دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Myint Swe Khine (editor)
سری:
ISBN (شابک) : 981169141X, 9789811691416
ناشر: Springer
سال نشر: 2022
تعداد صفحات: 438
[419]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 7 Mb
در صورت تبدیل فایل کتاب Methodology for Multilevel Modeling in Educational Research: Concepts and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب روش شناسی مدل سازی چندسطحی در پژوهش آموزشی: مفاهیم و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Contents Editor and Contributors Part I Introduction 1 Hierarchical Linear Modeling and Multilevel Modeling in Educational Research 1.1 Introduction 1.2 Theoretical Foundations and Conceptual Frameworks 1.3 Methodology for Multilevel Modeling 1.4 Multilevel Analysis of PISA and TIMSS Data 1.5 Multilevel Modeling in Educational Research 1.6 Conclusion Part II Theoretical Foundations and Conceptual Frameworks 2 A Primer for Using Multilevel Confirmatory Factor Analysis Models in Educational Research 2.1 Introduction 2.1.1 Conceptual Principles 2.1.2 Benefits of Using the MCFA Framework 2.2 Analysis Choices for MCFA 2.2.1 Ignoring Nesting 2.2.2 Accounting for Nested Data 2.2.3 Evaluating Model Fit in MCFA 2.3 Applied Example 2.3.1 Areas for Future Research References 3 Multilevel Model Selection: Balancing Model Fit and Adequacy 3.1 Introduction 3.2 Conceptual Overview of Estimation in MLM 3.3 Reliability of Cluster J 3.4 Maximum Likelihood Estimation 3.4.1 FIML 3.4.2 REML 3.4.3 FIML vs. REML 3.5 Model Selection 3.6 Criteria for Evaluating Model Fit 3.6.1 Likelihood Ratio Test (LRT) 3.6.2 Recommendations for Testing Random Effects 3.6.3 Other Issues with Modeling Random Slopes 3.6.4 Information Criteria (ICs) 3.7 Model Adequacy 3.7.1 Proportional Reduction in Variance Statistics 3.7.2 Variance Decomposition Framework for MLM 3.8 Conclusion References 4 Concepts and Applications of Multivariate Multilevel (MVML) Analysis and Multilevel Structural Equation Modeling (MLSEM) 4.1 Introduction of Multilevel Modeling 4.2 Multilevel Structural Equation Modeling (MLSEM) 4.3 Examples of MLSEM Application 4.4 Issues That Should Be Considered When Reporting MLSEM Applications 4.5 Multivariate Multilevel Model (MVML) 4.6 Basic Concepts and Assumptions of the Multivariate Multilevel Model 4.7 Multivariate Random Intercept Model and Examples 4.8 Examples of MVML Applications 4.9 Summary References 5 Data Visualization for Pattern Seeking in Multilevel Modeling 5.1 Introduction 5.2 Data Source 5.3 Preliminary Data Visualization 5.3.1 Profile Analysis by Linking and Brushing 5.3.2 Binning and Median Smoothing for Examining the Relationship between SES and Math Achievement 5.3.3 Data Reduction for Examining the Relationship between SES and Math Achievement in Bubble Plot 5.3.4 Examining Variation between Schools by ANOM Plot 5.4 Multilevel Modeling 5.4.1 Computing ICC to Decompose Variance Components by Random Effects Modeling 5.5 Running a Mixed Model for Fixed and Random Effects using SES 5.5.1 Using School Mean and Locally Centered SES to Disentangle Within and between Groups 5.6 Conclusion References 6 Doubly Latent Multilevel Structural Equation Modeling: An Overview of Main Concepts and Empirical Illustration 6.1 Introduction 6.2 Doubly Latent Multilevel Models 6.2.1 Contextual vs. Climate Effects in Doubly Latent Multilevel Models 6.2.2 Measurement and Sampling Errors in Doubly Latent Multilevel Models 6.2.3 Centering in Doubly Latent Multilevel Models 6.3 Testing Mediation in Multilevel Structural Equation Modeling Framework 6.4 An Empirical Illustration Using Doubly Latent Multilevel Structural Equation Modeling 6.4.1 Theoretical Background and Description of the Study 6.4.2 Estimating Measurement Model and Reliability 6.4.3 Estimating Structural Model 6.5 Conclusions References Part III Methodology for Multilevel Modeling 7 Analyzing Large-Scale Assessment Data with Multilevel Analyses: Demonstration Using the Programme for International Student Assessment (PISA) 2018 Data 7.1 Introduction 7.2 PISA 2018 Data 7.3 Complex Survey Design 7.3.1 Sampling Weights 7.3.2 Plausible Values 7.3.3 Replicate Weights 7.4 Specifying a Multilevel Model 7.5 Example Analysis 7.6 Obtaining the Data 7.7 Model Specification 7.8 Analysis 7.9 Results 7.9.1 Descriptive Statistics 7.9.2 Math Achievement Outcome 7.9.3 MASTGOAL Outcome 7.10 Conclusion Appendix: R syntax References 8 Multilevel Modelling of International Large-Scale Assessment Data 8.1 Introduction 8.2 Sampling in ILSAs and the Use of Multilevel Models 8.3 Outcome Variables in ILSAs 8.3.1 Plausible Values 8.3.2 Continuous and Non-continuous Performance Outcomes 8.4 Configuration of Multilevel Models 8.5 Sampling Weights in ILSAs 8.6 Software 8.7 Summary References 9 Transparency and Replicability of Multilevel Modeling Applications: A Guideline for Improved Reporting Practices 9.1 Introduction 9.2 Statement of Research Questions and Hypotheses 9.3 Description of the Sampling Procedures 9.4 Sample Size, Power, and Precision 9.5 Psychometrics 9.6 Missing data Treatment 9.7 Model Specifications 9.8 Estimation Methods and Software 9.9 Statistical Inference 9.10 Interpretation of Regression Coefficients 9.11 Effect Sizes 9.12 Assumption Checking 9.13 Discussion 9.14 Summary and Checklist References 10 Application of Multilevel Models to International Large-Scale Student Assessment Data 10.1 Introduction 10.2 Example of Typical Use—Modeling Relationship Between Socioeconomic Background and Student Achievement in PISA 2018 10.3 Applications 10.4 Plausible Values and Multilevel Models 10.5 Survey Weights Adjustments for Multilevel Models 10.6 Estimation of Standard Errors 10.7 Multilevel Models with Additional Layers 10.8 Summary References Part IV Multilevel Analysis of PISA and TIMSS Data 11 Changing Trends in the Role of South African Math Teachers’ Qualification for Student Achievement: Findings from TIMSS 2003, 2011, 2015 11.1 Introduction 11.2 Teacher Education of Mathematics Teachers in Post-apartheid South Africa 11.3 Teacher Allocation and Placement in Schools 11.4 Research on Teacher Participation in Professional Development Programs 11.5 Research on the Relationship Between Teacher Qualification and Learning Outcomes 11.6 Research the Relationship Between Teacher Qualification and Learning Outcomes in Mathematics in South Africa 11.7 Research Questions 11.8 Data, Population, and Sample 11.9 Measures 11.9.1 Teacher Qualification 11.9.2 Teacher Covariates 11.9.3 Student Level Control Variables 11.9.4 Classroom Context Control Variables 11.9.5 Student Outcomes 11.9.6 Analytic Strategy 11.9.7 Limitations 11.10 Results 11.10.1 Percentage of Learners by Qualification Levels 11.10.2 Teacher Allocations by Qualification Profile and School Student Composition 11.10.3 Intensity and Focus of Teacher Participation in Formal Professional Development Activities 11.10.4 Relationship Between Teacher Qualification and Student Outcomes 11.11 Summary of Findings References 12 Revisiting the Relationship Between Science Teaching Practice and Scientific Literacy: Multi-level Analysis Using PISA 12.1 Introduction 12.2 Literature Review 12.2.1 Benefits and Challenges of DI and IBT 12.2.2 Review of Impacts of Teaching Practices (Inquiry Versus Direct) on Science Achievement 12.2.3 Relationship Between Inquiry Teaching and Science Achievement in PISA Studies 12.3 Methods 12.3.1 Data and Sample 12.3.2 Measures 12.3.3 Multivariate Multilevel Model 12.4 Results 12.5 Discussion 12.5.1 Implications for Teacher Education and Professional Development 12.5.2 Limitations and Future Directions 12.6 Conclusion References 13 Family Meals and Academic Performance: A Multilevel Analysis for Spain 13.1 Introduction 13.2 Literature Review 13.3 Methodological Approach 13.3.1 Variables 13.3.2 Multilevel Modeling 13.4 Results 13.5 Conclusions References 14 Multilevel Modeling of Nordic Students’ Mathematics Achievements in TIMSS 2019 14.1 Introduction 14.2 Method 14.2.1 Participants 14.2.2 Statistical analyses 14.3 Results 14.4 Discussion References 15 Teachers’ Perceptions of School Ethical Culture: The Implicit Meaning of TIMSS 15.1 Introduction 15.2 Theoretical Background 15.2.1 Ethics in the Context of National and Universal Culture 15.2.2 Confusion Around the Definitions of Culture and Climate in the Context of Ethics 15.2.3 School Ethical Culture 15.2.4 The Ethical Aspects of TIMSS 15.3 Method 15.3.1 Context 15.3.2 Sample 15.3.3 Overview of Procedures and Analyses 15.4 Results 15.5 Discussion 15.6 Conclusions Appendix: Selection rule for relevant items (Expert judgment) References Part V Multilevel Modeling in Educational Research 16 Why They Want to Leave? A Three-Level Hierarchical Linear Modeling Analysis of Teacher Turnover Intention 16.1 Introduction 16.2 Multilevel Modeling and Teacher Turnover Research 16.3 Teacher Turnover Intention 16.4 Teacher- and School-Level Characteristics and Teacher Turnover Intention 16.5 Country-Level Variables and Teacher Turnover Intentions 16.5.1 Cross-Level Interactions (Moderation Effects) 16.6 Method 16.7 Findings 16.7.1 The Effect of Individual and School Characteristics (Compositional Effects) 16.7.2 The Effects of Country Variables 16.7.3 The Cross-Level Interaction (The Moderation Effect of Country Variables) 16.8 Conclusion and Implications 16.8.1 Limitations References 17 Daycare Centers’ Composition and Non-native Children’s Language Skills at School Entry: Exploring the Nature of Context Effects Using Multilevel Modeling 17.1 Introduction 17.2 Purpose of the Present Study 17.3 Background 17.3.1 Theoretical Framework 17.3.2 Summary of Previous Research on Composition Effects 17.3.3 Research Question 17.4 Multilevel Modeling as an Analytical Strategy for Context Effects 17.4.1 Five-Step Analytical Process 17.4.2 Model Fits and Indices 17.4.3 Assumptions and Data Requirements 17.5 Applying MLM: Composition Effects and Non-native Children’s Language Skills 17.5.1 Sample 17.5.2 Variables 17.5.3 Modeling Approach 17.5.4 Results 17.6 Discussion References 18 Gender Effect at the Beginning of Higher Education Careers in STEM Studies: Does Female Recover Better Than Male? 18.1 Introduction 18.2 Empirical Framework 18.2.1 Internal Student Mobility in HE in Italy 18.2.2 A Brief Overview on Students’ Performance, Transfer Shock, and Gender 18.2.3 Using Multilevel Modelling in HE in Italy 18.2.4 Measuring Academic Performance in This Study 18.3 Data, Variables, and Method 18.3.1 Data 18.3.2 Variables 18.3.3 Method 18.4 Results 18.5 Conclusion References 19 Service Satisfaction and Service Quality: A Longitudinal and Multilevel Study of User Satisfaction with Kindergartens in Norway 19.1 Introduction 19.1.1 Norwegian Kindergartens: Institutional Setting 19.2 Service Satisfaction and Quality: Expectations 19.3 Data and Variables 19.4 Statistical Approach 19.5 Results 19.6 Conclusion Appendix References 20 Multilevel Modeling and Assessment of the Study-Relevant Knowledge of First-Year Students in a Master's Program in Business and Economics 20.1 Introduction and Research Focus 20.2 Theoretical Foundation and Hypotheses 20.3 The Assessment of Economic Knowledge: Study Design, Instruments, and Sampling 20.4 Methods and Results of Structural Equation Models in the Multilevel Approach 20.4.1 The Multilevel Approach in a Structural Equation Model 20.4.2 Confirmatory Factor Analysis (CFA) 20.4.3 Two-Dimensional Multilevel Model with Covariates (MMIMIC Models) 20.5 Discussion and Conclusion References Index