دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Yarub Al-Douri (editor)
سری: Metal Oxides
ISBN (شابک) : 0128175052, 9780128175057
ناشر: Elsevier
سال نشر: 2020
تعداد صفحات: 437
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 28 مگابایت
در صورت تبدیل فایل کتاب Metal Oxide Powder Technologies: Fundamentals, Processing Methods and Applications (Metal Oxides) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فناوریهای پودر اکسید فلز: اصول، روشها و کاربردهای پردازش (اکسیدهای فلزی) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تکنولوژیهای پودر اکسید فلز: مبانی، روشهای پردازش و کاربردها اصول، روشهای پردازش و کاربردهای این سیستم مواد کلیدی را بررسی میکند. موضوعات پرداخته شده به طور جامع شامل خواص شیمیایی و فیزیکی، سنتز، آماده سازی، روش های پردازش پذیرفته شده و جدید، مدل سازی و شبیه سازی می شود. این کتاب اطلاعات اساسی در مورد ویژگیهای کلیدی تأثیرگذار بر عملکرد، مانند اندازه ذرات و ساختار بلوری، همراه با روشهایی برای اندازهگیری، تجزیه و تحلیل و ارزیابی ارائه میکند. در نهایت، برنامه های کاربردی مهم، از جمله کاربردهای زیست پزشکی، انرژی، الکترونیک و مواد پوشش داده شده است.
Metal Oxide Powder Technologies: Fundamentals, Processing Methods and Applications reviews the fundamentals, processing methods and applications of this key materials system. Topics addressed comprehensively cover chemical and physical properties, synthesis, preparation, both accepted and novel processing methods, modeling and simulation. The book provides fundamental information on the key properties that impact performance, such as particle size and crystal structure, along with methods to measure, analyze and evaluate. Finally, important applications are covered, including biomedical, energy, electronics and materials applications.
Cover Metal Oxide Powder Technologies: Fundamentals, Processing Methods and Applications Copyright Contents List of contributors About the author About the author Preface to the series Preface 1 Physical studies of metal oxide powders 1.1 Introduction 1.2 Metal oxides 1.3 Metal oxides powder in dielectric materials 1.4 Physical properties 1.5 Properties of GaO 1.6 Characterization and analysis 1.7 Conclusion References 2 Chemical studies of metal oxide powders 2.1 Introduction 2.1.1 Chemical bond present in metal oxide 2.1.2 Defects and diffusion in metal oxides 2.2 Titanium dioxide chemical studies 2.3 Zinc oxide chemical studies 2.4 Modification of metal oxide 2.5 Conclusion Acknowledgments References 3 Synthesis and preparation of metal oxide powders 3.1 Introduction 3.2 Synthesis and preparation of metal oxide powders 3.2.1 Chemical methods 3.2.1.1 Sol–gel method 3.2.1.2 Hydrothermal method 3.2.1.3 Chemical vapor deposition 3.2.1.4 Thermal decomposition processing 3.2.1.5 Sonochemical method 3.2.2 Physical methods 3.2.2.1 Comminution 3.2.2.2 Spray drying 3.2.2.3 Spray pyrolysis 3.2.2.4 Freeze drying 3.2.2.5 Pulsed laser ablation 3.2.2.6 Vaporization–condensation 3.2.3 Biological methods 3.3 Concluding remarks References 4 Sintering behaviors of Fe3O4 and CaO powders roasted under CO–CO2–N2 atmosphere 4.1 Introduction 4.2 Experimental 4.2.1 Materials 4.2.2 Methods 4.2.2.1 Roasting tests 4.2.2.2 Fusion temperature measurement 4.2.2.3 Characterization 4.3 Results and discussion 4.3.1 Phase diagrams of CaO–Fe3O4 system under CO–CO2–N2 and air atmosphere 4.3.2 Phase transformation of CaO and Fe3O4 mixtures in CO–CO2–N2 atmosphere 4.3.2.1 Effect of temperature 4.3.2.2 Effect of CO content 4.3.3 Liquid phase formation of CaO–Fe3O4 system in CO–CO2–N2 atmosphere 4.3.4 Reaction mechanism between CaO and Fe3O4 under CO–CO2–N2 atmosphere 4.4 Conclusions Acknowledgments References 5 Surface modification, including polymerization, nanocoating, and microencapsulation 5.1 Introduction 5.2 Classification of surface treatment 5.3 Surface treatment including polymerization 5.4 Effects of coating process on tribological properties of polymer and alloys 5.5 Surface treatment including nanocoating and microencapsulation 5.6 Effects of WS2 nanoparticles lubricants on polymer and alloys 5.7 Conclusion Acknowledgment References 6 Application of metal oxides in composites 6.1 Introduction 6.1.1 Application of metal oxide powders in ceramic matrix composites 6.1.1.1 Processing of oxide-based ceramic matrix composites Cold pressing followed by sintering Hot pressing Slurry infiltration Lamination process 6.1.1.2 Some examples of oxide-based ceramic matrix composites Alumina–titanium carbide composites Alumina–silicon carbide composites Alumina–zirconia composites Alumina–alumina composites Other oxide-based ceramic matrix composites 6.1.2 Application of metal oxide powders in metal matrix composites 6.1.2.1 Processing methods of particulate-reinforced metal matrix composites Standard powder metallurgy In situ powder metallurgy Stir casting Infiltration method 6.1.2.2 Some examples of metal matrix composites reinforced with metal oxide powders Aluminum matrix composites Magnesium matrix composites Titanium matrix composites Copper matrix composites Iron matrix composites 6.1.3 Application of metal oxides in polymer matrix composites 6.1.3.1 Alumina-reinforced polymer matrix composites 6.1.3.2 SiO2-reinforced polymer matrix composites 6.1.3.3 TiO2-reinforced polymer matrix composites 6.1.3.4 ZnO-reinforced polymer matrix composites 6.2 Conclusion References 7 Metal-oxide powder technology in biomedicine 7.1 Introduction 7.2 Syntheses 7.3 Cytotoxicity 7.4 Applications 7.4.1 Bioimaging and theranostics 7.4.2 Biosensing 7.4.3 Therapeutic applications 7.4.3.1 Cancer therapy 7.4.3.2 Other therapies 7.5 Antibacterial behavior 7.5.1 Replacing antibiotics 7.5.2 Orthopedic and dental formulations 7.6 The antibacterial pathways 7.7 Discussions and conclusion References 8 Mechanical and physical methods for the metal oxide powders production 8.1 Introduction 8.2 Production of metal oxides powder by using crushing and milling 8.2.1 Mechanical alloying 8.2.2 Mechanical milling (MM) or grinding 8.2.3 Mechanical disordered 8.3 Production of metal oxides powders using evaporation techniques 8.3.1 Simple (or thermal) evaporation technique 8.3.2 Laser evaporation technique 8.4 Atomization for metal oxide powder production 8.4.1 Atomization mechanism 8.5 Physical vapor deposition 8.6 Mixed methods 8.6.1 Mechanochemical method 8.6.2 Reactive milling technique 8.6.3 Cold stream (spray) process 8.7 Conclusion Acknowledgment References 9 Chemical processes of metal oxide powders 9.1 Introduction 9.2 Sol–gel method 9.3 Microwave-assisted synthesis 9.4 Thermal decomposition 9.5 Solvothermal synthesis 9.6 Evaporation–condensation technique 9.7 Thermal oxidation technique 9.8 Hydrothermal technique 9.9 Atomic or molecular condensation 9.10 Cryochemical synthesis 9.11 Hydrothermal synthesis 9.12 Coprecipitation methods 9.13 Microemulsion technique 9.14 Template/surface derivatized methods 9.15 Conclusion References 10 Thermal protection coatings of metal oxide powders 10.1 Metal oxides—Introduction 10.1.1 Classification of metal oxides 10.2 Necessity of protection coatings 10.3 Various coating technologies 10.3.1 Chemical vapor deposition techniques 10.3.1.1 Sol–gel deposition method 10.3.1.2 Chemical vapor deposition 10.3.1.3 Spray pyrolysis 10.3.1.4 Dip coating 10.3.1.5 Atomic layer deposition 10.3.2 Physical vapor deposition 10.3.2.1 Steps involved in the process of physical vapor deposition techniques 10.3.2.2 Merits of physical vapor deposition techniques 10.3.2.3 Thermal evaporation 10.3.2.4 Pulsed laser deposition 10.3.2.5 DC sputtering 10.3.2.6 Radio-frequency sputtering 10.3.2.7 Molecular beam epitaxy 10.3.2.8 Flash evaporation method 10.3.2.9 Electron beam evaporation 10.3.2.10 Ion plating technique 10.4 Conclusion References 11 Metal oxide nanoparticles in biomedical applications 11.1 Introduction and overview of metal oxides in biomedical applications 11.2 Structural diversity and its relationship to the properties of the metal oxides 11.3 Important considerations and challenges for the use of metal oxides in biomedical applications 11.4 General synthesis of metal oxides and highlight on the biological synthesis of metal oxides 11.5 Commonly used metal oxides in biomedical applications 11.5.1 Iron oxides 11.5.2 Zinc oxide 11.5.3 Titanium oxide 11.5.4 Other metal oxides used in biomedical applications 11.6 Biomedical application of metal oxides 11.6.1 Drug delivery and theranostic applications 11.6.2 Cancer therapy 11.6.3 Implants 11.6.4 Antibacterial treatment and wound healing 11.7 Toxicology of metal oxides 11.7.1 Oxidative stress 11.7.2 Cytotoxicity 11.7.3 Genotoxicity 11.7.4 Inflammation 11.8 Conclusion References 12 Metal oxides powder technology in energy technologies 12.1 Introduction: importance of energy technologies in our life 12.2 Fuel cells and metal oxides powder technology 12.3 Applications of SOFC 12.4 Solar cells and metal oxides powder technology 12.5 Metal oxides powder technology 12.6 Supercapacitor and metal oxides powder technology 12.7 Industrial emissions and metal oxides powder technology 12.8 Conclusion References 13 Metal oxides in electronics 13.1 Introduction 13.2 Transistors 13.3 Diodes 13.4 Photodetectors Conclusion References 14 Metal oxide powder technologies in catalysis 14.1 Introduction 14.2 Supported metal oxides 14.2.1 Catalyst molecular structure 14.3 Synthesis methods of supported catalyst oxides 14.3.1 Impregnation method 14.3.2 Precipitation/coprecipitation 14.3.3 Grafting 14.3.4 Chemical vapor deposition 14.3.5 Sol–gel method 14.3.6 Hydrothermal method 14.3.7 Flame hydrolysis 14.4 Applications 14.4.1 Catalytic oxidation of methanol 14.4.2 Selective catalytic reduction of NOx 14.4.3 Catalytic hydrogenation of carbon monoxide 14.4.4 Catalytic metathesis of olefins 14.4.5 Catalytic polymerization of olefins 14.5 Summary References 15 Metal oxide for heavy metal detection and removal 15.1 Introduction 15.2 Distribution of heavy metal in Malaysia 15.3 Heavy metal detection 15.3.1 Electrochemical technique for detection of heavy metal 15.3.2 Biosensor 15.4 Heavy metal ions removal 15.4.1 Adsorption method 15.4.2 Photocatalyst 15.5 Conclusion 15.6 Acknowledgments References 16 Solution combustion synthesis of metal oxide nanoparticles for membrane technology 16.1 Introduction 16.2 Experimental procedures 16.2.1 Introduction 16.2.2 Preparation of metal oxides by solution combustion method 16.2.3 Synthesis of CuO, NiO, and ZnO nanoparticles 16.2.4 Assay for antimicrobial activity of metal oxide nanoparticles against microorganisms 16.3 Result and discussion 16.3.1 Structural analysis 16.3.2 Surface morphological studies 16.3.3 Antimicrobial activity of floral CuO nanoparticles 16.3.4 Antimicrobial activity of octahedral NiO nanoparticles 16.3.5 Antimicrobial activity of ZnO nanoflakes 16.4 Conclusion Acknowledgment References 17 Three-dimensional printing of ceramic powder technology 17.1 Using three-dimensional printed ceramic for medical applications 17.2 Application of three-dimensional printed ceramic in mechanics 17.3 The three-dimensional printing technology in physics 17.4 Conclusion References 18 Metal oxides powder technology in dielectric materials 18.1 Introduction 18.2 Dielectric materials: properties and behaviors 18.2.1 Dielectric materials 18.2.2 Types of dielectric materials 18.2.3 Dielectric fundamentals 18.3 Metal oxide powder in dielectric materials 18.3.1 ZnO, TiO2, and other metal oxides 18.3.2 Dielectric materials: ferroelectric and application 18.3.2.1 Ferroelectric materials 18.3.2.2 Examples and applications 18.3.3 Dielectric properties of metal oxides powder dispersions in paraffin oil 18.3.3.1 Aluminum 18.3.3.2 Iron and Cu 18.3.3.3 Titanium 18.4 Review of metal oxides powder technologies in dielectric materials 18.4.1 Introduction: metal oxides powder as dielectric materials 18.4.2 Properties of the metal oxide powders as dielectric materials 18.5 Conclusion References Index Back Cover