دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.] نویسندگان: Tom M. Palmer (editor), Jonathan A. C. Sterne (editor) سری: ISBN (شابک) : 1597181471, 9781597181471 ناشر: Stata Press سال نشر: 2015 تعداد صفحات: 534 [661] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 20 Mb
در صورت تبدیل فایل کتاب Meta-Analysis in Stata: An Updated Collection from the Stata Journal, Second Edition به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب متاآنالیز در Stata: مجموعه ای به روز شده از مجله Stata، ویرایش دوم نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این مجموعه مقالات از Stata Journal و Stata Technical Bulletin شرح مفصلی از طیف وسیعی از روش های فرا تحلیلی ارائه می دهد. آنها نحوه انجام و تفسیر متاآنالیز را نشان می دهند. نحوه تولید نمایشگرهای گرافیکی انعطاف پذیر. نحوه استفاده از متارگرسیون چگونه سوگیری را بررسی کنیم و چگونه تجزیه و تحلیل میانگین چند متغیره را انجام دهیم
This collection of articles from Stata Journal and Stata Technical Bulletin provide a detailed description of a range of meta-analytic methods. They show how to conduct and interpret meta-analysis; how to produce flexible graphical displays; how to use meta-regression; how to examine bias, and how to conduct multivariate mea-analysis
Introduction to the second edition References Introduction to the first edition References Install the software I Meta-analysis in Stata: metan, metaan, metacum, and metap References 1 metan—a command for meta-analysis in Stata 1.1 Background 1.2 Data structure 1.3 Analysis of binary data using fixed-effects models 1.4 Analysis of continuous data using fixed-effects models 1.5 Test for heterogeneity 1.6 Analysis of binary or continuous data using random-effects models 1.7 Tests of overall effect 1.8 Graphical analyses 1.9 Syntax for metan 1.10 Options for metan 1.11 Saved results from metan (macros) 1.12 Syntax for funnel 1.13 Options for funnel 1.14 Syntax for labbe 1.15 Options for labbe 1.16 Example 1: Interventions in smoking cessation 1.17 Example 2 1.18 Formulas 1.19 Individual study responses: binary outcomes 1.20 Individual study responses: continuous outcomes 1.21 Mantel–Haenszel methods for combining trials 1.22 Inverse variance methods for combining trials 1.23 Peto’s assumption free method for combining trials 1.24 DerSimonian and Laird random-effects models 1.25 Confidence intervals 1.26 Test statistics 1.27 Acknowledgments 1.28 References 2 metan: fixed- and random-effects meta-analysis 2.1 Introduction 2.2 Example data 2.3 Syntax 2.4 Basic use 2.5 Displaying data columns in graphs 2.6 by() processing 2.7 User-defined analyses 2.8 New analysis options 2.9 New output 2.10 More graph options 2.11 Variables and results produced by metan 2.12 References 3 metaan: Random-effects meta-analysis 3.1 Introduction 3.2 The metaan command 3.3 Methods 3.4 Example 3.5 Discussion 3.6 Acknowledgments 3.7 References 4 Cumulative meta-analysis 4.1 Syntax 4.2 Options 4.3 Background 4.4 Example 4.5 Note 4.6 Acknowledgments 4.7 References 5 Meta-analysis of p-values 5.1 Fisher’s method 5.2 Edgington’s methods 5.3 Syntax 5.4 Option 5.5 Example 5.6 Individual or frequency records 5.7 Saved results 5.8 References II Meta-regression: metareg References 6 Meta-regression in Stata 6.1 Introduction 6.2 Basis of meta-regression 6.3 Relation to other Stata commands 6.4 Background to examples 6.5 New and enhanced features 6.6 Syntax, options, and saved results 6.7 Methods and formulas 6.8 Acknowledgments 6.9 References 7 Meta-analysis regression 7.1 Background 7.2 Method-of-moments estimator 7.3 Iterative procedures 7.4 Syntax 7.5 Options 7.6 Example 7.7 Saved results 7.8 Acknowledgments 7.9 References III Investigating bias in meta-analysis: metafunnel, confunnel, metabias, metatrim, and extfunnel References 8 Funnel plots in meta-analysis 8.1 Introduction 8.2 Funnel plots 8.3 Syntax 8.4 Description 8.5 Options 8.6 Examples 8.7 Acknowledgments 8.8 References 9 Contour-enhanced funnel plots for meta-analysis 9.1 Introduction 9.2 Contour-enhanced funnel plots 9.3 The confunnel command 9.4 Use of confunnel 9.5 Discussion 9.6 References 10 Updated tests for small-study effects in meta-analyses 10.1 Introduction 10.2 Syntax 10.3 Options 10.4 Background 10.5 Example 10.6 Saved results 10.7 Discussion 10.8 Acknowledgment 10.9 References 11 Tests for publication bias in meta-analysis 11.1 Syntax 11.2 Description 11.3 Options 11.4 Input variables 11.5 Explanation 11.6 Begg’s test 11.7 Egger’s test 11.8 Examples 11.9 Saved results 11.10 References 12 Tests for publication bias in meta-analysis 12.1 Modification of the metabias program 12.2 References 13 Nonparametric trim and fill analysis of publication bias in meta-analysis 13.1 Syntax 13.2 Description 13.3 Options 13.4 Specifying input variables 13.5 Explanation 13.6 Estimators of the number of suppressed studies 13.7 The iterative trim and fill algorithm 13.8 Example 13.9 Remarks 13.10 Saved results 13.11 Note 13.12 References 14 Graphical augmentations to the funnel plot to assess the impact of a new study on an existing meta-analysis 14.1 Introduction 14.2 Methodology 14.3 The extfunnel command 14.4 Example uses of extfunnel 14.5 Additional feature 14.6 Discussion 14.7 Acknowledgments 14.8 References IV Multivariate meta-analysis: metandi, mvmeta References 15 metandi: Meta-analysis of diagnostic accuracy using hierarchical logistic regression 15.1 Introduction 15.2 Example: Lymphangiography for diagnosis of lymph node metastasis 15.3 Models for meta-analysis of diagnostic accuracy 15.4 metandi output 15.5 metandiplot 15.6 predict after metandi 15.7 Syntax and options for commands 15.8 Methods and formulas 15.9 Acknowledgments 15.10 References 16 Multivariate random-effects meta-analysis 16.1 Introduction 16.2 Multivariate random-effects meta-analysis with mvmeta 16.3 Details of mvmeta 16.4 A utility command to produce data in the correct format: mvmeta_make 16.5 Example 1: Telomerase data 16.6 Example 2: Fibrinogen Studies Collaboration data 16.7 Perfect prediction 16.8 Discussion 16.9 Acknowledgments 16.10 References 17 Multivariate random-effects meta-regression: Updates to mvmeta 17.1 Introduction 17.2 mvmeta: Multivariate random-effects meta-regression 17.3 Details 17.4 Example 17.5 Difficulties and limitations 17.6 Acknowledgments 17.7 References V Individual patient data meta-analysis: ipdforest and ipdmetan References 18 A short guide and a forest plot command (ipdforest) for one-stage meta-analysis 18.1 Introduction 18.2 Individual patient data meta-analysis 18.3 The ipdforest command 18.4 Discussion 18.5 Acknowledgments 18.6 References 19 Two-stage individual participant data meta-analysis and generalized forest plots 19.1 Introduction 19.2 Two-stage IPD meta-analysis 19.3 The ipdmetan command 19.4 Example 19.5 Discussion 19.6 Acknowledgments 19.7 References VI Network meta-analysis: indirect, network package, network_graphs package References 20 Indirect treatment comparison 20.1 Introduction 20.2 Adjusted indirect treatment comparison 20.3 Example: Zoledronate versus Pamidronate in multiple myeloma 20.4 Conclusion 20.5 References 21 Network meta-analysis 21.1 Introduction 21.2 Model for network meta-analysis 21.3 The network commands 21.4 Examples 21.5 Discussion 21.6 Acknowledgments 21.7 References 22 Visualizing assumptions and results in network meta-analysis: The network graphs package 22.1 Introduction 22.2 Example datasets 22.3 The network graphs package 22.4 Discussion 22.5 Acknowledgments 22.6 References VII Advanced methods: glst, metamiss, sem, gsem, metacumbounds, metasim, metapow, and metapowplot References 23 Generalized least squares for trend estimation of summarized dose–response data 23.1 Introduction 23.2 Method 23.3 The glst command 23.4 Examples 23.5 Empirical comparison of the WLS and GLS estimates 23.6 Conclusion 23.7 References 24 Meta-analysis with missing data 24.1 Introduction 24.2 metamiss command 24.3 Examples 24.4 Details 24.5 Discussion 24.6 References 25 Fitting fixed- and random-effects meta-analysis models using structural equation modeling with the sem and gsem commands 25.1 Introduction 25.2 Univariate outcome meta-analysis models 25.3 Univariate outcome meta-regression models 25.4 Multivariate outcome meta-analysis with zero within-study covariances 25.5 Multivariate outcome meta-analysis with nonzero within-study covariances 25.6 Conclusion 25.7 Acknowledgments 25.8 References 26 Trial sequential boundaries for cumulative meta-analyses 26.1 Introduction 26.2 Methods 26.3 R statistical software 26.4 The metacumbounds command 26.5 Examples 26.6 Discussion 26.7 Acknowledgment 26.8 References 27 Simulation-based sample-size calculation for designing new clinical trials and diagnostic test accuracy studies to update an existing meta-analysis 27.1 Introduction 27.2 Methods 27.3 The metasim command 27.4 The metapow command 27.5 The metapowplot command 27.6 Other uses 27.7 Discussion 27.8 Acknowledgments 27.9 References Appendix 27.10 References