3.5 Piezometer Method (Saturated Zone)
			3.4.3.5.a Introduction
			3.4.3.5.b Analysis
			3.4.3.5.c Equipment and Supplies
			3.4.3.5.d Procedure
			3.4.3.5.e Layered Soils
			3.4.3.5.f Example Calculations
			3.4.3.5.g Comments
			3.4.3.5.h References
	3.4.3.6
		3.4.3.6 Other Saturated Zone Methods
			3.4.3.6.a Introduction
			3.4.3.6.b References
	3.5
		3.5 Unsaturated Water Transmission Parameters Obtained from Infiltration
			3.5.1 Basic Theory
			3.5.2 One-Dimensional Infiltration Equations and Their Use
			3.5.3 Horizontal Absorption-The Bruce and Klute Experiment
			3.5.4 Three-Dimensional Infiltration Using Disk Permeameters
				3.5.4.1 Early-Time Observations
				3.5.4.2 Steady-State Observations
			3.5.5 Conclusions
			3.5.6 References
	3.6.11
		3.6 Simultaneous Determination of Water Transmission and Retention Properties
			3.6.1. Direct Methods
				3.6.1.1 Laboratory
	3.6.1.2
		3.6.1.2 Field
			3.6.1.2.a Instantaneous Profile
			3.6.1.2.b Plane of Zero Flux
			3.6.1.2.c Constant Flux Vertical Time Domain Reflectometry
			3.6.1.2.d References
	3.6.2
		3.6.2. Inverse Methods
			3.6.2.1 Introduction
			3.6.2.2 Theory of Flow and Optimization
				3.6.2.2.a Water Flow Modeling
				3.6.2.2.b Parameter Optimization
			3.6.2.3 Multistep Outflow Method
				3.6.2.3.a Introduction
				3.6.2.3.b Experimental Procedures
				3.6.2.3.c Simulations and Optimization
			3.6.2.4 Evaporation Method
				3.6.2.4.a Introduction
				3.6.2.4.b Experimental Procedures
				3.6.2.4.c Simulation and Optimization
			3.6.2.5 Tension Disc Infiltrometer
				3.6.2.5.a Introduction
				3.6.2.5.b Experimental Procedures
				3.6.2.5.c Simulation and Optimization
			3.6.2.6 Field Drainage
				3.6.2.6.a Introduction
				3.6.2.6.b Experimental Procedures
				3.6.2.6.c Simulation and Optimization
			3.6.2.7 Additional Applications
			3.6.2.8 Example
			3.6.2.9 Discussion
			3.6.2.10 References
05
	3.6.3
		3.6.3 Indirect Methods
			3.6.3.1 Introduction
			3.6.3.2 Semiempirical Approaches
				3.6.3.2.a Pore-Size Distribution
				3.6.3.2.b Particle-Size Distribution
			3.6.3.3 Empirical Approaches
				3.6.3.3.a Regression Analysis
				3.6.3.3.b Neural Network Analysis
				3.6.3.3.c Databases
			3.6.3.4 References
	3.7
		3.7 Evaporation from Natural Surfaces
			3.7.1 Soil-Based Methods
				3.7.1.1 Lysimetry
				3.7.1.2 Soil Water Balance
			3.7.2 Plant-Based Methods
				3.7.2.1 Sap Flow Measurement
				3.7.2.2 Cuvettes
			3.7.3 Micrometeorological Methods
				3.7.3.1 Bowen Ratio Energy Balance Method
				3.7.3.2 Eddy Covariance
				3.7.3.3 Conditional Sampling
			3.7.4 Remote Sensing Methods
			3.7.5 References
	4.1
		Chapter 4 The Soil Gas Phase
			4.1 Introduction
				4.1.1 References
	4.2
		4.2 Gas Sampling and Analysis
			4.2.1 Principles
			4.2.2 Sampling
				4.2.2.1 Air-Filled Pores Above the Water Table
				4.2.2.2 Soil Water Sampling
			4.2.3 Gas Analysis
				4.2.3.1 Principles of Gas Chromatography
				4.2.3.2 Laboratory Analysis by Gas Chromatography
				4.2.3.3 Field-Based Gas Chromatography Systems
				4.2.3.4 Alternative Gas Analysis Systems
			4.2.4 In Situ Analyses at the Gas-Liquid Interface
				4.2.4.1 Platinum Microelectrode Methods
				4.2.4.2 Membrane-Covered Electrode Methods
				4.2.4.3 Miscellaneous Gas-Sensing Probes
			4.2.5 References
	4.3
		4.3 Gas Diffusivity
			4.3.1 Introduction
			4.3.2 Laboratory Methods
				4.3.2.1 The Currie Method
				4.3.2.2 The Two-Chamber Method
			4.3.3 Field Method
				4.3.3.1 The MacIntyre and Philip Method
			4.3.4 Predicting Gas Diffusivity
				4.3.4.1 Undisturbed Soil
				4.3.4.2 Sieved, Repacked Soil
				4.3.4.3 Values of D0
				4.3.5 References
	4.4
		4.4 Air Permeability
			4.4.1 Introduction
			4.4.2 Laboratory Methods
			4.4.3 Field Methods
				4.4.3.1 Acoustic Method
				4.4.3.2 Buried Probe and Well Techniques
			4.4.4 Recommended Laboratory Method
				4.4.4.1 Apparatus and Materials
				4.4.4.2 Procedures
				4.4.4.3 Comments
			4.4.5 Recommended Field Method
				4.4.5.1 Apparatus and Materials
				4.4.5.2 Procedures
				4.4.5.3 Comments
			4.4.6 Choice of Method, Including Scaling and Variability Aspects
			4.4.7 Predicting Air Permeability
			4.4.8 Conclusions and Summary
			4.4.9 References
	4.5
		4.5 Soil–Atmosphere Gas Exchange
			4.5.1 Introduction
			4.5.2 Computation from Fick’s Law
				4.5.2.1 Principles
				4.5.2.2 Apparatus, Materials, and Procedure
				4.5.2.3 Comments and Cautions
			4.5.3 Chamber Systems
				4.5.3.1 Principles
				4.5.3.2 Apparatus and Materials
				4.5.3.3 Procedure
				4.5.3.4 Comments and Cautions
			4.5.4 Sampling Design, Data Analyses, and Data Summaries
			4.5.5 Concluding Remarks
			4.5.6 References
	5.1
		Chapter 5: Soil Heat
			5.1 Temperature
				5.1.1 Thermocouple Thermometry
				5.1.2 Integrated Circuit Thermometers
				5.1.3 Resistance Thermometers
					5.1.3.1 Platinum Resistance Thermometers
					5.1.3.2 Resistance Temperature Detectors
					5.1.3.3 Thermistors
				5.1.4 Nonelectric Thermometers
				5.1.5 Infrared Radiation Thermometers
				5.1.6 Installation and Operation
				5.1.7 References
	5.2
		5.2 Heat Capacity and Specific Heat
			5.2.1 General Introduction
			5.2.2 General Principles
				5.2.2.1 Basic Definitions
				5.2.2.2 Relationship Between Volumetric Heat Capacity and Specific Heat
			5.2.3 Methods
				5.2.3.1 De Vries Approximation
				5.2.3.2 Dual-Probe Heat-Pulse Method
			5.2.4 References
	5.3
		5.3 Thermal Conductivity
			5.3.1 Introduction
			5.3.2 Predictive Methods
				5.3.2.1 Predicting Soil Thermal Conductivity, IncludingTemperature Effects
				5.3.2.2 Predicting Soil Thermal Conductivity from Readily AvailableSoils Data
			5.3.3 Steady-State Methods
				5.3.3.1 Guarded Hot Plate Method
			5.3.4 Transient-State Methods
				5.3.4.1 Theory
				5.3.4.2 Probe Design and Construction
				5.3.4.3 Single Heat Probe Method
				5.3.4.4 Dual-Probe Heat-Pulse Method
			5.3.5 Comments Concerning Thermal Conductivity
			5.3.6 References
	5.4
		5.4 Soil Thermal Diffusivity
			5.4.1 Laboratory Method for Determining Soil Thermal Diffusivity
				5.4.1.1 Principles
				5.4.1.2 Measurements
				5.4.1.3 Analysis of Soil Column Temperature Observations
			5.4.2 Field Method for Determining Soil Thermal Diffusivity
			5.4.3 References
	5.5
		5.5 Heat Flux Density
			5.5.1 Calorimetric
				5.5.1.1 Principles
				5.5.1.2 Equipment
				5.5.1.3 Procedures
				5.5.1.4 Commentary on Advantages and Limitations
			5.5.2 Gradient
				5.5.2.1 Principles
				5.5.2.2 Equipment
				5.5.2.3 Procedures
				5.5.2.4 Commentary on Advantages and Limitations
			5.5.3 Combination
				5.5.3.1 Principles
				5.5.3.2 Equipment
				5.5.3.3 Procedures
				5.5.3.4 Commentary on Advantages and Limitations
			5.5.4 Soil Heat Flux Plate
				5.5.4.1 Principles
				5.5.4.2 Equipment
				5.5.4.3 Procedures
				5.5.4.4 Commentary on Advantages and Limitations
			5.5.5 References
	5.6
		5.6 Coupled Heat and Water Transfer
			5.6.1 Introduction
			5.6.2 Soil Thermal Water Diffusivity
			5.6.3 References
	6.1
		Chapter 6: Miscible Solute Transport
			6.1 Solute Content and Concentration
				6.1.1 Introduction
				6.1.2 Measurement of Solute Content Using Soil Extraction
					6.1.2.1 General Principles
					6.1.2.2 Equipment
					6.1.2.3 Procedure
					6.1.2.4 Comments
				6.1.3 Measurement of Solute Concentration Using Soil Water Extraction
					6.1.3.1 Suction Cups
					6.1.3.2 Passive Capillary Samplers
					6.1.3.3 Porous Matrix Sensors
				6.1.4 Indirect Measurement of Solute Concentration
					6.1.4.1 Relationship between Soil Water Solute Concentration and Apparent Soil Electrical Conductivity
					6.1.4.2 Electrical Resistivity: Wenner Array
					6.1.4.3 Electrical Resistivity: Four-Electrode Probe
					6.1.4.4 Time Domain Reflectometry
					6.1.4.5 Nonintrusive Electromagnetic Induction
				6.1.5 Emerging Methods
					6.1.5.1 Fiber Optic Sensors
					6.1.5.2 Capillary Absorbers
				6.1.6 References
	6.2
		6.2 Solute Diffusion
			6.2.1 Introduction
			6.2.2 Theory of Diffusion
				6.2.2.1 Fick’s Laws of Diffusion
				6.2.2.2 Estimation of Diffusion Coefficients in Liquids
				6.2.3.3 Temperature Dependence of Diffusion Coefficients
				6.2.2.4 Type of Diffusion Coefficients
				6.2.2.5 Diffusion of Nonreactive Solutes in Porous Media
				6.2.2.6 Estimation of Diffusion Coefficients for Nonreactive Solutesin Porous Media
				6.2.2.7 Diffusion and Convection
				6.2.2.8 Diffusion and Reactions
			6.2.3 Methods
				6.2.3.1 Steady-State Methods
				6.2.3.2 Transient Methods
				6.2.3.3 Other Methods
			6.2.4 Conclusions
			6.2.5 References
	6.3
		6.3 Solute Transport: Theoretical Background
			6.3.1 Elementary Concepts
				6.3.1.1 Solute Transport Experiments
				6.3.1.2 Breakthrough Curves
				6.3.1.3 Moments
				6.3.1.4 Mass Balance
				6.3.1.5 Flux and Resident Concentrations
			6.3.2 Convection–Dispersion Model
				6.3.2.1 Dimensionless Parameters
				6.3.2.2 Flux Concentrations
				6.3.2.3 Boundary Conditions
				6.3.2.4 Analytical Solutions
				6.3.2.5 Moments
			6.3.3 Nonequilibrium Models
				6.3.3.1 Two-Region Model
				6.3.3.2 Two-Site Model
				6.3.3.3 General Nonequilibrium Formulation
				6.3.3.4 Analytical Solutions and Moments
				6.3.3.5 Additional Nonequilibrium Formulations
			6.3.4 Stochastic–Convective Model
				6.3.4.1 Transfer Function Modeling
				6.3.4.2 Stochastic–Convective Transfer Function Model
				6.3.4.3 Convective Lognormal Transfer Function Model
				6.3.4.4 Field Applications
				6.3.4.5 Comments
			6.3.5 Transport Equation Generalizations
			6.3.6 References
	6.4
		6.4 Solute Transport: Experimental Methods
			6.4.1 Laboratory
				6.4.1.1 Introduction
				6.4.1.2 Sample Collection and Preparation
				6.4.1.3 Apparatus
				6.4.1.4 Displacing and Resident Solutions
				6.4.1.5 Procedures
				6.4.1.6 Calculations and Data Presentation
				6.4.1.7 Additional Apparatuses
				6.4.1.8 Additional Procedures
				6.4.1.9 Comments
			6.4.2 Field
				6.4.2.1 Introduction
				6.4.2.2 Water and Solute Application
				6.4.2.3 Solute Monitoring and Measurement
			6.4.3 Tracers
			6.4.4 Equipment Sources
			6.4.5 References
	6.5
		6.5 Solute Transport: Data Analysis and Parameter Estimation
			6.5.1 Least-Squares Fitting
				6.5.1.1 Principles
				6.5.1.2 Software
				6.5.1.3 Convection–Dispersion Model
				6.5.1.4 Nonequilibrium Models
				6.5.1.5 Transient Water Flow and Depth-Dependent Water Content
			6.5.2 Method of Moments
				6.5.2.1 Principles and Procedures
				6.5.2.2 Example
				6.5.2.3 Recommendations
			6.5.3 Determination of θIM and α Using a Disk Permeameter and Multiple Solutes
				6.5.3.1 Principles
				6.5.3.2 Procedure
				6.5.3.3 Example
			6.5.4 Determination of Travel-Time Probability Density Function from Concentration Data
			6.5.5 Determination of Field Solute Mass Flux (Travel Time Probability Density Function) Using Time Domain Reflectometry
				6.5.5.1 Principles
				6.5.5.2 Vertically Installed Probes
				6.5.5.3 Equipment and Methodology
			6.5.6 References
	6.6
		6.6 Solute Transport During Variably Saturated Flow—Inverse Methods
			6.6.1 Introduction
			6.6.2 Theory of Flow, Transport, and Optimization
			6.6.3 Examples
				6.6.3.1 Steady-State Laboratory Flow Experiment with Nonlinear Transport
				6.6.3.2 Laboratory Transport Subject to Flow Interruption
				6.6.3.3 Transient Laboratory Experiment with Equilibrium Solute Transport
				6.6.3.4 Field Experiment with Nonequilibrium Solute Transport
			6.6.4 Conclusions
			6.6.5 References
	6.7
		6.7 Processes Governing Transport of Organic Solutes
			6.7.1 Phase Transfer and Distribution Coefficients
				6.7.1.1 Air–Water Distribution
				6.7.1.2 Soil–Water Distribution
				6.7.1.3 Soil–Air Distribution
				6.7.1.4. Implications of Soil–Water–Air Distribution on Solute Transport
			6.7.2 Transformation
				6.7.2.1 Chemical Transformation
				6.7.2.2 Biological Degradation
				6.7.2.3 Photodegradation
				6.7.2.4 Implications of Transformation on Solute Transport
			6.7.3 References
	6.8
		6.8 Microbial Transport
			6.8.1 Introduction
				6.8.1.1 Parasites
				6.8.1.2 Bacteria
				6.8.1.3 Viruses
			6.8.2 Laboratory Methods
				6.8.2.1 Batch Equilibration Method
				6.8.2.2 Flowthrough Columns
			6.8.3 Field Studies
			6.8.4 Indicators of Human Enteroviruses
			6.8.5 Microbial Transport Modeling
			6.8.6 References
	6.9
		6.9 Geochemical Transport
			6.9.1 Introduction
			6.9.2 Geochemical Reaction Equations
				6.9.2.1 Complexation
				6.9.2.2 Cation Exchange Reactions
				6.9.2.3 Adsorption Reactions
				6.9.2.4 Precipitation–Dissolution
				6.9.2.5 Reactions with Organic Matter and Effects of Bacteria
				6.9.2.6 Activity Coefficients and Thermodynamic Equilibrium Constants
			6.9.3 Mass-Balance Transport Equations
			6.9.4 Numerical Implementation
			6.9.5 Effects of Solution Composition on Hydraulic Properties and Reclamation Models
			6.9.6 Applications
			6.9.7 Use of Geochemical Transport Models
			6.9.8 References
	7.1
		Chapter 7: Multi-Fluid Flow
			7.1 Introduction
			7.2 Fluid Contents
				7.2.1 Introduction
				7.2.2 Nondestructive Measurements
					7.2.2.1 Gamma Radiation
					7.2.2.2 X-ray Radiation
					7.2.2.3 Other Methods
				7.2.3 Destructive Measurements
			7.3 Saturation-Pressure Relationships
				7.3.1 Introduction
				7.3.2 Air-Nonaqueous Phase Liquid Systems
				7.3.3 Two Immiscible Liquids
				7.3.4 Air and Two Immiscible Liquids
			7.4 Relative Permeability Measurements
				7.4.1 Introduction
				7.4.2 Nonaqueous Phase Liquid-Gas Systems
				7.4.3 Nonaqueous Phase Liquid-Water Systems
					7.4.3.1 Theory
					7.4.3.2 Equipment and Measurements
					7.4.3.3 Summary and Comments
			7.5 Prediction of Capillary Pressure-Relative Permeability Relations
				7.5.1 Introduction
				7.5.2 Extending Two-Phase Saturation-Pressure Relations to Air-Nonaqueous Phase Liquid-Water Systems: Nonhysteretic
				7.5.3 Extending Two-Phase Saturation-Pressure Relations to Air-Nonaqueous Phase Liquid-Water Systems: Hysteretic
			7.6 Measuring Interfacial Areas of Immiscible Fluids
				7.6.1 Introduction
				7.6.2 Experimental Techniques for the Measurement of Interfacial Areas
					7.6.2.1 Trapped Nonwetting Phase
					7.6.2.2 Continuous Nonwetting Phase
				7.6.3 Water Saturation-Interfacial Area Relationship
				7.6.4 Comments
			7.7 References
	8.1
		Chapter 8: Soil Erosion by Water and Tillage
			8.1 Introduction
			8.2 Soil Erosion by Water
				8.2.1 Soil Erosion Measurements
					8.2.1.1 Monitoring Erosion during Natural Storm Events
					8.2.1.2 Erosion Measurements during Simulated Rain Storms
					8.2.1.3 Experimental Area
				8.2.2 Soil Erosion Prediction
					8.2.2.1 USLE-RUSLE Relationships
					8.2.2.2 Water Erosion Protection Project Soil Erosion Prediction Relationship
			8.3 Tillage Erosion
				8.3.1 Experimental Measurement of Tillage Erosion using Tracers
					8.3.1.1 Principle
					8.3.1.2 Equipment, Software, and Supplies
					8.3.1.3 Procedural Steps
				8.3.2 Measurement of Tillage Erosion by Volumetric Assessment of Soil Translocation
					8.3.2.1 Principle
					8.3.2.2 Equipment, Software, and Supplies
					8.3.2.3 Procedural Steps
				8.3.3 Estimation of Tillage Erosion from Cesium-137 Inventories
					8.3.3.1 Principle
					8.3.3.2 Equipment, Software, and Supplies
					8.3.3.3 Procedural Steps
			8.4 References
	8.2
		SUBJECT INDEX




نظرات کاربران