دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: فن آوری ویرایش: نویسندگان: Haihong Huang, Zhengchun Qian, Zhifeng Liu سری: ISBN (شابک) : 9811615896, 9789811615894 ناشر: Springer سال نشر: 2021 تعداد صفحات: 242 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 14 مگابایت
در صورت تبدیل فایل کتاب Metal Magnetic Memory Technique and Its Applications in Remanufacturing به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تکنیک حافظه مغناطیسی فلزی و کاربردهای آن در ساخت مجدد نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب تکنیک حافظه مغناطیسی فلزی (MMM)، یکی از روشهای آزمایش غیرمخرب، و کاربردهای آن در مهندسی ساخت مجدد را معرفی میکند. در مورد مزایای MMM و نحوه ارزیابی میزان آسیب اولیه هسته های بازسازی شده و همچنین کیفیت تعمیر قطعات بازسازی شده بحث می کند. ویژگیهای سیگنال MMM مختلف استخراج میشوند تا میزان آسیب هستهها، پوششها و رابطهای بازسازیشده را منعکس کنند. تمامی مدل های نظری، روش های تحلیل و نتایج تست MMM در این کتاب راهنمایی هایی برای کنترل کیفیت قطعات و محصولات بازسازی شده ارائه می کنند. این کتاب می تواند به خوانندگان کمک کند تا بهترین استفاده را از تکنیک MMM در مهندسی ساخت مجدد ببرند.
This book introduces the metal magnetic memory (MMM) technique, one of the nondestructive testing methods, and its applications in remanufacturing engineering. It discusses the advantages of MMM and how to evaluate the early damage degree of remanufacturing cores, as well as the repairing quality of remanufactured components. Various MMM signal characteristics are extracted to reflect the damage degree of remanufacturing cores, coatings and interfaces. All the theoretical models, analysis methods and testing results of MMM in this book provide guidance to control the quality of remanufactured parts and products. This book can help readers make the best use of the MMM technique in remanufacturing engineering.
Preface Contents Part I Introduction to the Metal Magnetic Memory (MMM) Technique 1 Nondestructive Testing for Remanufacturing 1.1 Motivations 1.2 Conventional Nondestructive Testing Techniques 1.3 MMM Technique 1.4 Organization of This Book References 2 Theoretical Foundation of the MMM Technique 2.1 Background 2.2 Microscopic Mechanism 2.3 Macroscopic Theoretical Model 2.3.1 Magnetomechanical Model 2.3.2 Magnetic Charge Model 2.3.3 First Principle Theory References 3 State of the Art of the MMM Technique 3.1 Historical Background 3.2 Theoretical Research 3.3 Experimental Research 3.4 Standard Establishment 3.5 Applications for Remanufacturing 3.6 Problems and Prospects References Part II Detection of Damage in Ferromagnetic Remanufacturing Cores by the MMM Technique 4 Stress Induces MMM Signals 4.1 Introduction 4.2 Variations in the MMM Signals Induced by Static Stress 4.2.1 Under the Elastic Stage 4.2.2 Under the Plastic Stage 4.2.3 Theoretical Analysis 4.3 Variations in the MMM Signals Induced by Cyclic Stress 4.3.1 Under Different Stress Cycle Numbers 4.3.2 Characterization of Fatigue Crack Propagation 4.4 Conclusions References 5 Frictional Wear Induces MMM Signals 5.1 Introduction 5.2 Reciprocating Sliding Friction Damage 5.2.1 Variations in the Tribology Parameters During Friction 5.2.2 Variations in the Magnetic Memory Signals Parallel to Sliding 5.2.3 Variations in the Magnetic Memory Signals Normal to Sliding 5.2.4 Relationship Between the Tribology Characteristics and Magnetic Signals 5.3 Single Disassembly Friction Damage 5.3.1 Surface Damage and Microstructure Analysis 5.3.2 Variations in the MMM Signals 5.3.3 Damage Evaluation of Disassembly 5.3.4 Verification for Feasibility and Repeatability 5.4 Conclusions References 6 Stress Concentration Impacts on MMM Signals 6.1 Introduction 6.2 Stress Concentration Evaluation Based on the Magnetic Dipole Model 6.2.1 Establishment of the Magnetic Dipole Model 6.2.2 Characterization of the Stress Concentration Degree 6.2.3 Contributions of Stress and Discontinuity to MMM Signals 6.3 Stress Concentration Evaluation Based on the Magnetic Dual-Dipole Model 6.3.1 Magnetic Scalar Potential 6.3.2 Magnetic Dipole and Its Scalar Potential 6.3.3 Measurement Process and Results 6.3.4 Analysis of the Magnetic Scalar Potential 6.4 Stress Concentration Inversion Method 6.4.1 Inversion Model of the Stress Concentration Based on the Magnetic Source Distribution 6.4.2 Inversion of a One-Dimensional Stress Concentration 6.4.3 Inversion of a Two-Dimensional Stress Concentration 6.5 Conclusions References 7 Temperature Impacts on MMM Signals 7.1 Introduction 7.2 Modified J-A Model Based on Thermal and Mechanical Effects 7.2.1 Effect of Static Tensile Stress on the Magnetic Field 7.2.2 Effect of Temperature on the Magnetic Field 7.2.3 Variation in the Magnetic Field Intensity 7.3 Measurement of MMM Signals Under Different Temperatures 7.3.1 Material Preparation 7.3.2 Testing Method 7.4 Variations in MMM Signals with Temperature and Stress 7.4.1 Normal Component of the Magnetic Signal 7.4.2 Mean Value of the Normal Component of the Magnetic Signal 7.4.3 Variation Mechanism of the Magnetic Signals Under Different Temperatures 7.4.4 Analysis Based on the Proposed Theoretical Model 7.5 Conclusions References 8 Applied Magnetic Field Strengthens MMM Signals 8.1 Introduction 8.2 MMM Signal Strengthening Effect Under Fatigue Stress 8.2.1 Variations in the MMM Signals with an Applied Magnetic Field 8.2.2 Theoretical Explanation Based on the Magnetic Dipole Model 8.3 MMM Signal Strengthening Effect Under Static Stress 8.3.1 Magnetic Signals Excited by the Geomagnetic Field 8.3.2 Magnetic Signals Excited by the Applied Magnetic Field 8.4 Conclusions References Part III Evaluation of the Repair Quality of Remanufacturing Samples by the MMM Technique 9 Characterization of Heat Residual Stress During Repair 9.1 Introduction 9.2 Preparation of Cladding Coating and Measurement of MMM Signals 9.2.1 Specimen Preparation 9.2.2 Measurement Method 9.2.3 Data Preprocessing 9.3 Distribution of MMM Signals Near the Heat Affected Zone 9.3.1 Magnetic Signals Parallel to the Cladding Coating 9.3.2 Magnetic Signals Perpendicular to the Cladding Coating 9.3.3 Three-Dimensional Spatial Magnetic Signals 9.3.4 Verification Based on the XRD Method 9.4 Generation Mechanism of MMM Signals in the Heat Affected Zone 9.4.1 Microstructure and Phase Transformation 9.4.2 Microhardness Distribution 9.5 Conclusions References 10 Detection of Damage in Remanufactured Coating 10.1 Introduction 10.2 Cladding Coating and Its MMM Measurement 10.3 Result and Discussion 10.3.1 Variations in MMM Signals Under the Fatigue Process 10.3.2 Comparison of the Magnetic Properties from Different Material Layers 10.3.3 Microstructure Analysis 10.4 Conclusions References 11 Detection and Evaluation of Coating Interface Damage 11.1 Introduction 11.2 Theoretical Framework 11.2.1 Fatigue Cohesive Zone Model 11.2.2 Magnetomechanical Model 11.2.3 Numerical Algorithm of the Coupling Model 11.2.4 Calculation of the Magnetic Field Intensity 11.3 Case Analysis for the Theoretical Model 11.3.1 Finite Element Model Setup 11.3.2 Finite Element Simulation Results 11.3.3 Prediction of Interfacial Crack Initiation 11.3.4 Prediction of the Interfacial Crack Propagation Behavior 11.4 Experimental Verification 11.4.1 MMM Measurement Method 11.4.2 MMM Signal Analysis 11.4.3 Interfacial Crack Observation 11.5 Conclusions References Part IV Engineering Applications in Remanufacturing 12 Detection of Damage of the Waste Drive Axle Housing and Hydraulic Cylinder 12.1 Introduction 12.2 Application of MMM in the Evaluation of Fatigue Damage of the Drive Axle Housing 12.2.1 Relation Between MMM Signals and Fatigue Cycles 12.2.2 Relation Between MMM Signals and Deformation Degree 12.3 Application of MMM in the Evaluation of Fatigue Damage of Retired Hydraulic Cylinders 12.3.1 Threshold Determination Method for Remanufacturability Evaluation 12.3.2 Experimental Verification 12.4 Conclusions References 13 Evaluation of the Repair Quality of Remanufactured Crankshafts 13.1 Introduction 13.2 Repair Process in Remanufacturing 13.3 Evaluation of the Repair Quality of the Remanufactured Coating 13.3.1 Optimization of the Processing Parameters 13.3.2 Effect of the Processing Parameters on the Microstructure 13.3.3 Effect of the Processing Parameters on the Microhardness 13.3.4 Effect of the Processing Parameters on the Wear Resistance 13.4 Repair Quality Evaluation Based on MMM Measurement 13.5 Conclusions References 14 Development of a High-Precision 3D MMM Signal Testing Instrument 14.1 Introduction 14.2 Framework of the Detection System 14.3 Detailed Processes of Instrument Development 14.3.1 Hardware Design 14.3.2 Software Design 14.4 Calibration of Self-developed Instrument 14.4.1 Static Performance of the Instrument 14.4.2 Ability to React to the Geomagnetic Field 14.5 Testing of the Self-developed Instrument 14.5.1 Testing Method and Process 14.5.2 Display and Analysis of MMM Signals 14.6 Comparison of the MMM Testing Instruments 14.7 Conclusions References