دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Masoud Mozafari (editor)
سری:
ISBN (شابک) : 0128169842, 9780128169841
ناشر: Woodhead Pub Ltd
سال نشر: 2020
تعداد صفحات: 559
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 17 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Metal-organic Frameworks for Biomedical Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب چارچوب های فلزی-آلی برای کاربردهای زیست پزشکی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Frameworks Metal-Organic for Biomedical Applications مرجع جامع و معتبری است که درمان اساسی و کاملی از نتایج منتشر شده ارائه می دهد که هنوز به طور انتقادی مورد بررسی قرار نگرفته اند. این خلاصه ای از تحقیقات فعلی را ارائه می دهد و درک عمیقی از نقش چارچوب های فلزی-آلی در مهندسی پزشکی ارائه می دهد. عنوان شامل بیست و دو فصل است که توسط محققان برجسته بین المللی در این زمینه ارائه شده است. فصلها با کاربرد هدف در مهندسی زیست پزشکی مرتب شدهاند و به متخصصان پزشکی و داروسازی اجازه میدهد تا مواد فعلی و علوم مهندسی در مورد چارچوبهای فلزی-آلی را به کار خود ترجمه کنند.
Metal-Organic Frameworks for Biomedical Applications is a comprehensive, authoritative reference that offers a substantial and complete treatment of published results that have yet to be critically reviewed. It offers a summary of current research and provides in-depth understanding of the role of metal-organic frameworks in biomedical engineering. The title consists of twenty-two chapters presented by leading international researchers in the field. Chapters are arranged by target-application in biomedical engineering, allowing medical and pharmaceutic specialists to translate current materials and engineering science on metal-organic frameworks into their work.
Cover Metal-Organic Frameworks for Biomedical Applications Copyright Contributors 1 Nomenclature of MOFs Introduction What is coordination compound? What are polymer and coordination polymer? What is a CP? Metal-organic framework ``Organic´´ in metal-organic Nomenclature of MOFs CP versus MOF 2 Secondary building units of MOFs Introduction Concept Single metal nodes-Pillared square grids, ZMOFs, and ZIFs Traditional carboxylate based (metal-oxide) SBUs Highly coordinated carboxylate-based (metal-oxide) SBUs Nitrogen-containing SBUs-Pyrazoles, triazoles, tetrazoles, and bio-MOFs Metal-organic polyhedra Infinite rod like SBUs Concluding remarks Acknowledgment 3 Mixed-metal systems for the synthesis of MOFs Introduction Mixed-metal MOFs Mixed-metal MOFs with alkali metals Mixed-metal MOFs with alkaline earth metals Mixed-metal MOFs with d10 metals Mixed-metal MOFs with transition metals Mixed-metal MOFs with rare earth metals Conclusions and perspectives Acknowledgments 4 Metal-organic frameworks for biomedical applications: The case of functional ligands Introduction Building blocks for MOFs Ligands as the core to access biomedical applications Amino acids and peptides Nucleobases Carboxylic acids Phosphonic acids Active pharmaceutical ingredients and dietary supplements Concluding remarks Acknowledgments References 5 The role of flexibility in MOFs Introduction General aspects of framework flexibility Breathing, swelling, linker rotation, and subnetwork displacement Photoinduction Thermal-induction Origins of flexibility in MOFs Secondary building units (SBUs) The impact of organic ligand Biomedical applications of flexible MOFs Conclusion References 6 Surface modification of metal-organic frameworks for biomedical applications Introduction Modified MOFs for Knoevenagel condensation Modified MOFs for Heck reaction Modified MOFs for Suzuki-Miyaura and Sonogashira reactions Conclusions References 7 Hydrothermal synthesis of MOFs Introduction to the hydrothermal method Basic mechanism and general protocols Synthesis of MOFs by the hydrothermal approach Synthesis of Fe-MOFs Synthesis of Zr-MOFs Synthesis of Cu-MOFs Synthesis of Zn-MOFs Synthesis of other MOFs Conclusions and prospects Acknowledgments References 8 Microwave synthesis of metal-organic frameworks Introduction Commercial microwave equipment Microwave synthesis of MOFs Influence of reaction conditions Postsynthetic modifications MOF film/membrane preparation Concluding remarks Acknowledgments References Further reading 9 Electrochemical synthesis of MOFs Introduction Electrochemical synthesis routes of thin films of MOFs Anodic dissolution Reductive electrosynthesis Bipolar electrosynthesis Electrophoretic deposition Galvanic displacement Miscellaneous methods Electrochemical synthesis of MOFs on various conductive substrates Deposition of MOFs on metallic substrates Deposition of MOFs on conductive glass substrates Deposition of MOF on carbonaceous substrates Conclusions and future perspectives References 10 Mechanochemical synthesis of MOFs Introduction Comparison between zeolites and MOFs Representative example of MOFs for bio-applications Engineering greener and more economical manufacturing process and control Production of MOFs Mechanochemical synthesis Three classifications of mechanochemical method Pioneering studies of MOFs mechanosynthesis Mechanochemical dry conversion of metal source to MOFs Porosification (volume expansion and density depletion) associated with crystal conversion Acceleration of mechanochemical reaction Continuous flow system of MOFs mechanosynthesis Conclusions and perspectives World\'s first commercial use of MOFs Commercial developments Challenges to the mainstream adoption of mechanochemical synthesis Acknowledgments References 11 Sonochemical synthesis of MOFs Introduction Use of ultrasounds in MOFs Comparison with conventional studies Alternative US methods Effects of synthesis parameters on final product Effect of solvents Effect of US power and temperature Effect of reaction time Effect of concentration Effect of modulators and additives MOF composites References 12 Postsynthetic modification of MOFs for biomedical applications Introduction Types of postsynthetic modification (PSM) Covalent postsynthetic modification Coordinative postsynthetic modification Noncovalent postsynthetic modification/encapsulation Hybridization with other materials Physical postsynthetic modification Typical functionalities added Polymers Biomolecules Photodynamic therapy and imaging units Conclusions References Further reading 13 Characterizations of MOFs for biomedical application Introduction Characterizations Structural characterization Phase purity and structure modeling Elemental and functionality analysis Surface characterization Surface morphology analysis Particle size and surface charge analysis Surface area analysis Thermal stability analysis Luminescent property analysis UV-visible spectroscopy Biocompatibility test Conclusion References 14 Adsorption, delivery, and controlled release of therapeutic molecules from MOFs Introduction Biological concerns for drug delivery development Toxicological study Stability and biodegradability MOFs: Structures and methods of synthesis Surface modification of MOFs for delivery purposes MOFs in pharmaceutical technology Stimuli-responsive MOFs for drug delivery pH-sensitive MOFs Ion-responsive MOFs Other stimuli-responsive MOFs Multiple-stimuli-responsive MOFs MOFs for the induction of antibacterial activities Targeted contrast agent delivery via NMOFs Magnetic resonance imaging PDT and PTT therapeutic methods PDT PTT X-ray computed tomography (CT) scan PET Optical imaging Future perspective References Further reading 15 BioMOFs Introduction of biomolecules Meaning of biomolecules Types of biomolecules Applications of biomolecules Incorporation of biomolecules with inorganic materials and metal-organic frameworks Definition of BioMOFs Design of BioMOFs with biomolecules Nucleobases Amino acids Peptides Proteins Porphyrins and metalloporphyrins Cyclodextrin and other biomolecules Conclusion and outlook References 16 Metal-organic frameworks and exemplified cytotoxicity evaluation Introduction Metal-organic frameworks Metal ions Organic ligands Solvent Secondary building units Synthetic method of metal-organic frameworks Nanodeposition method Solvothermal method Reverse microemulsion method Surfactant-template solvothermal method Characterization of metal-organic frameworks Transmission electron microscope and scanning electron microscope Application of metal-organic frameworks Gas storage Catalyst Biological application Materials and methods Results and discussions Formation and characterization of nanomaterials Magnetic properties of metal oxides In vitro toxicity evaluations Conclusions Acknowledgments References 17 Toxicity of nanoscale metal-organic frameworks in biological systems Introduction Factors affecting the toxicity of MOFs in biological systems Metal ions in the MOFs Organic linkers Solvent in the MOFs synthesis Particle size Solubility and degradation Stability Why nanoscale metal-organic frameworks in biological systems? In vitro and in vivo toxicity of nanoscale MOFs Human exposure to MOFs Conclusion References 18 Functional MOFs as theranostics Introduction MOFs NPs with multitherapy and MR/optical imaging properties Magnetic-based MOFs NPs Gd-based MOF NPs Fe-carboxylate MOFs NPs Composite nano-objects based on Fe-carboxylate MOFs Mn-based MOFs NPs MOFs NPs for photodynamic and photothermal therapy Nano-objects based on MOFs and inorganic NPs for optical imaging, photodynamic/photothermal therapy Core-shell Au NRsMOFs Nano-objects based on MOFs and Au nanospheres/nanoclusters Core-shell Au nanostar nanoMOF Nano-objects based on MOFs and upconversion NPs (UNCPs) Nano-objects based on CuS and MOF NPs Hybrid nanoparticles by combining MOFs with organic molecules and materials Photothermal MOFs-polymer nanocomposites C dots Graphitic carbon nitride (g-C3N4) nanosheets Fluorescent dyes MOF NPs for nuclear medical imaging Positron emission tomography (PET) Single photon emission computer tomography (SPECT) Computed tomography (CT) Other stimuli-responsive nanoMOF Challenges Conclusion/perspectives References 19 Functional MOFs as molecular imaging probes and theranostics Introduction Nanostructures as next-generation therapeutics Concept of metal-organic frameworks (MOFs) Advantages of MOFs Synthesis and characterization of MOFs Biomedical and pharmaceutical applications of MOFs Antimicrobial properties of MOFs Antiinfective properties of MOFs Phototherapy properties of MOFs MOFs as next-generation bioimaging tools MOFs as phototheranostics MOFs as magnetic theranostics Current trends and future perspectives Conclusion Acknowledgments References 20 Carbohydrates in metal organic frameworks: Supramolecular assembly and surface modification for biomedical applications Introduction MOFs synthesized from edible building blocks of CDs Synthesis methods for CD-MOFs Drug entrapment Carbohydrates as functional surface coatings for MOFs Conclusions and future outlook Acknowledgments References Further reading 21 Metal-organic frameworks for drug delivery: Degradation mechanism and in vivo fate Introduction Synthesis of biodegradable MOFs Drug loading and release Degradation Surface engineering Toxicity and in vivo fate Conclusions and future outlook References Further reading 22 Metal-organic frameworks (MOFs) for enzyme immobilization Introduction Design of MOF as a platform Enzyme-MOF composite Surface immobilization Pore encapsulation methods Covalent binding De novo encapsulation method Characteristics of MOF Catalytic activity Thermal stability Michealis-Menton kinetics Chemical stability Reusability Storage stability Multienzyme MOF composites Magnetic MOF-enzyme composite References Further reading 23 State-of-the-art and future perspectives of MOFs in medicine A brief story of MOFs, applications, and recent trends Toward the golden age of MOF technology in medicine Future trends and conclusions References Index A B C D E F G H I J K L M N O P Q R S T U V W X Z Back Cover