دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Jacopo Troisi
سری:
ISBN (شابک) : 0323850626, 9780323850629
ناشر: Academic Press
سال نشر: 2022
تعداد صفحات: 685
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 9 مگابایت
در صورت تبدیل فایل کتاب Metabolomics Perspectives: From Theory to Practical Application به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب دیدگاههای متابولومیک: از تئوری تا کاربرد عملی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Front Cover Metabolomics Perspectives Copyright Page Contents List of contributors Foreword Introduction 1 Fundamentals 1 System biology Introduction Genomics Introduction Genomic tools Epigenetics Introduction Epigenetic tools Transcriptomics Introduction Transcriptomic tools Proteomics Introduction Proteomic tools Metabolomics Introduction Metabolomic tools References 2 Experimental design in metabolomics Introduction Applications of metabolomic experiments Biomarker discovery Detection of altered biochemical pathways Monitoring of response to stimuli Untargeted and targeted approaches Untargeted metabolomics Targeted metabolomics Sample types Metabolically active versus metabolically inactive Tissue and cells Tissues Primary and immortalized cells Whole blood, plasma, and serum Urine Other biofluids Saliva Cerebrospinal fluid Amniotic fluid and breast milk Sweat and tears Analytical methodologies Nuclear magnetic resonance Mass spectrometry Gas chromatography Liquid chromatography Techniques without sampling Sample preparation Quenching Extraction Sample clean up Solvent removal Solid-phase extraction Ultrafiltration Controlling metabolite concentrations Nuclear magnetic resonance Gas chromatography-mass spectrometry Derivatization Liquid chromatography-mass spectrometry Identification and quantification of metabolites Quantification Calibration curve technique Internal standard and isotope dilution Identification Public libraries and databases Metabolomics Standards Initiative Quality control Conclusion References Further reading 3 Separation techniques The role of the separation processes in metabolomics research Sample preparation Sample extraction techniques Derivatization Fundamentals of chromatography Definitions and classifications Retention Selectivity Efficiency of separation Resolution Peak capacity Qualitative and quantitative analysis in chromatography Liquid chromatography Instrumentation Principal separation modes Detectors Gas chromatography Mobile phase and flow control Temperature zones Sample introduction and inlets Column, stationary phases, and separation Detectors Multidimensional chromatography Concept of multidimensionality Practical and instrumental aspects Other separation techniques Capillary electrophoresis Supercritical fluid chromatography Chiral chromatography References 4 Mass spectrometry in metabolomics Mass spectrometry Mass spectrum Isotopes Resolution and accuracy Mass spectrometer System for sample introduction Ion sources Mass analyzer Ion detector Ion sources EI ion source Matrix-assisted laser desorption ionization ion source Electrospray ion source Mass analyzers Quadrupole mass analyzer Time of flight mass analyzer Orbitrap mass analyzer Quadrupole ion trap Tandem mass spectrometry Instruments for tandem mass spectrometry analysis Tandem mass spectrometry scan modes Product ion scan Precursor ion scan Neutral loss scan Multiple reaction monitoring Untargeted metabolomics in complex samples Analytical techniques in mass spectrometry -based metabolomics Gas chromatography-mass spectrometry Liquid chromatography-tandem mass spectrometry Imaging mass spectrometry Data analysis Applications Metabolomic analysis for clinical biomarker discovery Metabolomics in drug development Metabolomics in nutrition science Metabolomics in toxicology Metabolomics in forensic science References Further reading 5 Nuclear magnetic resonance in metabolomics Introduction Nuclear magnetic resonance spectroscopy 1D nuclear magnetic resonance 1D 1H nuclear magnetic resonance spectroscopy 1H 1D nuclear magnetic resonance in metabolomic studies 1D 1H nuclear magnetic resonance examples 1D 13C nuclear magnetic resonance in metabolomic studies 1D 15N nuclear magnetic resonance in metabolomics 31P nuclear magnetic resonance in metabolomic studies 19F in metabolomic studies 2D nuclear magnetic resonance spectroscopy High-resolution magic-angle spinning nuclear magnetic resonance spectroscopy Pure shift nuclear magnetic resonance Recent advances Improvements in nuclear magnetic resonance hardware and techniques and additional tools to aid in metabolomics studies Nuclear magnetic resonance magnets Nuclear magnetic resonance probes Flow probes Metabolomics databases and nuclear magnetic resonance software programs Databases for nuclear magnetic resonance-based metabolomics Use of software to analyze metabolite nuclear magnetic resonance data Advantages of nuclear magnetic resonance spectroscopy Reproducibility Challenges and limitations Sample preparation Summary and future perspectives References 6 Targeted metabolomics Targeted metabolomics Inborn errors of metabolism Application of targeted metabolomics to the newborn screening of inborn errors of metabolism Examples of inborn error of metabolism diagnosed by the newborn screening Methylmalonic acidemias Propionic acidemia Glutaric acidemia Isovaleric acidemia Phenylketonuria Hereditary tyrosinemias Maple syrup urine disease Conclusion References 7 Approaches in untargeted metabolomics Introduction Local and nonlocal metabolomics effects Untargeted metabolomics application Metabolomics profiling Cardiovascular disease Neurodegenerative disease Limitations Sources of metabolome variability Key trends in untargeted metabolomics Metabolome coverage Moving metabolomics from laboratories to clinics Metabolomics pipeline standardization Sample size Independent cohort to validate the results Cause/effects disambiguation Conclusion References 2 Data analysis 8 Techniques for converting metabolomic data for analysis Introduction Data preprocessing Mass spectrometry-based experiments Peak picking and Smoothing Deconvolution Alignment Gap filling Nuclear magnetic resonance Water signal elimination Chemical shift calibration Binning Normalization Internal standard normalization Probabilistic quotient normalization Quantile normalization Data pretreatment Centering Scaling Transformation Conclusion References 9 Data analysis in metabolomics: from information to knowledge Introduction Exploratory analysis Univariate approach Tests to investigate metabolite concentration differences Multivariate approach Loadings and scores in principal components analysis Significative components Conclusion Unsupervised machine learning analysis Introduction Cluster analysis Hierarchical clustering Agglomerative hierarchical methods Divisive hierarchical methods Nonhierarchical clustering K-means method Jarvis-Patrick method Conclusion Supervised machine learning Introduction Decision trees Naïve Bayesian Discriminant analysis Artificial neural network Introduction Artificial neural networks training Conclusions Support vector machine Nonlinear separable data Regressive models Partial least square regression Geometric interpretation of the partial least square regression The prediction error in partial least square regression RIDGE regression Least absolute shrinkage and selection operator regression Partial least square discriminant analysis Latent variables The variables important in the projection Geometric interpretation of the partial least square discriminant analysis Orthogonal partial least squares discriminant analysis Classification model validation Leave-one-out cross-validation Leave-k-out cross-validation k-fold cross validation Permutation test Class imbalance Metrics to estimate the classification performances Sampling strategies Machine learning algorithms modification Ensemble machine learning Bagging Boosting Features selection Features filtering Boruta’s algorithm Genetic algorithm Genetic algorithm operators Features generation Embedded methods Conclusions Hyperparameters optimization Parameters and hyperparameters in machine learning Hyperparameters tuning Grid search Random search Bayesian optimization Appendix References 10 Relevant metabolites’ selection strategies Introduction Low-level variable selection Unsupervised low-level variable selection Percentage observed Variance based Supervised low-level variable selection Quantitative response Pearson’s correlation coefficient Qualitative response Fold change Hypothesis testing Medium-level variable selection Variable selection or wrapper methods Stepwise regression Global optimization algorithms High-level variable selection Embedded methods for the selection of variables Regularization techniques Latent variable methods Principal component regression Partial least squares Decision trees Random forests Support vector machine Heuristic approach Bootstrap and stability selection Cross validation Concluding remarks References 11 Pathway analysis Metabolites ontology Introduction to ontologies Ontologies for metabolites Common metabolite databases Human metabolome database LipidMaps CheBi Common pathway databases Kyoto encyclopedia of genes and genomes Small molecules pathway database Consensus path database Reactome Wikipathways Metabolic pathway analysis Overrepresentation Enrichment Metabolite set enrichment analysis Kolmogorov–Smirnov test Wilcoxon signed rank test Topological methods Tools for metabolomic pathway analysis Conclusions References 3 Application 12 Cell culture metabolomics and lipidomics Introduction Sample processing and experimentation for cell culture lipidomics and metabolomics Methods for optimized metabolite and lipid extractions for cell culture analysis Analysis of metabolic processes including metabolic flux Methods and protocols for isolation and metabolomics of small extracellular vesicles from cell culture supernatants Cell culture for isolation of small extracellular vesicles Isolation of small extracellular vesicles using ultracentrifugation Differential ultracentrifugation Density gradient ultracentrifugation Isolation of small extracellular vesicles using tangential flow filtration Characterization of small extracellular vesicles Metabolite extractions from cells and small extracellular vesicles Sample preparation and analysis with nuclear magnetic resonance spectroscopy Cell culture metabolomics and lipidomics data analysis Cell culture metabolomics and cell modeling for the design and optimization of cell culture applications Determination of major metabolic pathways or network from metabolomics or fluxomics data Network analysis in cell culture metabolomics Mechanistic modeling for cell culture optimization, design, and information gathering Machine learning and hybrid models and artificial intelligence for cell design References 13 Single cell metabolomics Introduction Single-cell metabolomics in microbial technology Single-cell metabolomics in plant science and agriculture Diversified animal applications Single-cell metabolomics in developmental biology Single-cell metabolomics in aging and senescence study Single-cell metabolomics in stem cell biology Single-cell metabolomics in functional genomics Single-cell metabolomics in nutrition research Single-cell metabolomics in environmental biology Single-cell metabolomics in system biology Single-cell metabolomics in immunology Single-cell metabolomics in detection of metabolite dynamicity and pathway modulation Single-cell metabolomics in clinical metabolism and disease perspective Conclusion and future prospect References 14 Gut microbiota-derived metabolites in host physiology Introduction Metabolomics methods in host-microbiome studies Fermentable metabolites and short chain fatty acids Secondary bile acids Amino acids- and tryptophan-derived metabolites Additional microbially derived metabolites Perspectives and future directions References Further reading 15 MALDI–mass spectrometry imaging: the metabolomic visualization Introduction Basics of MALDI mass spectrometry imaging Matrix choice and application Tissue preparation for MALDI mass spectrometry imaging analysis MALDI mass spectrometry imaging instrumentation MALDI mass spectrometry imaging of endogenous metabolites Metabolite annotation and quantitation in MALDI mass spectrometry imaging Conclusion and future perspectives References 16 Metabolomics for oncology Introduction Reprogramming of cancer cell metabolism Glucose and Warburg effect Lactate shuttle due to tumor hypoxia and Warburg effect Glutamine metabolism Serine metabolism Methionine metabolism Metabolism of arginine and ornithine involved in linking tricarboxylic acid and urea cycles Proline metabolism Lipid synthesis pathway Nucleotide biosynthesis pathway Applications and examples of human cancer metabolomics Serum/plasma metabolomics studies Urine metabolomics studies Tissue metabolomics studies Fecal metabolomics studies Saliva metabolomics studies Metabolomics studies on other biological matrices Conclusion References 17 Metabolomics as a tool for precision medicine Systems approaches and systems medicine Individual phenotyping using nuclear magnetic resonance Applications References 18 Metabolomics in public health Introduction Data integration System biology and metabolomics in publich health Longitudinal and life-long studies in metabolomics Quantitative methods are necessary Big data and metabolomics in public health Policies, training, and resources Final remarks References Index Back Cover