دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Lan Zou (editor)
سری:
ISBN (شابک) : 0323899315, 9780323899314
ناشر: Academic Press
سال نشر: 2022
تعداد صفحات: 402
[404]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 13 Mb
در صورت تبدیل فایل کتاب Meta-Learning: Theory, Algorithms and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فرا یادگیری: نظریه، الگوریتم ها و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Meta-Learning: An Overview explains the fundamentals of meta-learning, providing an understanding of the concept of learning to learn. After giving a background to artificial intelligence, machine learning, deep learning, deep reinforcement learning, and meta-learning, the book provides important state-of-the-art mechanisms for meta-learning, including memory-augmented neural networks, meta-networks, convolutional Siamese neural networks, matching networks, prototypical networks, relation networks, LSTM meta-learning, model-agnostic meta-learning, and Reptile. The book then demonstrates the application of the principles and algorithms of meta learning in computer vision, meta-reinforcement learning, robotics, speech recognition, natural language processing, finance, business management and health care. A final chapter summarizes future trends. Users, including students and researchers will find updates on the principles and state-of-the-art meta-learning algorithms, thus enabling the use of meta-learning for a range of applications.
Front Cover Meta-Learning: Theory, Algorithms and Applications Copyright Dedication Contents Preface Acknowledgments Chapter 1: Meta-learning basics and background 1.1. Introduction 1.2. Meta-learning 1.2.1. Definitions 1.2.2. Evaluation 1.2.3. Datasets and benchmarks 1.3. Machine learning 1.3.1. Models 1.3.2. Limitations 1.3.3. Related concepts 1.3.4. Further Reading 1.4. Deep learning 1.4.1. Models 1.4.2. Limitations 1.4.3. Further readings 1.5. Transfer learning 1.5.1. Multitask learning 1.6. Few-shot learning 1.7. Probabilistic modeling 1.8. Bayesian inference References Part I: Theory & mechanisms Chapter 2: Model-based meta-learning approaches 2.1. Introduction 2.2. Memory-augmented neural networks 2.2.1. Background knowledge 2.2.2. Methodology Task setup Memory retrieval Least recently used access 2.2.3. Extended algorithm 1 2.2.4. Extended algorithm 2 2.3. Meta-networks 2.3.1. Background knowledge 2.3.2. Methodology Slow weights and fast weights Layer augmentation 2.3.3. Main loss functions and representation loss functions 2.4. Summary References Chapter 3: Metric-based meta-learning approaches 3.1. Introduction 3.2. Convolutional Siamese neural networks 3.2.1. Background knowledge 3.2.2. Methodology Combination of the twin Siamese networks Objective function Optimization 3.2.3. Extended algorithm 1 3.3. Matching networks 3.3.1. Background knowledge 3.3.2. Methodology The attention kernel Full context embedding Episode-based training 3.3.3. Extended algorithm 1 3.4. Prototypical networks 3.4.1. Background knowledge 3.4.2. Methodology Bregman divergence requirement 3.4.3. Extended algorithm 1 3.4.4. Extended algorithm 2 3.4.5. Extended algorithm 3 3.5. Relation network 3.5.1. Background knowledge 3.5.2. Methodology C-Way one-shot C-Way K-shot C-Way zero-shot Objective function 3.6. Summary References Chapter 4: Optimization-based meta-learning approaches 4.1. Introduction 4.2. LSTM meta-learner 4.2.1. Background knowledge Covariate shift Batch normalization Long short-term memory Gradient-based optimization 4.2.2. Methodology Gradient independent assumption and initialization Meta-training and meta-testing batch normalization Parameter sharing 4.3. Model-agnostic meta-learning 4.3.1. Background knowledge Transfer learning Fine-tuning 4.3.2. Methodology Task adaptation 4.3.3. Illustration 1: Few-shot regression and few-shot classification 4.3.4. Illustration 2: Policy gradient reinforcement learning 4.3.5. Illustration 3: Meta-imitation learning 4.3.6. Related Algorithm 1: Meta-SGD 4.3.7. Related Algorithm 2: Feature reuse-The effectiveness of MAML 4.3.8. Related Algorithm 3: Adaptive hyperparameter generation for fast adaptation 4.4. Reptile 4.4.1. Background knowledge First-order model-agnostic meta-learning 4.4.2. Methodology 4.4.2.1. Serial version 4.4.2.2. Parallel or batch version The optimization assumption Analysis 4.4.3. Related Algorithm 1 4.4.4. Related Algorithm 2 4.4.5. Related Algorithm 3 4.4.6. Related Algorithm 4 4.5. Summary References Part II: Applications Chapter 5: Meta-learning for computer vision 5.1. Introduction 5.1.1. Limitations 5.2. Image classification 5.2.1. Introduction Development Approaches Benchmarks One-stage semisupervised learning One-stage unsupervised learning Multistage semisupervised learning 5.2.2. Decision boundary sharpness and few-shot image classification 5.2.3. Semisupervised few-shot image classification with refined prototypical network 5.2.4. Few-shot unsupervised image classification 5.2.5. One-shot image deformation 5.2.6. Heterogeneous multitask learning in image classification 5.2.7. Few-shot classification with transductive inference 5.2.8. Closed-form base learners 5.2.9. Long-tailed image classification 5.2.10. Image classification via incremental learning without forgetting Comparison and contrast of iTAML and reptile Lower bound of sample 5.2.11. Few-shot open set recognition 5.2.12. Deficiency of pretrained knowledge in few-shot learning 5.2.13. Bayesian strategy with deep kernel for regression and cross-domain image classification in a few-shot setting 5.2.14. Statistical diversity in personalized models of federated learning 5.2.15. Meta-learning deficiency in few-shot learning 5.3. Face recognition and face presentation attack 5.3.1. Introduction Facial recognition Face antispoofing 5.3.2. Person-specific talking head generation for unseen people and portrait painting in few-shot regimes 5.3.3. Face presentation attack and domain generalization 5.3.4. Anti-face-spoofing in few-shot and zero-shot scenarios 5.3.5. Generalized face recognition in the unseen domain 5.4. Object detection 5.4.1. Introduction Approaches Benchmarks 5.4.2. Long-tailed data object detection in few-shot scenarios 5.4.3. Object detection in few-shot scenarios 5.4.4. Unseen object detection and viewpoint estimation in low-data settings 5.5. Fine-grained image recognition 5.5.1. Introduction Approaches Benchmarks 5.5.2. Fine-grained visual categorization 5.5.3. One-shot fine-grained visual recognition 5.5.4. Few-shot fine-grained image recognition 5.6. Image segmentation 5.6.1. Introduction Modern development 5.6.2. Multiobject few-shot semantic segmentation 5.6.3. Few-shot static object instance-level detection 5.7. Object tracking 5.7.1. Introduction 5.7.2. Offline object tracking 5.7.3. Real-time online object tracking 5.7.4. Real-time object tracking with channel pruning One-shot channel pruning 5.7.5. Object tracking via instance detection 5.8. Label noise 5.8.1. Introduction Approaches Benchmarks 5.8.2. Reweighting examples through online approximation 5.8.3. Hallucinated clean representation for noisy-labeled visual recognition 5.8.4. Data valuation using reinforcement learning 5.8.5. Teacher-student networks for image classification on noisy labels 5.8.6. Sample reweighting function construction 5.8.7. Loss correction approach 5.8.8. Meta-relabeling through data coefficients 5.8.9. Meta-label correction 5.9. Superresolution 5.9.1. Introduction Approaches Datasets and benchmarks 5.9.2. Meta-transfer learning for zero-shot superresolution 5.9.3. LR-HR image pair superresolution 5.9.4. No-reference image quality assessment 5.10. Multimodal learning 5.10.1. Introduction Deep learning approaches Benchmarks 5.10.2. Visual question answering system 5.11. Other emerging topics 5.11.1. Domain generalization 5.11.2. High-accuracy 3D appearance-based gaze estimation in few-shot regimes 5.11.3. Benchmark of cross-domain few-shot learning in vision tasks 5.11.4. Latent embedding optimization in low-dimensional space 5.11.5. Image captioning 5.11.6. Memorization issue 5.11.7. Meta-pseudo label 5.12. Summary References Chapter 6: Meta-learning for natural language processing 6.1. Introduction 6.1.1. Limitations 6.2. Semantic parsing 6.2.1. Introduction Development Benchmarks 6.2.2. Natural language to structured query generation in few-shot learning Implementation 6.2.3. Semantic parsing in low-resource scenarios 6.2.4. Context-dependent semantic parser with few-shot learning 6.3. Machine translation 6.3.1. Introduction 6.3.2. Multidomain neural machine translation in low-resource scenarios 6.3.3. Multilingual neural machine translation in few-shot scenarios 6.4. Dialogue system 6.4.1. Introduction 6.4.2. Few-shot personalizing dialogue generation 6.4.3. Domain adaptation in a dialogue system 6.4.4. Natural language generation by few-shot learning concerning task-oriented dialogue systems 6.5. Knowledge graph 6.5.1. Introduction 6.5.2. Multihop knowledge graph reasoning in few-shot scenarios 6.5.3. Knowledge graphs link prediction in few-shot scenarios 6.5.4. Knowledge base complex question answering 6.5.5. Named-entity recognition in cross-lingual scenarios 6.6. Relation extraction 6.6.1. Introduction 6.6.2. Few-shot supervised relation classification 6.6.3. Relation extraction with few-shot and zero-shot learning 6.7. Sentiment analysis 6.7.1. Introduction Benchmark and dataset 6.7.2. Text emotion distribution learning with small samples 6.8. Emerging topics 6.8.1. Domain-specific word embedding under lifelong learning setting Background knowledge Methodology 6.8.2. Multilabel classification Background knowledge Methodology 6.8.3. Representation under a low-resource setting Background knowledge Methodology 6.8.4. Compositional generalization Background knowledge Methodology 6.8.5. Zero-shot transfer learning for query suggestion Background knowledge Methodology 6.9. Summary References Chapter 7: Meta-reinforcement learning 7.1. Background knowledge 7.1.1. Basic components of a deep reinforcement learning system 7.1.2. Model-based and model-free approaches 7.1.3. Simulated environments 7.1.4. Limitations of deep reinforcement learning 7.2. Meta-reinforcement learning introduction 7.2.1. Early development 7.2.2. Formalism 7.2.3. Fundamental components 7.3. Memory 7.3.1. External read-write memory for agents with multiple modalities 7.4. Meta-reinforcement learning methods 7.4.1. Continuous adaptation in nonstationary environments Related Meta-RL algorithms for sample efficiency 7.4.2. Exploration with structured noise Related Meta-RL approaches for exploration 7.4.3. Credit assignment 7.4.4. Second-order computation in MAML Related Meta-RL algorithms based on MAML modifications 7.5. Reward signals and environments 7.5.1. Sparse extrinsic reward in procedurally generated environments Related Meta-RL algorithms for reward signal 7.6. Benchmark 7.6.1. Meta-World 7.7. Visual navigation 7.7.1. Introduction 7.7.2. Visual navigation to unseen scenes 7.7.3. Transferable meta-knowledge in unsupervised visual navigation 7.8. Summary References Chapter 8: Meta-learning for healthcare 8.1. Introduction Part I: Medical imaging computing 8.2. Image classification 8.2.1. Breast magnetic resonance imaging 8.2.2. Tongue identification 8.3. Lesion classification 8.3.1. Fine-grained skin disease classification 8.3.2. Difficulty-aware rare disease classification 8.3.3. Rare disease diagnostics: Skin lesion 8.4. Image segmentation 8.4.1. Medical ultra-resolution image segmentation 8.5. Image reconstruction 8.5.1. Chest and abdomen computed tomography image reconstruction Part II: Electronic health records analysis 8.6. Electronic health records 8.6.1. Disease prediction in a low-resource setting 8.6.2. Disease classification in a few-shot setting Part III: Application areas 8.7. Cardiology 8.7.1. Remote heart rate measurement in a few-shot setting 8.7.2. Customized pulmonary valve conduit reconstruction 8.7.3. Cardiac arrhythmia auto-screening 8.8. Disease diagnostics 8.8.1. Fine-grained disease classification under task heterogeneity 8.8.2. Clinical prognosis with Bayesian optimization 8.9. Data modality 8.9.1. Modality detection of biomedical images 8.10. Future work References Chapter 9: Meta-learning for emerging applications: Finance, building materials, graph neural networks, program synthesis ... 9.1. Introduction 9.2. Finance and economics 9.2.1. Introduction Approaches 9.2.2. Detection of credit card transaction fraud 9.2.3. Task-agnostic meta-learner with inequality measurement in economics Economic inequality measure 9.3. Building materials 9.3.1. Defect (crack) recognition in concrete in reinforcement learning 9.4. Graph neural network 9.4.1. Introduction 9.4.2. Node classification on graphs with few-shot novel labels 9.4.3. Local subgraphs for node classification and link prediction 9.4.4. Adversarial attacks of node classification Comparion and contrast of AQ and prototypical meta-learning 9.4.5. Dual-graph structured approach with instance- and distribution-level relations 9.5. Program synthesis 9.5.1. Syntax-guided synthesis 9.6. Transportation 9.6.1. Introduction 9.6.2. Traffic signal control 9.6.3. Continuous trajectory estimation for lane changes under a few-shot setting 9.6.4. Urban traffic prediction based on spatio-temporal correlation 9.7. Cold-start problems in recommendation systems 9.7.1. Introduction 9.7.2. Continuously adding new items 9.7.3. Context-aware cross-domain recommendation cold-start under a few-shot setting 9.7.4. User preference estimator 9.7.5. Memory-augmented recommendation system meta-optimization 9.7.6. Meta-learner with heterogeneous information networks 9.8. Climate science 9.8.1. Introduction 9.8.2. Critical incident detection 9.9. Summary References Index Back Cover