دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: تحلیل و بررسی ویرایش: 2ed. نویسندگان: Richard R. Goldberg سری: ISBN (شابک) : 9780471310655, 0471310654 ناشر: Wiley سال نشر: 1976 تعداد صفحات: 410 زبان: English فرمت فایل : DJVU (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 3 مگابایت
در صورت تبدیل فایل کتاب Methods of real analysis به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب روشهای تحلیل واقعی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
PREFACE CONTENTS INTRODUCTION 1 SETS AND FUNCTIONS 1.1 SETS AND ELEMENTS 1.2 OPERATIONS ON SETS 1.3 FUNCTIONS 1.4 REAL-VALUED FUNCTIONS 1.5 EQUIVALENCE; COUNTABILITY 1.6 REAL NUMBERS 1.7 LEAST UPPER BOUNDS 2 SEQUENCES OF REAL NUMBERS 2.1 DEFINITION OF SEQUENCE AND SUBSEQUENCE 2.2 LIMIT OF A SEQUENCE 2.3 CONVERGENT SEQUENCES 2.4 DIVERGENT SEQUENCES 2.5 BOUNDED SEQUENCES 2.6 MONOTONE SEQUENCES 2.7 OPERATIONS ON CONVERGENT SEQUENCES 2.8 OPERATIONS ON DIVERGENT SEQUENCES 2.9 LIMIT SUPERIOR AND LIMIT INFERIOR 2.10 CAUCHY SEQUENCES 2.11 SUMMABILITY OF SEQUENCES 2.12 LIMIT SUPERIOR AND LIMIT INFERIOR FOR SEQUENCES OF SETS 3 SERIES OF REAL NUMBERS 3.1 CONVERGENCE AND DIVERGENCE 3.2 SERIES WITH NONNEGATIVE TERMS 3.3 ALTERNATING SERIES 3.4 CONDITIONAL CONVERGENCE AND ABSOLUTE CONVERGENCE 3.5 REARRANGEMENTS OF SERIES 3.6 TESTS FOR ABSOLUTE CONVERGENCE 3.7 SERIES WHOSE TERMS FORM A NONINCREASING SEQUENCE 3.8 SUMMATION BY PARTS 3.9 (C, 1) SUMMABILITY OF SERIES 3.10 THE CLASS L^2 3.11 REAL NUMBERS AND DECIMAL EXPANSIONS 3.12 NOTES AND ADDITIONAL EXERCISES FOR CHAPTERS 1, 2, AND 3 4 LIMITS AND METRIC SPACES 4.1 LIMIT OF A FUNCTION ON THE REAL LINE 4.2 METRIC SPACES 4.3 LIMITS IN METRIC SPACES 5 CONTINUOUS FUNCTIONS ON METRIC SPACES 5.1 FUNCTIONS CONTINUOUS AT A POINT ON THE REAL LINE 5.2 REFORMULATION 5.3 FUNCTIONS CONTINUOUS ON A METRIC SPACE 5.4 OPEN SETS 5.5 CLOSED SETS 5.6 DISCONTINUOUS FUNCTIONS ON R^1 5.7 THE DISTANCE FROM A POINT TO A SET 6 CONNECTEDNESS, COMPLETENESS, AND COMPACTNESS 6.1 MORE ABOUT OPEN SETS 6.2 CONNECTED SETS 6.3 BOUNDED SETS AND TOTALLY BOUNDED SETS 6.4 COMPLETE METRIC SPACES 6.5 COMPACT METRIC SPACES 6.6 CONTINUOUS FUNCTIONS ON COMPACT METRIC SPACES 6.7 CONTINUITY OF THE INVERSE FUNCTION 6.8 UNIFORM CONTINUITY 6.9 NOTES AND ADDITIONAL EXERCISES FOR CHAPTERS 4, 5, AND 6 7 CALCULUS 7.1 SETS OF MEASURE ZERO 7.2 DEFINITION OF THE RIEMANN INTEGRAL 7.3 EXISTENCE OF THE RIEMANN INTEGRAL 7.4 PROPERTIES OF THE RIEMANN INTEGRAL 7.5 DERIVATIVES 7.6 ROLLE'S THEOREM 7.7 THE LAW OF THE MEAN 7.8 FUNDAMENTAL THEOREMS OF CALCULUS 7.9IMPROPER INTEGRALS 7.10 IMPROPER INTEGRALS (CONTINUED) 8 THE ELEMENTARY FUNCTIONS. TAYLOR SERIES 8.1 HYPERBOLIC FUNCTIONS 8.2 THE EXPONENTIAL FUNCTION 8.3 THE LOGARITHMIC FUNCTION. DEFINITION OF x^a 8.4 THE TRIGONOMETRIC FUNCTIONS 8.5 TAYLOR'S THEOREM 8.6THE BINOMIAL THEOREM 8.7 L'HOSPITAL'S RULE 9 SEQUENCES AND SERIES O F FUNCTIONS 9.1 POINTWISE CONVERGENCE OF SEQUENCES OF FUNCTIONS 9.2 UNIFORM CONVERGENCE OF SEQUENCES OF FUNCTIONS 9.3 CONSEQUENCES OF UNIFORM CONVERGENCE 9.4 CONVERGENCE AND UNIFORM CONVERGENCE OF SERIES OF FUNCTIONS 9.5 INTEGRATION AND DIFFERENTIATION OF SERIES OF FUNCTIONS 9.6 ABEL SUMMABILITY 9.7 A CONTINUOUS, NOWHERE-DIFFERENTIABLE FUNCTION 10 THREE FAMOUS THEOREMS 10.1 THE METRIC SPACE C[a, b] 10.2 THE WEIERSTRASS APPROXIMATION THEOREM 10.3 PICARD EXISTENCE THEOREM FOR DIFFERENTIAL EQUATIONS 10.4 THE ARZELA THEOREM ON EQUICONTINUOUS FAMILIES 10.5 NOTES AND ADDITIONAL EXERCISES FOR CHAPTERS 9 AND 10 11 THE LEBESGUE INTEGRAL 11.1 LENGTH OF OPEN SETS AND CLOSED SETS 11.2 INNER AND OUTER MEASURE. MEASURABLE SET 11.3 PROPERTIES OF MEASURABLE SETS 11.4 MEASURABLE FUNCTIONS 11.5 DEFINITION AND EXISTENCE OF THE LEBESGUE INTEGRAL FOR BOUNDED FUNCTIONS 11.6 PROPERTIES OF THE LEBESGUE INTEGRAL FOR BOUNDED MEASURABLE FUNCTIONS 11.7 THE LEBESGUE INTEGRAL FOR UNBOUNDED FUNCTIONS 11.8 SOME FUNDAMENTAL THEOREMS 11.9 THE METRIC SPACE L^2[a, b] 11.10 THE INTEGRAL ON -(∞,∞) AND IN THE PLANE 12 FOURIER SERIES 12.1 DEFINITION OF FOURIER SERIES 12.2 FORMULATION OF CONVERGENCE PROBLEMS 12.3 (C, 1) SUMMABILITY OF FOURIER SERIES 12.4 THE L^2 THEORY OF FOURIER SERIES 12.5 CONVERGENGE OF FOURIER SERIES 12.6 ORTHONORMAL EXPANSIONS IN L^2[a, b] 12.7 NOTES AND ADDITIONAL EXERCISES ON CHAPTERS 11 AND 12 APPENDIX ALGEBRA ORDER THE INTEGERS AND THE RATIONAL NUMBERS COMPLETENESS ABSOLUTE VALUES SPECIAL SYMBOLS INDEX