دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: کامپیوتر ویرایش: نویسندگان: Ali Kaveh. Armin Dadras Eslamlou سری: Studies in Computational Intelligence, 900 ISBN (شابک) : 303045472X, 9783030454722 ناشر: Springer سال نشر: 2020 تعداد صفحات: 382 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 14 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Metaheuristic Optimization Algorithms in Civil Engineering: New Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب الگوریتم های بهینه سازی فرا-ابتکاری در مهندسی عمران: برنامه های جدید نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Acknowledgements Contents 1 Introduction 1.1 Engineering Design and Optimization 1.2 Application of Metaheuristic Optimization Algorithms in Civil Engineering 1.3 Organization of the Present Book References 2 Optimum Stacking Sequence Design of Composite Laminates for Maximum Buckling Load Capacity 2.1 Introduction 2.2 Theoretical Framework 2.3 Problem Statement 2.4 Optimization Algorithms 2.4.1 JAYA Algorithm 2.4.2 Grey Wolf Optimizer 2.4.3 Colliding Bodies Optimization 2.4.4 Salp Swarm Algorithm 2.4.5 Genetic Algorithm 2.4.6 Quantum-Inspired Evolutionary Algorithm 2.5 Anti-optimization Problem 2.5.1 Golden Section Search (GSS) 2.6 Numerical Results for Deterministic Loading 2.6.1 Case 1 2.6.2 Case 2 2.6.3 Case 3 2.6.4 Case 4 2.6.5 Case 5 2.6.6 Case 6 2.7 Numerical Results for Uncertain Loading 2.7.1 A Comparison of the Effect of Different Materials 2.7.2 An Investigation on the Effect of Aspect Ratio 2.7.3 An Investigation on the Effect of Loading Domain 2.7.4 A Comparison Among the Performance of the Different Optimization Algorithms 2.8 Discussions and Conclusion References 3 Optimum Design of Castellated Beams with Composite Action and Semi-rigid Connection 3.1 Introduction 3.2 Design of Castellated Beams 3.2.1 Flexural Capacity 3.2.2 Shear Capacity 3.2.3 Web Post-buckling 3.3 Design of Composite Beams 3.4 Semi-rigid Connection 3.5 Semi-rigid Composite Castellated Beam 3.5.1 Deflection of Semi-rigid Composite Castellated Beam 3.5.2 The Vibration of Semi-rigid Composite Castellated Beam 3.6 Optimization Algorithms 3.6.1 CBO and ECBO 3.7 Problem Definition 3.7.1 Cost Function 3.7.2 Variables 3.7.3 Constraints 3.7.4 Penalty Function 3.8 Design Examples 3.8.1 Example 1 3.8.2 Example 2 3.8.3 Example 3 3.9 Discussions and Conclusion References 4 Optimal Design of Steel Curved Roof Frames by Enhanced Vibrating Particles System Algorithm 4.1 Introduction 4.2 Curved Roof Modeling 4.3 Formulation of the Problem 4.3.1 Objective Function 4.3.2 Design Constraints 4.4 Structural Loading 4.4.1 Loading Combinations 4.4.2 The Dead and Collateral Loads (D) 4.4.3 The Live Load (L) 4.4.4 The Balanced and Unbalanced Snow Loads (S) 4.4.5 The Seismic Load (E) 4.4.6 The Wind Loads (W) 4.5 Optimization Algorithms 4.5.1 Vibrating Particles System 4.5.2 Enhanced Vibrating Particles System 4.5.3 Gray Wolf Optimizer 4.5.4 Enhanced Colliding Bodies Optimization 4.5.5 Salp Swarm Algorithm 4.5.6 Grasshopper Optimization Algorithm 4.5.7 Harmony Search 4.6 Design Examples 4.7 Discussions and Conclusion References 5 Geometry and Sizing Optimization of Steel Pitched Roof Frames 5.1 Introduction 5.2 Problem Definition 5.2.1 Objective Function 5.2.2 Variables 5.2.3 Loading 5.2.4 Structural Analysis 5.2.5 Strength Design Criteria 5.2.6 Displacement Criteria 5.2.7 Penalty Function 5.3 Optimization Algorithms 5.3.1 Simulated Annealing Optimization 5.3.2 Particle Swarm Optimization 5.3.3 Artificial Bee Colony 5.3.4 Whale Optimization Algorithm 5.3.5 Grey Wolf Optimizer 5.3.6 Invasive Weed Optimization 5.3.7 Harmony Search 5.3.8 Colliding Bodies Optimization 5.3.9 Enhanced Colliding Bodies Optimization 5.4 Examples 5.4.1 Example 1 5.4.2 Example 2 5.5 Discussions and Conclusion References 6 Two-Stage Optimal Sensor Placement Using Graph-Theory and Evolutionary Algorithms 6.1 Introduction 6.2 Sensor Placement Criterions 6.2.1 Modal Assurance Criterion 6.2.2 Visualization of Mode Shapes 6.3 Partitioning Techniques 6.3.1 Preliminaries from Graph Theory 6.3.2 k-Means Method 6.3.3 Spectral Partitioning 6.4 Optimization Methods 6.4.1 Steps of the QEA 6.4.2 The Dynamical Quantum-Inspired Evolutionary Algorithm (DQEA) 6.5 The Proposed Two-Stage Approach 6.5.1 Stage 1 (Structural Partitioning) 6.5.2 Stage 2 (Optimization of Sensor Placement) 6.6 Numerical Results and Discussions 6.6.1 Benchmark Model 6.6.2 Performance of the Methods on TMAC Criterion 6.6.3 Assessing the Mode Shape Visualization Criterion 6.7 Discussions and Conclusion References 7 The Charged System Search Algorithm for Adaptive Node Moving Refinement in Discrete Least-Squares Meshless Method 7.1 Introduction 7.2 Discrete Least Squares Meshless (DLSM) 7.2.1 Moving Least Squares Shape Functions 7.2.2 Discrete Least-Squares Meshless Method 7.3 Charged System Search 7.4 Error Indicator and Adaptive Refinement 7.5 The Link Between the CSS and Adaptivity 7.5.1 Objective Function 7.5.2 Selected Parameters 7.6 Numerical Examples 7.6.1 Infinite Plate with a Circular Hole 7.6.2 A Cantilever Beam Under End Load 7.7 Discussions and Conclusion References 8 Performance-Based Multi-objective Optimization of Large Steel Structures 8.1 Introduction 8.2 Employed Multi-objective Optimization Algorithm 8.2.1 NSGA-II-DE 8.2.2 GA Operators 8.2.3 Constraint Handling 8.3 Seismic Optimum Design Procedure 8.3.1 Loading and Constraints for Optimum Seismic Design 8.3.2 Nonlinear Static Analysis (Pushover Analysis) 8.3.3 Lifetime Seismic Damage Cost 8.4 Meta-modeling for Predicting the Response 8.4.1 Approximation Model Selection and Training 8.4.2 Model Management 8.5 The Proposed Framework 8.6 Numerical Results 8.6.1 2D Example 8.6.2 3D Example 8.7 Discussions and Conclusion References 9 Optimal Seismic Design of Steel Plate Shear Walls Using CBO and ECBO Algorithms 9.1 Introduction 9.2 Different Techniques for Simulating Steel Plate Shear Walls 9.2.1 Strip Models 9.2.2 Pratt Truss Model 9.2.3 Truss Model 9.2.4 Partial Strip Model 9.2.5 Multi-angle Model 9.2.6 Modified Strip Model 9.2.7 Cyclic Strip Model 9.2.8 Orthotropic Membrane Model 9.3 Design Requirements 9.3.1 Requirements for Low Seismic Design 9.3.2 Requirements for High Seismic Design 9.4 CBO and ECBO Algorithms 9.4.1 Colliding Bodies Optimization (CBO) 9.4.2 Enhanced Colliding Bodies Optimization 9.5 Structural Optimization 9.5.1 Optimization Formulation 9.6 Numerical Examples 9.6.1 Low Seismic Design Example 9.6.2 High Seismic Design Example 9.6.3 Performance-Based Design Optimization of SPSW 9.6.4 Optimum Design of 6- to 12-Story SPSW 9.7 Discussions and Conclusion References 10 Colliding Bodies Optimization Algorithm for Structural Optimization of Offshore Wind Turbines with Frequency Constraints 10.1 Introduction 10.2 Configuration of the OC4 Reference Jacket 10.3 Finite Element Model 10.4 Loading Conditions 10.4.1 Wave Loading 10.4.2 Wind Loading 10.4.3 Load Combinations 10.5 The Structural Optimization Problem 10.5.1 Design Variables 10.5.2 Cost Function 10.5.3 Colliding Bodies Optimization Algorithm 10.6 Results 10.6.1 Hydrodynamic Loading 10.6.2 Aerodynamic Loading 10.6.3 Final Results 10.7 Discussions and Conclusion References 11 Colliding Bodies Optimization for Analysis and Design of Water Distribution Systems 11.1 Introduction 11.2 Water Distribution Network Optimization Problem 11.2.1 Analysis Phase 11.2.2 Design Phase 11.3 The Colliding Bodies Optimization Algorithm 11.3.1 Collision Laws 11.3.2 The CBO Algorithm 11.4 A New Algorithm for Analysis and Design of the Water Distribution Networks 11.5 Design Examples 11.5.1 A Two-Loop Network 11.5.2 Hanoi Water Distribution Network 11.5.3 The Go Yang Water Distribution Network 11.6 Discussions and Conclusion References 12 Optimization of Tower Crane Location and Material Quantity Between Supply and Demand Points 12.1 Introduction 12.2 Problem Statement 12.3 Optimization Algorithms 12.3.1 Colliding Bodies Optimization 12.3.2 Enhanced Colliding Bodies Optimization 12.3.3 Vibrating Particles System 12.3.4 Enhanced Vibrating Particles System 12.3.5 Encoding of Solutions 12.4 Numerical Examples 12.5 Discussion and Conclusions 12.5.1 Results and Discussion on Single Tower Crane Layout 12.5.2 Results and Discussion for the Multi-tower Crane Layout Problem 12.5.3 Discussions and Conclusion References 13 Optimization of Building Components with Sustainability Aspects in BIM Environment 13.1 Introduction 13.2 Proposed Framework to Opt Desired and Optimum Selection for Building Components 13.2.1 Initial Preparation Phase 13.2.2 Optimization Phase 13.2.3 Efficiency Evaluation Phase 13.2.4 Multi-attributes Decision Making Phase 13.3 Methods Used in the Proposed Framework 13.3.1 Enhanced Non-dominated Sorting Colliding Bodies Optimization (ENSCBO) 13.3.2 Data Envelopment Analysis (DEA) 13.3.3 The Compromise Ranking Method VIKOR 13.4 Implementation of a Case Study and the Corresponding Results 13.5 Discussions and Conclusion References 14 Multi-objective Optimization of Construction Site Layout 14.1 Introduction 14.2 Methodology 14.2.1 Optimization Metaheuristic Algorithms 14.2.2 Data Envelopment Analysis 14.3 Case Study and Discussion of Results 14.3.1 Description of the Case Study 14.3.2 Results 14.4 Discussions and Conclusion References 15 Multi-objective Electrical Energy Scheduling in Smart Homes Using Ant Lion Optimizer and Evidential Reasoning 15.1 Introduction 15.2 Methodology 15.2.1 Preparing Required Information About Appliances Scheduling Operation 15.2.2 Multi-objective Optimization (MOO) 15.2.3 Multi-criteria Decision Making (Shannon’s Entropy) 15.2.4 Evidential Reasoning 15.3 The Multi-objective Home Appliance Scheduling Problem 15.3.1 Objective Functions 15.4 Implementation of the Proposed System 15.4.1 Numerical Example 15.4.2 Parameter Configuration 15.4.3 Pareto Selection 15.4.4 Determining the Weights 15.4.5 Ranking Solutions 15.4.6 Discussions 15.5 Conclusion Appendix References