دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Peter J. Bottomley (editor), J. Scott Angle (editor), R. W. Weaver (editor) سری: ISBN (شابک) : 089118810X, 9780891188100 ناشر: ACSESS سال نشر: 2014 تعداد صفحات: 1094 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 118 مگابایت
در صورت تبدیل فایل کتاب Methods of Soil Analysis, Part 2: Microbiological and Biochemical Properties: 12 (SSSA Book Series) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب روشهای تجزیه و تحلیل خاک ، قسمت 2: خواص میکروبیولوژیکی و بیوشیمیایی: 12 (سری کتاب SSSA) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
یکی از منابع اولیه در مورد روش های تحلیلی در علم خاک، قسمت 2 از سری روش ها برای همه دانشمندان زیست زمین، به ویژه کسانی که علاقه مند به میکروبیولوژی یا زیست پالایی هستند، مفید خواهد بود.
One of the primary references on analytical methods in soil science, Part 2 of the Methods series will be useful to all biogeoscientists, especially those with an interest in microbiology or bioremediation.
0 Title Page Copyright Page Table of Contents Foreword Preface Contributors Conversion Factors for SI and non-SI Units 1 Chapter 1 Soil Sampling for Microbiological Analysis 1-1 Principles 1-1.1 Judgement Samples 1-1.2 Simple Random Samples 1-1.3 Stratified Random Samples 1-1.4 Systematic Samples 1-1.5 Composite Samples 1-1.6 Number of Samples to Take 1-2 Methods 1-2.1 Bulk Samples for Isolation 1-2.2 Characterization Studies 1-2.3 Processing Samples for Microbiological Studies 1-3 Sources of Error 1-4 Concluding Remarks References 2 Chapter 2 Statistical Treatment of Microbial Data 2-1 Characteristics of the Lognormal Distribution 2-2 Diagnosing Lognormality 2-2.1 Sample Statistics as Indicators of Asymmetry 2-2.2 Graphical Methods 2-2.3 Goodness-of-Fit Tests 2-3 Estimating Population Parameters from Sample Data 2-3.1 General Considerations 2-3.2 The Uniformly Minimum Variance Unbiased Estimators 2-3.3 Application of the UMVU Estimators 2-3.4 Confidence Intervals 2-4 Selecting the Appropriate Location Parameter 2-4.1 The Mean vs. the Median: General Considerations 2-4.2 Effects of Sample Volume on the Mean and Median 2-4.3 The Median as the Location Parameter of Choice 2-4.4 The Mean as the Location Parameter of Choice 2-5 Hypothesis Testing 2-5.1 General Considerations 2-5.2 Efficacy of Hypothesis Testing Procedures 2-5.3 Recommendations 2-6 Sample Number Requirements 2-6.1 Estimating the Mean 2-6.2 Compositing 2-6.3 Power of Statistical Tests 2-7 Concluding Remarks Appendix 1: Statistical Tables Appendix 2: Computer Programs References 3 Chapter 3 Soil Sterilization 3-1 Principles 3-2 Moist Heat 3-2.1 Materials 3-2.2 Procedures 3-2.3 Comments 3-3 Dry Heat 3-3.1 Materials 3-3.2 Procedures 3-3.3 Comments 3-4 Gamma Irradiation 3-4.1 Materials 3-4.2 Procedures 3-4.3 Comments 3-5 Microwave Irradiation 3-6 Gaseous Compounds 3-6.1 Materials 3-6.2 Procedures 3-6.3 Comments 3-7 Nongaseous Compounds 3-7.1 Mercuric Chloride 3-7.2 Azide 3-8 Conclusions References 4 Chapter 4 Soil Water Potential 4-1 Principles 4-2 Materials 4-3 Procedure 4-4 Comments References 5 Chapter 5 Most Probable Number Counts 5-1 Principles 5-1.1 Theoretical Assumptions 5-1.2 The Mathematical Solution of the Most Probable Number 5-1.3 Confidence Limits and Population Estimate Separation 5-1.4 Reliability of Experimental Results and Tests of Technique 5-1.5 Calibration of MPN Technique 5-2 Methodology 5-2.1 Experimental Design 5-2.2 Materials 5-2.3 Soil Sampling, Preparation and Storage Prior to Dilution 5-2.4 Preparation of the Dilution Series and Culture of Inoculated Test Units 5-2.5 Recording Experimental Results 5-2.6 Assigning Tabular Population Estimates to Results 5-2.7 Correcting for Initial Dilution and Inoculant Volume 5-2.8 Constructing Confidence Limits 5-2.9 Sample Calculations 5-3 Comments Acknowledgment References 6 Chapter 6 Light Microscopic Methods for Studying Soil Microorganisms 6-1 Sampling of Soil for Microscopic Observation 6-1.1 Time of Sampling 6-1.2 Depth of Sampling 6-1.3 Rhizosphere vs. Nonrhizosphere Soil 6-2 Microscopic Enumeration of Total Bacteria in Soil 6-2.1 Separation of Bacteria from Soil by Dispersion, Dilution, and Selective Filtration 6-2.2 Enumeration of Specific Bacterial Types by Immunofluorescence Microscopy 6-2.3 Separation of Bacteria from Soil by Extraction and Flocculation 6-2.4 Separation of Bacteria from Soil by Density Gradient Centrifugation 6-2.5 Determining the Efficiency of Recovering Bacteria from Soil for Microscopic Enumeration 6-3 Determining the Proportion of Viable Soil Bacteria Using a Cell Elongation Assay 6-3.1 Principle 6-3.2 Procedure 6-3.3 Comments 6-4 Determining the Proportion of Viable Soil Bacteria by Following the Reduction of Tetrazolium Dyes to Formazan 6-4.1 Principle 6-4.2 Procedure 6-4.3 Staining Procedure (from Schmidt & Paul, 1982 6-4.4 Comments 6-5 Microscopic Determination of the Mycelial Length of Soil Fungi 6-5.1 Agar Film Technique 6-5.2 Membrane Filtration Method for Determining the Mycelial Length 6-6 Determining the Proportion of Metabolically Active Fungal Mycelia by Following the Hydrolysis of Fluorescein Diacetate 6-6.1 Procedure 6-6.2 Comments 6-7 Determining the Proportion of Metabolically Active Fungal Mycelia by Following the Reduction of Tetrazolium Dyes to Formazan 6-7.1 Procedure 6-7.2 Comments 6-8 Determining the Weight of Soil Biomass from Microscopic Estimates of Biovolume 6-8.1 Influence of Cellular Water Content on a Dry Weight: Biovolume Conversion Factor 6-8.2 Comments 6-8.3 Calculation of Bacterial Biomass (WB) 6-8.4 Calculation of Fungal Biomass (WF) 6-8.5 Comments 6-9 Microscopic Enumeration of Bacteria with Fluorescently Labeled Oligonucleotides Directed at Specific Regions of 16S Ribosomal RNA 6-9.1 Procedure (from Amann et al., 1990) 6-9.2 Procedure (from Tsien et al., 1990) Acknowledgment References 7 Chapter 7 Viruses 7-1 General Principles of Analysis 7-2 Phages 7-2.1 Direct Counts 7-2.2 Enrichment Procedures 7-2.3 Purification and Storage 7-3 Enteric Viruses 7-3.1 Direct Counts References 8 Chapter 8 Recovery and Enumeration of Viable Bacteria 8-1 Principles of Enumerating Soil Bacteria 8-1.1 Limitations of Plate Counts 8-2 Materials and Equipment 8-2.1 Field 8-2.2 Laboratory 8-3 Collection and Preparation of Soil Samples 8-4 Release of Bacteria from Soils 8-5 Diluents Used in Recovery and Enumeration of Soil Bacteria 8-6 Preparation of Serial Dilutions 8-6.1 Procedure-Ten-Fold Dilution Series 8-6.2 Comments 8-7 Plating Techniques 8-7.1 The Pour Plate Technique 8-7.2 The Spread Plate Technique 8-7.3 The Drop Plate Method 8-8 Media for Enumeration of Soil Bacteria 8-8.1 Addition of Inhibitors to Culture Media 8-8.2 Some Examples of Selective Media 8-8.3 Comments 8-8.4 "Strength" of Culture Media for Soil Bacteria 8-9 Analysis and Presentation of Plate Count Data 8-9.1 The "30 to 300 Rule" 8-10 Conclusion References 9 Chapter 9 Coliform Bacteria 9-1 Recovery and Enumeration of Fecal Coliforms from Soil 9-1.1 Collection of Samples-Soil 9-1.2 Enumeration of Bacteria 9-2 Detection and Enumeration of Total Coliforms 9-2.1 Multiple Tube Fermentation 9-2.2 Confirmation of Fecal Coliforms 9-3 Rapid Test for Detection of E. Coli in Soil 9-3.1 Introduction 9-3.2 Materials 9-3.3 Supplies 9-3.4 Procedure 9-3.5 Comments 9-4 Direct Methods for Detection of E. Coli in Soil Acknowledgment References 10 Chapter 10 Autotrophic Nitrifying Bacteria 10-1 Enumeration by Most Probable Number 10-1.1 Ammonium Oxidizers by Most Probable Number 10-1.2 Nitrite Oxidizers by Most Probable Number 10-2 Diversity of Nitrifiers 10-2.1 Introduction 10-2.2 Materials 10-2.3 Procedure 10-2.4 Comments 10-3 Immunofluorescence Examination 10-3.1 Introduction 10-3.2 Materials 10-3.3 Procedure 10-4 Isolation of Nitrifiers 10-4.1 Introduction 10-4.2 Materials 10-4.3 Procedure 10-5 Maintenance of Pure Cultures 10-5.1 Introduction 10-5.2 Materials 10-5.3 Procedure 10-6 Nitrifying Activity in Soils 10-6.1 Nitrifying Potential of Soil 10-6.2 Short-Term Nitrifying Activity References 11 Chapter 11 Free-Living Dinitrogen-Fixing Bacteria 11-1 The Acetylene Reduction Assay 11-2 Methods for Dinitrogen Fixers in General 11-2.1 Principles 11-2.2 Classification into Major Genera 11-3 Methods for Azotobacteraceae 11-3.1 Principles 11-3.2 Method for Azotobacter and Azomonas 11-3.3 Method for Beijerinckia 11-4 Method for Methanotrophs 11-4.1 Principles 11-4.2 Plate Count Method for Methanotrophs 11-4.3 Most Probable Number Method for Methanotrophs 11-5 Method for Hydrogen-Using Dinitrogen Fixers 11-5.1 Principles 11-5.2 Prepared Materials 11-5.3 Procedure 11-6 Method for Cyanobacteria 11-6.1 Principles 11-6.2 Prepared Materials 11-6.3 Procedure 11-7 Method for Photosynthetic Purple Nonsulfur Bacteria 11-7.1 Principles 11-7.2 Prepared Materials 11-7.3 Procedure 11-8 Method for Clostridia 11-8.1 Principles 11-8.2 Prepared Materials 11-8.3 Procedure 11-8.4 Comments 11-9 Method for Sulfate-Reducing Bacteria 11-9.1 Principles 11-9.2 Prepared Materials 11-9.3 Procedure References 12 Chapter 12 Legume Nodule Symbionts 12-1 Nodule Collection and the Isolation of Symbionts 12-1.1 Principles 12-1.2 Materials 12-1.3 Procedure 12-1.4 Comments 12-2 Cultivation of Nodule Symbionts 12-2.1 Principles 12-2.2 Materials 12-2.3 Procedure 12-3 Maintenance of Cultures 12-3.1 Principles 12-3.2 Materials 12-3.3 Procedures 12-3.4 Comments 12-4 Enumeration of Nodule Symbionts in Soil and Inoculants 12-4.1 Principles 12-4.2 Materials 12-4.3 Procedure 12-4.4 Comments 12-5 Inoculants for Field Experimentation 12-5.1 Principles 12-5.2 Materials 12-5.3 Procedure 12-5.4 Comments 12-6 Inoculation of Seed 12-6.1 Principles 12-6.2 Materials 12-6.3 Procedure 12-7 Field Experimentation Involving Inoculation 12-7.1 Principles 12-8 Growth-Pouch Infection Assays 12-8.1 Principles 12-8.2 Materials 12-8.3 Procedure 12-8.3 Comments References 13 Chapter 13 Anaerobic Bacteria and Processes 13-1 Principles 13-2 Methods for Removal of Oxygen 13-2.1 Removal of Oxygen from Gas Lines and Filter-Sterilization of Gases (Martin, 1971; Zehnder, 1976) 13-2.2 Cold Catalytic Oxygen Removal with Hydrogen 13-2.3 Other Methods 13-3 Methods for Reduction of Media 13-3.1 Materials 13-3.2 Procedure 13-3.3 Comments 13-4 Redox Indicators 13-4.1 Methylene Blue (Skinner, 1971) 13-4.2 Resazurin 13-4.3 Phenosafranine (Bryant, 1963) 13-4.4 Comments 13-5 Culture Methods 13-5.1 Conventional Anaerobic Techniques 13-5.2 Strict Anaerobic Techniques 13-6 Enumeration Methods 13-6.1 General Comments 13-6.2 Heterotrophs (Molongoski & Klug, 1976) 13-6.3 Clostridia (Gibbs & Freame, 1965) 13-6.4 Sulfate Reducers (Pankhurst, 1971; also see Postgate, 1984) 13-6.5 Carbon Dioxide Reducers (Braun et al., 1979) 13-7 Simple Method to Carry Out Anaerobic Incubations of Soil 13-7.1 Materials 13-7.2 Procedure 13-7.2 Comments Acknowledgments References 14 Chapter 14 Denitrifiers 14-1 Nitrate Reducing Processes 14-1.1 Assimilatory Nitrate Reduction 14-1.2 Respiratory Denitrification 14-1.3 Dissimilatory Nitrate Reduction to Ammonium 14-1.4 Nitrate Respiration 14-1.5 Nonrespiratory Denitrification 14-1.6 Chemodenitrification 14-2 Key Physiological and Ecological Features of Respiratory Denitrifiers 14-3 Enumeration of Denitrifiers 14-3.1 Principle 14-3.2 Materials 14-3.3 Procedures 14-3.4 Comments 14-4 Enumeration of Dissimilatory Nitrate to Ammonium Reducers 14-4.1 Principle 14-4.2 Materials and Procedure 14-4.3 Comments 14-5 Denitrifier Enzyme Activity 14-5.1 Principle 14-5.2 Materials 14-5.3 Procedure 14-5.4 Comments 14-6 Isolation of Denitrifiers 14-6.1 Principle 14-6.2 Materials 14-6.3 Procedure 14-6.4 Comments 14-7 Confirmation of Respiratory Denitrification 14-7.1 Principles 14-7.2 Materials 14-7.3 Procedure 14-7.4 Comments 14-7.5 Further Characterization and Confirmation of Respiratory Denitrification 14-8 Taxonomic Identification Acknowledgment References 15 Chapter 15 Actinomycetes 15-1 Enumeration, Enrichment, and Isolation 15-1.1 Principles 15-1.2 Direct Methods for Observation and Enumeration 15-1.3 Methods for Isolation and Enumeration 15-1.4 Comments 15-2 Isolation of Physiological Groups 15-2.1 Principles 15-2.2 Isolation of Autotrophs 15-2.3 Isolation and Enumeration of Thermophils 15-2.4 Isolation of Acidophilic and Alkalophilic Actinomycetes 15-2.5 Acidophilic Actinomycetes 15-2.6 Isolation and Enumeration of Microaerophilic Actinomycetes 15-2.7 Isolation and Detection of Actinomycetes with Biodegradative Activity 15-2.8 Detection of Antimicrobial Activity 15-3 Grouping and Identification of Actinomycetes 15-3.1 Principles 15-3.2 Cell Wall Analysis 15-3.3 Maintenance of Isolates 15-3.4 Morphological Examination 15-3.5 Comments References 16 Chapter 16 Frankia and the Actinorhizal Symbiosis 16-1 Characteristics of Frankia 16-1.1 Attributes of Actinorhizae 16-2 Isolation, Culturing, and Maintenance of Frankia Strains 16-2.1 Isolation of Frankia Strains 16-2.2 Cultivation and Maintenance 16-2.3 Strain Registry 16-2.4 Taxonomy 16-3 Quantification and Differentiation of Frankia Strains 16-3.1 Quantification 16-3.2 Strain Differentiation 16-4 Characterization of Frankia in Symbiosis 16-4.1 Host Specificity 16-4.2 Nodule Metabolism (Nitrogen Fixation) 16-4.3 Nodule Morphology (Sporulation) 16-4.4 Nodule DNA/RNA Assays 16-5 Quantification in Soil 16-5.1 Plants as a Bioassay System 16-5.2 Fluorescent Antibodies 16-5.3 DNA/RNA Probes 16-6 Conclusion Acknowledgments References 17 Chapter 17 Filamentous Fungi 17-1 Qualitative Studies: Isolation Methods 17-1.1 Choice of Appropriate Isolating Media 17-1.2 General Soil Studies 17-1.3 Special Substrates 17-1.4 Selective Methods 17-2 Quantitative Methods 17-2.1 Introduction 17-2.2 Direct Observation Methods 17-2.3 Chemical Methods 17-2.4 Physiological Methods References 18 Chapter 18 Vesicular-Arbuscular Mycorrhizal Fungi 18-1 Quantification of Vesicular-Arbuscular Mycorrhizal Propagules in Soil 18-1.1 Introduction 18-1.2 Most Probable Number Assay 18-1.3 Infectivity Assays 18-2 Quantification of Vesicular-Arbuscular Mycorrhizal Colonization in Roots 18-2.1 Visualizing Vesicular-Arbuscular Mycorrhizal Fungi in Roots 18-2.2 Estimation of Colonized Root Length 18-2.3 Chemical Determinations 18-3 Quantification of Vesicular-Arbuscular Mycorrhizal External Hyphae 18-3.1 Introduction 18-3.2 Indirect Methods for Total Hyphae 18-3.3 Direct Methods for Total Hyphae 18-3.4 Detection of Active Hyphae 18-4 Recovery of Vesicular-Arbuscular Mycorrhizal Fungal Spores 18-4.1 Wet Sieving and Decanting/Density Gradient Centrifugation 18-5 Identification of Vesicular-Arbuscular Mycorrhizal Fungi 18-6 Assessment of Growth Response and Selection of Effective Isolates 18-6.1 Phosphorus-Response Curves and Mycorrhizal Dependency 18-6.2 Screening for Effective Isolates 18-7 Production and Use of Vesicular-Arbuscular Mycorrhizal Inocula 18-7.1 Soil-Based Pot Cultures 18-7.2 Soil-Less Media 18-7.3 Nutrient Flow and Aeroponic Systems 18-7.4 Storage of Inoculum 18-7.5 Application of Vesicular-Arbuscular Mycorrhizal Inocula 18-8 Monoxenic Cultures for Basic Research References 19 Chapter 19 Isolation of Microorganisms Producing Antibiotics 19-1 General Principles 19-1.1 Preface 19-1.2 Sampling Strategies 19-1.3 Selection of Isolation Method 19-1.4 Selection of Indicator Organisms 19-1.5 Assay Standardization 19-2 Microbiological Media 19-2.1 General Comments 19-2.2 Common Media for Antibiosis Assays 19-3 Preparation of Inocula 19-3.1 General Comments 19-3.2 Bacterial Inocula 19-3.3 Fungal Inocula 19-4 Dual Culture Detection Methods 19-4.1 Introduction 19-4.2 Microbial Lawn Technique 19-4.3 Fungal Disk Technique 19-4.4 Cross Streak Technique 19-5 Culture Filtrate Methods 19-5.1 Introduction 19-5.2 Preparation of Culture Filtrates 19-5.3 Paper Disk Technique 19-5.4 Agar Well Technique 19-5.5 Radial Growth Technique 19-5.6 Biomass Technique 19-6 Screening Methods 19-6.1 Introduction 19-6.2 Single Agar Layer Technique 19-6.3 Multiple Agar Layer Techniques 19-7 Methods for Selected Classes of Compounds 19-7.1 Introduction 19-7.2 Bacteriocins 19-7.3 Siderophores 19-7.4 Mycolytic Enzymes 19-7.5 Volatile Compounds 19-8 Concluding Comments References 20 Chapter 20 Microbiological Procedures for Biodegradation Research 20-1 The Enrichment Culture 20-1.1 Principles 20-1.2 Materials 20-1.3 Procedure 20-2 Isolation of Pure Cultures 20-2.1 Principles 20-2.2 Materials 20-2.3 Procedures 20-3 Maintenance of Cultures 20-3.1 Principles 20-3.2 Materials 20-3.3 Procedure 20-4 Growth in Liquid Cultures 20-4.1 Principles 20-4.2 Materials 20-4.3 Procedure 20-5 Preparation of Washed Cell Suspensions 20-5.1 Principles 20-5.2 Materials 20-5.3 Procedure 20-6 Preparation and Use of Cell-Free Extracts 20-6.1 Principles 20-6.2 Materials 20-6.3 Procedure 20-7 Oxygen Consumption 20-7.1 Principles 20-7.2 Materials 20-7.3 Procedure 20-8 Chloride Determination 20-8.2 Materials 20-8.2 Materials 20-8.3 Procedure 20-9 Conclusion References 21 Chapter 21 Algae and Cyanobacteria 21-1 Identification of Soil Algae and Cyanobacteria 21-1.1 Principles 21-1.2 Materials and Procedure 21-2 Direct Methods for Enumeration 21-2.1 Principles 21-2.2 Materials and Procedure for Collecting Soil Veneers 21-2.3 Microscopy and Enumeration by Cell Counting 21-2.4 Enumeration by Chlorophyll Autofluorescence 21-2.5 Implanted Slide Method 21-2.6 Method for Diatom Frustules 21-2.7 Methods for Cyanobacteria in Rice Fields 21-2.8 Procedure for Endolithic Microalgae 21-3 Indirect Methods for Enumeration 21-3.1 Enumeration of Colony-Forming Units on Solid Media 21-3.2 Most Probable Number Method for Enumeration 21-3.3 Chlorophyll Extraction and Quantification 21-4 Methods for Isolation and Purification of Microalgal Cultures 21-4.1 Procedure for Preparing Fine Capillary Pipets 21-4.2 Isolation and Purification by Repeated Washing 21-4.3 Isolation and Purification by the Streak Plate Method 21-4.4 Purification by the Centrifugation Technique 21-4.5 Purification by the Zoospore Technique 21-5 Methods for Growth and Storage of Microalgal Cultures 21-5.1 Culture Methods and Growth Media 21-5.2 Storage and Preservation Methods 21-6 Methods for Estimating Photosynthesis 21-7 Methods for Measuring Cyanobacterial Dinitrogen Fixation 21-8 Methods for Studying Endosymbiotic Cyanobacteria in Cycad Roots 21-8.1 Principles 21-8.2 Procedure for Coralloid Roots and Root Sections 21-8.3 Procedure for Isolating Endosymbiotic Cyanobacteria Acknowledgment References 22 Chapter 22 Nematodes 22-1 Nematode Sampling 22-1.1 Nematode Distribution 22-1.2 Sample Collection 22-1.3 Sampling Pattern 22-1.4 Timing of Sampling Collections 22-1.5 Sample Size 22-1.6 Nematode Sampling for Ecological Studies 22-2 Extraction of Nematodes from Soil 22-2.1 Cobb Sieving and Decanting (Wet Sieving) (Cobb, 1918) 22-2.2 Modified Baermann Funnel Method 22-2.3 Density (Sucrose) Centrifugation 22-2.4 Elutriation (Fig. 22-4A) 22-2.5 Extracting Heterodera Cysts 22-3 Extraction of Nematodes from Plant Material 22-3.1 Direct Examination of Plant Material 22-3.2 Baermann Funnel Extraction 22-3.3 Root-Incubation Technique 22-3.4 Mist Chamber Extraction (Seinhorst, 1950) 22-4 Microscopic Observation and Identification of Nematodes 22-4.1 Temporary Mounts 22-4.2 Permanent Mounts 22-5 Nematode Identification 22-5.1 Nematodes with Stylets 22-5.2 Nematodes without Stylets References 23 Chapter 23 Protozoa 23-1 First Considerations 23-1.1 Considering Soil 23-1.2 Environmental Selection 23-2 Protozoan Ecology 23-2.1 Ecological Roles 23-2.2 Protozoan Communities 23-2.3 Numbers and Food Resources 23-2.4 Escape from Adverse Conditions 23-3 Methods of Enumeration 23-3.1 Direct Observation Methods 23-3.2 Indirect Enumeration 23-4 Identification 23-5 Summary Acknowledgment References 24 Chapter 24 Arthropods 24-1 Principles 24-2 Methods 24-2.1 Evaluation of Biota in the Field 24-2.2 Sampling Soil Cores 24-2.3 Extraction of Soil Arthropods by Physical Methods 24-3 Processing the Extracted Biota Sample 24-3.1 Comments 24-4 Biota Identification 24-5 Preservation and Archiving 24-5.1 Preservation 24-6 Archiving 24-6.1 Assigning Morphospecies to Functional Ecological Groupings 24-6.2 Transforming Census Data 24-7 Rearing 24-8 Statistical Methods to Analyze Diversity References 25 Chapter 25 Carbon Utilization and Fatty Acid Profiles for Characterization of Bacteria 25-1 Characterization of Bacteria 25-2 Carbon Source Utilization 25-2.1 Principles 25-2.2 Materials 25-2.3 Procedure 25-3 Fatty Acid Analysis 25-3.1 Principles 25-3.2 Materials 25-3.3 Procedure References 26 Chapter 26 Multilocus Enzyme Electrophoresis Methods for the Analysis of Bacterial Population Genetic Structure 26-1 Principles 26-2 Methods 26-2.1 Preparation of Enzyme Extracts 26-2.2 Electrophoresis 26-2.3 Enzyme Staining 26-2.4 Collecting and Analyzing Data References 27 Chapter 27 Spontaneous and Intrinsic Antibiotic Resistance Markers 27-1 Selection of Spontaneous Antibiotic Resistant Strains 27-1.1 Principles 27-1.2 Materials 27-1.3 Procedures 27-2 Selection of Intrinsic Antibiotic Resistant Strains 27-2.1 Principles 27.2.2 Materials 27-2.3 Procedures 27-3 Evaluation of SAR and IAR Strains 27-3.1 Principles 27-3.2 Materials 27-3.3 Procedures References 28 Chapter 28 Serology and Conjugation of Antibodies 28-1 Antibodies 28-1.1 Microbes as Antigens 28-1.2 Antibodies 28-1.3 Antibodies Against Microorganisms 28-1.4 Procedures for Utilization of Antibodies 28-2 Adsorption of Cross-Reactive Antibodies from Polyclonal Antiserum 28-2.1 Principles 28-2.2 Materials 28-2.2 Procedure 28-3 Purification of Antibodies from Antiserum 28-3.1 Principles 28-3.2 Materials 28-3.3 Procedure 28-4 Conjugation of Antibodies with Fluorescein Isothyocyanate 28-4.1 Principles 28-4.2 Materials 28-4.3 Procedure 28-5 Storage of Antibodies and Antibody Conjugates 28-6 Immunoassays 28-6.1 Principles 28-6.2 Peroxidase-Linked Immunosorbent Assay 28-6.3 Alkaline Phosphatase-Linked Immunosorbent Assay 28-6.4 Checkerboard Titration 28-6.5 Biotinylated Second Antibody for Enhanced ELISA 28-6.6 Immunoblot to Identify Colonies on a Dilution Plate References 29 Chapter 29 Whole-Cell Protein Profiles of Soil Bacteria by Gel Electrophoresis 29-1 Principles 29-2 Methods 29-2.1 Growth and Collection of Cells 29-2.2 Disruption of Cells 29-2.3 Preparation of Protein Extracts for SDS-PAGE 29-2.4 Electrophoresis 29-2.5 Visualizing Protein Profiles 29-2.6 Storing and Recording of Protein Profiles 29-3 General Comments References 30 Chapter 30 Plasmid Profiles 30-1 Plasmid Chromosome Relationships 30-1.1 Types of Plasmids 30-1.2 Functions of Plasmids 30-2 Plasmid Profile Analysis 30-2.1 Introduction 30-2.2 In Situ Lysis of Bacteria Containing Plasmids Greater than 20 kb 30-2.3 Extraction of Plasmids from Cells, followed by CsCI Ultracentrifugation Purification and Gel Electrophoresis 30-2.4 Alkaline Lysis Miniprep 30-2.5 Storage of Plasmid DNA 30-3 Applications of Plasmid Profile Analyses for Soil Bacteria 30-3.1 Plasmid Functions 30-3.2 Classification of Soil Bacteria References 31 Chapter 31 DNA Fingerprinting and Restriction Fragment Length Polymorphism Analysis 31-1 DNA Fingerprinting 31-1.1 Introduction 31-1.2 DNA Isolation and Purification 31-1.3 Restriction Enzyme Selection and Use 31-1.4 Gel Electrophoresis 31-1.5 Principles 31-1.6 Methods 31-2 RFLP Analyses 31-2.1 Introduction 31-2.2 Principles 31-2.3 Methods References 32 Chapter 32 Nucleic Acid Probes 32-1 Probe Selection 32-2 Isolation and Purification of Fragments to be Used as Probes 32-2.1 Principles 32-2.2 Materials 32-2.3 Procedure 32-3 Labeling of Probes 32-3.1 Introduction 32-3.2 Nonradioactive Probes 32-3.3 Nick Translation 32-3.4 Random Primer Fill-in 32-3.5 Single Stranded Probes 32-3.6 End Labeling of Synthetic Oligonucleotides 32-4 Hybridization 32-4.1 Introduction 32-4.2 Colony Hybridization and Dot/Slot Blots 32-5 Detection Systems 32-5.1 Principles References 33 Chapter 33 Marking Soil Bacteria with lacZY 33-1 Principles 33-2 Materials 33-2.1 Cells 33-2.2 Media 33-2.3 Chemicals and Reagents 33-3 Procedure 33-3.1 Mating and Selection 33-3.2 Confirmation 32-3.3 Identification 33-4 Exconjugant-Type Isolate Vigor 33-5 Marker Stability 33-6 Recovery from Nonsterile Soil 33-7 Attributes and Deficiencies 33-8 Comments References 34 Chapter 34 Detection of Specific DNA Sequences in Environmental Samples Via Polymerase Chain Reaction 34-1 Theory 34-2 Primer Design and Amplification Protocol 34-2.1 Design of Primers 34-2.2 Special Apparatus and Reagents 34-2.3 Procedures 34-3 Optimization of Amplification 34-3.1 Amplification Cycles 34-3.2 Primer Concentration 34-3.3 Mg2+ Concentration 34-3.4 Temperature Cycling Parameters 34-3.5 Nucleotide Concentrations 34-3.6 Taq Polymerase 34-4 Identification of Amplified Products 34-5 Quality Control 34-6 Specificity of Amplification 34-7 Sensitivity of Amplification 34-8 Applications in Environmental Microbiology 34-8.1 Detection of Specific DNA Target Sequences in Soil Samples 34-8.2 Detection of Marker Enzyme Synthesis for Bioassay Studies 34-8.3 Evolutionary and Biodiversity Studies 34-8.4 Horizontal Gene Transfer and Genomic Rearrangements References 35 Chapter 35 Isolation and Purification of Bacterial DNA from Soil 35-1 General Considerations 35-1.1 Biomass 35-1.2 Organic/Humic Content of Soils 35-1.3 Clay Content of Soils 35-2 Bacterial Fractionation Approach for Recovery of Bacterial Community DNA 35-2.1 Principles 35-3 Direct Lysis Approach for the Recovery of Total Bacterial Community DNA 35-3.1 Principles 35-4 Bacterial Fractionation Protocol 35-4.1 Materials 35-4.2 Reagents 35-4.3 Procedure 35-5 Direct Lysis Protocol 35-5.1 Materials 35-5.2 Reagents 35-5.3 Procedure 35-6 Fractionation of DNA Gradients, Final Purification and Quantitation of Bacterial Community DNA 35-6.1 Fractionation of DNA Bands from Cesium Chloride Gradients 35-6.2 Isopropanol Extraction of Ethidium Bromide from DNA 35-6.3 Desalting and Concentration of DNA 35-6.4 Spectrophotometric Quantitation of DNA 35-6.5 Quantitation of DNA by Ultraviolet Fluorescence in the Presence of Ethidium Bromide Acknowledgments References 36 Chapter 36 Microbial Biomass 36-1 Soil Sampling, Preparation, and Storage 36-2 Physiological Methods 36-2.1 Chloroform Fumigation Incubation Method 36-2.2 Substrate-Induced Respiration Method 36-3 Chemical Methods 36-3.1 Chloroform Fumigation Extraction Method 36-3.2 ATP Determinations 36-4 Comparison of Methods References 37 Chapter 37 Soil Enzymes 37-1 Principles 37-1.1 Mechanism of Enzyme Action 37-2 Factors Affecting Rates of Enzyme Reactions 37-2.1 Concentration of Enzyme and Substrate 37-2.2 Temperature 37-2.3 pH 37-2.4 Cofactors, Inhibitors, and Ionic Environment 37-2.5 Enzyme Inhibition 37-2.6 Enzymes in Soils 37-3 Assay of Enzymes in Soils 37-3.1 Amidohydrolases (L-Asparaginase, L-Glutaminase, Amidase, and Urease) 37-3.2 Phosphatases 37-3.3 Arylsulfatase 37-3.4 Rhodanese 37-3.5 Dehydrogenases 37-3.6 B-Glucosidase 37-3.7 Other Enzymes References 38 Chapter 38 Carbon Mineralization 38-1 General Principles 38-1.1 Field vs. Laboratory Experiments 38-2 Experimental Principles 38-2.1 Alkali Trapping and Detection of Carbon Dioxide 38-2.2 Detection of Carbon Dioxide in Gaseous Samples 38-2.3 Detection of Oxygen 38-2.4 Aeration 38-2.5 Chambers 38-2.6 Comparison of Methods 38-3 Field Methods 38-3.1 Carbon Dioxide Detection by Soda Lime Absorption 38-3.2 Soil Carbon Dioxide and Oxygen by Gas Chromatography 38-4 Laboratory Methods 38-4.1 Dynamic Method for Carbon Dioxide 38-4.2 Static Methods for Carbon Dioxide and Oxygen References 39 Chapter 39 Isotopic Methods for the Study of Soil Organic Matter Dynamics 39-1 Decomposition of 14C-Labeled Organic Matter in Soils 39-1.1 Introduction 39-1.2 Obtaining 14C-Labeled Organic Materials 39-1.3 Methods and Approach to Incubations of 14C-Labeled Organic Materials 39-2 13C Natural Abundance Technique: Background and Principles 39-2.1 Introduction 39-2.2 13C Natural Abundance Technique: Methodology 39-3 Decomposition of 15N-Labeled Organic Matter in Soils 39-3.1 Introduction 39-3.2 Labeling Organic Matter with 15N 39-3.3 Determination of Mineralization Rates 39-3.4 Preparation of Samples for 15N Analysis 39-3.5 Calculations 39-3.6 Comments 39-4 Extraction of Labeled Organic Fractions in Studies of Soil Organic Matter Dynamics 39-4.1 Introduction 39-4.2 Extraction of Organic Matter Containing Labeled Carbon 39-4.3 Extraction of Organic Matter Containing Labeled Nitrogen 39-5 Conclusions References 40 Chapter 40 Practical Considerations in the Use of Nitrogen Tracers in Agricultural and Environmental Research 40-1 Preparing 15N-Labeled Materials 40-1.1 Principles 40-1.2 Determining Nitrogen-15 Concentration Needed 40-1.3 Fertilizers 40-2 Field Study Techniques 40-2.1 Principles 40-2.2 Managing Field Variability 40-2.3 Application Techniques 40-2.4 Plot Type and Size 40-2.5 Sample Collection and Preparation 40-3 Preparing for and Measuring Nitrogen-Isotope Ratio 40-3.1 Principles 40-3.2 Conversion of Labeled Nitrogen to Ammonium 40-3.3 Direct Conversion of Labeled Nitrogen to Dinitrogen 40-3.4 Measuring Nitrogen-Isotope Ratio 40-4 Sources of Nitrogen-15 Supply and Analytical Service References 42 Chapter 41 Nitrogen Availability Indices 41-1 Current Status of Nitrogen Availability Indices 41-1.1 Previous Summaries 41-1.2 Selective Review of Recent Work 41-2 Methods 41-2.1 Field Methods 41-2.2 Laboratory Methods 41-2.3 Methods for Inorganic Nitrogen References 43 Chapter 43 Dinitrogen Fixation 43-1 Acetylene Reduction 43-1.1 Principles 43-1.2 Acetylene Reduction for Nodulated Root Systems 43-1.3 Acetylene Reduction for Grass Systems 43-2 Nitrogen Difference 43-2.1 Introduction 43-2.2 Nitrogen-Difference Method for Controlled Environment 43-2.3 Nitrogen Difference Method-Field 43-3 Nitrogen-15 Isotope Techniques 43-3.1 Introduction 43-3.2 Isotope Dilution 43-3.3 Nitrogen-15 Natural Abundance Method 43-4 Use of Dinitrogen-15 Gas 43-4.1 For Measuring Dinitrogen Fixation 43-4.2 Calibration of Acetylene-Reduction Method References 44 Chapter 44 Measuring Denitrification in the Field 44-1 Methods 44-1.1 The Acetylene Inhibition Method 44-1.2 The Nitrogen-15 Method 44-2 Experimental Protocols 44-2.1 Static Core Protocol 44-2.2 Protocol for Closed Chamber Field Gas Flux Measurements Using Acetylene or Nitrogen-15 44-2.3 Measuring Dinitrogen Emissions from Applied Nitrogen-15-Labeled Fertilizer 44-3 Problems with Gas Sampling and Storage Containers 44-4 Gas Diffusion Problems References 45 Chapter 45 Sulfur Oxidation and Reduction in Soils 45-1 Sulfur Oxidation 45-1.1 Principles 45-1.2 Methods 45-2 Sulfate Reduction 45-2.1 Principles 45-2.2 Methods References 46 Chapter 46 Iron and Manganese Oxidation and Reduction 46-1 Iron-Depositing and Manganese-Oxidizing Heterotrophs 46-1.1 Enrichment and Isolation 46-1.2 Dilution Spread Plate Counts 46-2 Iron-Oxidizing Autotrophs 46-2.1 Acidophiles (Enrichment, Isolation, and Enumeration) 46-2.2 Neutrophiles (Enrichment, Isolation, and Enumeration) 46-3 lron- and Manganese-Reducing Heterotrophs 46-3.1 Enumeration of Non-Enzymatic Iron- and Manganese-Reducers 46-3.2 Enrichment and MPN Enumeration of Iron- and Manganese-Respiring Bacteria Acknowledgment References 47 Subject Index