دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Ralf Gertisser, Valentin R. Troll, Thomas R. Walter, I Gusti Made Agung Nandaka, Antonius Ratdomopurbo سری: Active Volcanoes of the World ISBN (شابک) : 3031150392, 9783031150395 ناشر: Springer سال نشر: 2023 تعداد صفحات: 580 [581] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 43 Mb
در صورت تبدیل فایل کتاب Merapi Volcano: Geology, Eruptive Activity, and Monitoring of a High-Risk Volcano به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب آتشفشان مراپی: زمین شناسی، فعالیت فوران، و نظارت بر آتشفشان پرخطر نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب اولین مجموعه جامع از تحقیقات پیشرفته در مورد
آتشفشان Merapi در جزیره جاوه، اندونزی، یکی از نمادین ترین
آتشفشان های جهان را ارائه می دهد. نتایج حاصل از علوم طبیعی
(زمین شناسی، سنگ شناسی، ژئوشیمی، ژئوفیزیک، آتشفشان شناسی
فیزیکی) و علوم اجتماعی را ادغام می کند و اطلاعات پیشرفته ای را
در مورد پایش آتشفشان، ارزیابی خطرات آتشفشانی، و اقدامات کاهش
خطر ارائه می دهد.
This book provides the first comprehensive compilation of
cutting-edge research on Merapi volcano on the island of Java,
Indonesia, one of the most iconic volcanoes in the world. It
integrates results from both the natural (geology, petrology,
geochemistry, geophysics, physical volcanology) and social
sciences, and provides state-of-the-art information on volcano
monitoring, the assessment of volcanic hazards, and risk
mitigation measures.
As one of Indonesia’s most active and dangerous volcanoes,
Merapi is perhaps best known for its pyroclastic density
currents, which are produced by gravitational or explosive lava
dome failures (commonly referred to as Merapi-type nuées
ardentes). Merapi’s eruptions have posed a persistent threat to
life, property and infrastructure within the densely populated
areas on the volcano’s flanks, as demonstrated most recently by
catastrophic eruptions, which attracted worldwide media
interest.
Opening Letter: The Long Shadow of Merapi Volcano References Foreword Acknowledgements Contents 1 The Scientific Discovery of Merapi: From Ancient Javanese Sources to the 21st Century Abstract 1.1 Introduction 1.2 Merapi in Early Javanese Sources 1.3 The Naturalists of the 18th and 19th Century 1.4 Observations of Merapi and Its Eruptions in the Late 19th and Early 20th Century 1.5 Into the Modern Era: Merapi Research After Indonesia’s Independence 1.6 The United Nations International Decade for Natural Disaster Reduction and Merapi Decade Volcano 1.7 Research in the 21st Century 1.8 Volcano Monitoring at Merapi—A 100 Year History Acknowledgements References 2 Physical Environment and Human Context at Merapi Volcano: A Complex Balance Between Accessing Livelihoods and Coping with Volcanic Hazards Abstract 2.1 Introduction: Merapi, a Highly Populated Volcano 2.2 The Main Reason of High Population Densities: Land Resources and Associated Livelihoods at Merapi 2.2.1 A Climatic Context Suitable for Livelihoods 2.2.2 Land Use, Agriculture and Livestock 2.2.3 Block and Sand Mining in the Valleys: An Adaptation to Pyroclastic Density Currents and Lahars? 2.3 Capacities to Face High-Frequency/Low-Magnitude Eruptions at Merapi 2.3.1 Volcanic Risk Management 2.3.2 Crisis Management 2.3.2.1 Official and Traditional Warning Systems 2.3.2.2 Organising the Evacuations: The Importance of Road Networks and Transportation Capacity 2.4 Crisis Management and Peoples’ Responses During the 2010 Low-Frequency/High-Magnitude Eruption 2.4.1 Crisis Management by the Authorities 2.4.1.1 Evacuation Orders and Restricted Zones 2.4.1.2 Crisis Management Related to Air Traffic 2.4.2 Peoples’ Response During the 2010 Eruption Crisis 2.4.2.1 Shelter Attendance 2.4.2.2 Population Behaviour During the 2010 Eruption Crisis 2.5 Post-Disaster Resilience and Adaptation at Merapi 2.5.1 The Choice of Relocation 2.5.2 Daily Challenges and Evolution of the Quality of Life 2.6 Summary and Outlook Acknowledgements References 3 Merapi and Its Dynamic ‘Disaster Culture’ Abstract 3.1 Introduction 3.2 The Role of the Past in the Present and Future of Merapi 3.2.1 Misunderstandings of Past Intersections of Culture and Nature at Merapi 3.2.2 The Colonial View of the Archaeological Site of Borobudur and Its Relationship to Merapi 3.2.3 The Non-Colonial View of Franz Wilhelm Junghuhn on Merapi 3.3 The Social Life of Merapi 3.3.1 A ‘Disaster Culture’ 3.4 The Scientific Vision of Merapi 3.4.1 Modern Scientific Study of Merapi 3.4.2 Collecting and Disseminating Data and Interpretations in the Twenty-First Century 3.5 The Nature and Culture of Merapi in the Anthropocene 3.5.1 Oral Traditions and Participatory Hazards Communication as a Bridge to Scientific Communication 3.5.2 The Sacred Axis as Pre-Modern Observation 3.6 Engagement with Dynamic Pasts and Futures Acknowledgements References 4 The Geodynamic Setting and Geological Context of Merapi Volcano in Central Java, Indonesia Abstract 4.1 Introduction 4.2 Geodynamic Setting 4.3 Geological Structure of Mt. Merapi 4.4 Regional Stratigraphy of East-Central Java 4.4.1 Basement Rocks of East-Central Java 4.4.2 The Rembang Zone 4.4.3 The Randublatung Zone 4.4.4 The Kendeng Zone 4.4.5 The Central Java Depression (Solo Zone) 4.4.6 The Southern Mountains of East-Central Java 4.5 Summary Acknowledgements References 5 Crustal Structure and Ascent of Fluids and Melts Beneath Merapi: Insights From Geophysical Investigations Abstract 5.1 Introduction 5.2 GPS, Tilt and Gravity Measurements 5.3 Electrical Resistivity Structure 5.4 Active Seismic Measurements Explain Complex Earthquake Signals of a Stratovolcano 5.5 Merapi’s Magma Reservoir and Ascent Paths of Fluids and Partial Melts 5.5.1 Deeper Structure Beneath Central Java 5.5.2 Shallower Structure Beneath Merapi 5.6 Summary Acknowledgements References 6 Geological History, Chronology and Magmatic Evolution of Merapi Abstract 6.1 Introduction 6.2 Geological Evolution of Merapi 6.2.1 Previous Research and the Development of Ideas 6.2.1.1 Early Work 6.2.1.2 Research from 1980 to 2000 6.2.1.3 Research in the Twenty-First Century 6.2.2 A Synthesis of the Geological History and Chronology of Merapi: Current Thinking 6.2.2.1 Volcano-Stratigraphic Units 6.2.2.2 Structural Evolution and Volcano Collapse 6.3 Compositional Variations of the Eruptive Products of Merapi 6.3.1 Rock Types and Classification 6.3.2 Mineralogy and Petrography 6.3.2.1 Mineralogical and Petrographical Characteristics 6.3.2.2 Mineral Textures and Compositions 6.3.3 Major and Trace Element Compositions 6.3.4 Isotopic Compositions 6.3.4.1 Radiogenic Isotopes 6.3.4.2 Oxygen Isotopes 6.3.4.3 Uranium Series Isotopes 6.4 Magma Genesis and Magmatic Differentiation at Merapi 6.4.1 Magma Generation 6.4.2 Magma Storage Conditions and Magmatic Differentiation 6.4.3 Magmatic Evolution of Merapi: Temporal Geochemical Variations 6.5 Summary Acknowledgements References 7 The Godean Debris Avalanche Deposit From a Sector Collapse of Merapi Volcano Abstract 7.1 Introduction 7.2 Geological Setting and Previous Studies 7.3 Ancient Lake Borobudur 7.4 Ancient Lake Gantiwarno 7.5 Geology of the Godean Area 7.5.1 Godean Palaeovolcano 7.5.2 Godean Debris Avalanche Deposit 7.5.3 Pyroclastic Deposits 7.5.4 Lahar Deposits 7.6 Significance of the Tertiary Volcanic Rocks 7.7 Emplacement, Area Covered and Volume of the Godean Debris Avalanche Deposit 7.8 Merapi Sector Collapse(s) and the Relation to Old Merapi and New Merapi 7.9 Ages of Merapi Sector Collapse(s) and the Godean Debris Avalanche 7.10 Future Hazards 7.11 Summary and Outlook Acknowledgements References 8 The Magma Plumbing System of Merapi: The Petrological Perspective Abstract 8.1 Introduction 8.2 Geological Background 8.3 Petrology of Merapi Lavas and Inclusions 8.3.1 The Basaltic-Andesite Lavas 8.3.2 Highly-Crystalline Basaltic-Andesite Schlieren and Domains 8.3.3 Co-magmatic Basaltic Enclaves 8.3.4 Plutonic Crystalline Inclusions 8.3.5 Amphibole Megacrysts 8.3.6 Metasedimentary Calc-Silicate Inclusions (Crustal Xenoliths) 8.4 A View into the Magma Plumbing System of Merapi 8.4.1 Evidence from Thermobarometry 8.4.2 Evidence from Phase-Equilibrium Experiments 8.4.3 Rare Earth Element Concentrations and Patterns 8.4.4 Radiogenic Isotopes 8.4.5 Oxygen and Deuterium Isotopes 8.4.6 Constraints from Geophysics and Thermobarometry Approaches 8.5 Magma Storage and Origin of Inclusions and Xenolith Types 8.6 An Integrated Model for Merapi’s Plumbing System 8.7 Magma Storage Along the Java-Bali Segment of the Sunda Arc 8.8 Summary and Outlook Acknowledgements References 9 A Textural Perspective on the Magmatic System and Eruptive Behaviour of Merapi Volcano Abstract 9.1 Introduction 9.2 Background 9.2.1 Eruptive Styles of Merapi 9.2.2 Merapi Magmatic System 9.2.3 Crystallisation: Nucleation, Growth and Equilibrium Effects 9.2.4 Crystal Size Distribution (CSD) Analysis 9.3 The Crustal Plumbing System and Magmatic Processes Revealed Through Textural Analysis 9.3.1 Coarse Plutonic Inclusions and the Deep Plumbing System 9.3.2 Phenocrysts: Crustal Magma Storage System and Its Evolution Through Time 9.4 Shallow Conduit Processes Revealed Through Textural Analyses 9.4.1 Amphibole Reaction Rims 9.4.2 Feldspar Groundmass Microlite Textures 9.4.2.1 Feldspar Microlite Textures in Effusive Dome-Forming Eruptions 9.4.2.2 Effusive—Explosive Transitions at Merapi: Textural Evidence 9.5 Summary and Outlook Acknowledgements References 10 Magma-Carbonate Interaction at Merapi Volcano, Indonesia Abstract 10.1 Introduction 10.2 A Brief History of Research on Magma-Carbonate Interaction 10.3 Geological Context of Merapi 10.4 Mineralogy of Merapi Calc-Silicate Xenoliths 10.5 Geochemical Evidence of Magma-Carbonate Interaction 10.5.1 Strontium Isotopes 10.5.2 Oxygen Isotopes 10.5.3 Carbon and Helium Isotopes 10.5.4 A Major Element Conundrum? 10.6 Experimental Magma-Carbonate Interaction at Merapi 10.6.1 Volatile Degassing 10.6.2 Calcium-Contamination 10.7 The Volatile Budget at Merapi Acknowledgements References 11 Merapi Volcano: From Volcanic Gases to Magma Degassing Abstract 11.1 Introduction 11.2 Early Analyses of Merapi Volcanic Gases 11.2.1 Major Gas Chemistry 11.2.2 Stable Isotope Tracing 11.2.3 Trace Elements 11.3 Routine Survey of Merapi Volcanic Gases 11.3.1 Gas Composition 11.3.2 Sulphur Dioxide Emission Rate 11.4 Degassing of Resident Magma in Shallow Feeding System 11.5 Merapi Hydrothermal System 11.6 Magma-Limestone Interaction and CO2 Degassing 11.7 Volcanic Gas Composition and Eruptive Activity 11.7.1 Pre-eruptive Gas Changes and Eruption Style 11.7.2 Dome Growth and Gas Composition 11.7.3 Volcanic Activity and Trace Metals in Gases 11.8 Volatiles at the Roots of the System 11.9 Synthetic Models 11.10 Regional Seismicity, Volcanism and Degassing 11.11 Volatiles and Triggering Mechanism of the 2010 Eruption 11.12 Atmospheric Impacts 11.13 Summary and Outlook Acknowledgements References 12 An Overview of the Large-Magnitude (VEI 4) Eruption of Merapi in 2010 Abstract 12.1 Introduction 12.2 Eruption Chronology 12.2.1 Reawakening of Merapi and Volcanic Unrest 12.2.2 Beginning of the Eruption and Pre-Climactic Activity 12.2.3 Climactic Eruption Phase 12.2.4 Post-Climactic Activity and End of the 2010 Eruption 12.3 The Volcano Monitoring Record of the 2010 Eruption 12.3.1 Seismicity 12.3.2 Ground Deformation 12.3.3 Gas Geochemistry 12.3.4 Physical Processes Prior to the Eruption 12.4 Volcanic Deposits of the 2010 Eruption 12.4.1 Types, Volume and Distribution of the 2010 Volcanic Deposits 12.4.2 Volcanic Deposits Linked to Eruption Chronology 12.4.3 Generation, Dynamics and Significance of High-Energy Pyroclastic Density Currents 12.5 Geochemistry and Petrology of the 2010 Eruptive Products 12.5.1 Rock Types and Classification 12.5.2 Petrography and Mineral Chemistry 12.5.3 Magma Storage and Magmatic Processes 12.5.4 Timescales of Magmatic Processes 12.6 Eruption Effects, Impact and Recovery 12.7 Managing the 2010 Volcanic Crisis 12.7.1 The Role of the National Disaster Management System in Indonesia 12.7.2 Vulnerability Before the 2010 Eruption 12.7.3 Disaster Risk Reduction Strategy 12.7.3.1 Strengthening of the Volcano Monitoring System During the 2010 Eruption Crisis 12.7.3.2 Formation of a Disaster Risk Reduction Forum: The Merapi Forum 12.7.3.3 Strengthening of Community Capacity Through Disaster Management Training and Information Dissemination 12.7.3.4 Preparation of Contingency Plans 12.7.4 International Collaboration 12.7.5 Reflection and Lessons Learned 12.8 Summary Acknowledgements References 13 The Merapi Volcano Monitoring System Abstract 13.1 Introduction 13.2 Volcano Monitoring at Merapi: 1920–2010 13.3 The Merapi Monitoring Network After 2010 13.3.1 Real-Time Instruments 13.3.2 Temporary Experiments 13.4 Data Handling and Monitoring Tools 13.4.1 Cendana15: Integrated Collaborative Work Management Application 13.4.2 The WOVOdat Platform 13.4.3 The WebObs System 13.4.4 Support System for Decision Making (SSDM) 13.4.5 MAGMA Indonesia 13.5 Perspectives 13.5.1 Deep Magma Reservoir Monitoring 13.5.2 Modelling of Common Physical Parameters from Multidisciplinary Methods 13.5.3 Machine Learning 13.5.4 Crisis Management Acknowledgements References 14 Radar Sensing of Merapi Volcano Abstract 14.1 Introduction 14.2 Synthetic Aperture Radar 14.2.1 SAR Geometry 14.2.2 Satellite SAR Systems 14.3 SAR Applications at Merapi 14.3.1 Amplitude Methods and Analysis 14.3.2 Phase Differencing Methods and Analysis 14.3.3 Other Applications of SAR Systems 14.4 Summary and Outlook Acknowledgements References 15 Morphology and Instability of the Merapi Lava Dome Monitored by Unoccupied Aircraft Systems Abstract 15.1 Introduction 15.2 Methods 15.2.1 Unoccupied Aircraft Systems (UAS) 15.2.2 Photogrammetry and Structure From Motion (SfM) 15.3 Repeat Surveys of the Summit of Merapi Using Unoccupied Aircraft Systems 15.3.1 Drone Flight 2012: Morphology and Structure of the Merapi Lava Dome 15.3.2 Drone Flight 2015: Changes Associated with Steam-Driven Explosions 15.3.3 Drone Flight 2017: Changes Associated with Hydrothermal Activity 15.3.4 Drone Flight 2019: Changes Associated with a New Dome Growth Episode 15.4 Monitoring Lava Dome Building Activity and Morphological Changes in the Summit Area of Merapi Using Repeat Unoccupied Aircraft Systems Surveys 15.5 Summary and Outlook Acknowledgements References 16 Assessing the Pyroclastic Density Current Hazards at Merapi: From Field Data to Numerical Simulations and Hazard Maps Abstract 16.1 Pyroclastic Density Current (PDC) Hazards at Merapi 16.2 Hazard Assessment of Pyroclastic Density Currents at Merapi 16.2.1 Field Data Acquisition and Processing 16.2.2 Numerical Models of PDCs and Their Approaches 16.2.3 Deterministic Versus Probabilistic PDC Hazard Modelling Approaches 16.2.4 The Merapi Volcanic Hazard Map 16.3 Case Study 1: Field Data Acquisition and Numerical Simulations of the 2006 PDCs 16.3.1 Summary of the 2006 Eruptive Events 16.3.2 Numerical Simulations of the 2006 Block-And-Ash Flow Events 16.3.2.1 Simulations of Short- to Medium-Runout 2006 Block-And-Ash Flows (SM-BAF) 16.3.2.2 Simulations of Long-Runout 2006 Block-And-Ash Flows (L-BAF) 16.3.2.3 Evaluation of Simulation Results 16.4 Case Study 2: Field Data Acquisition and Numerical Simulations of the 2010 Pyroclastic Density Currents 16.4.1 Chronology of the Eruption 16.4.2 The Two-Layer Model 16.4.3 Emplacement of the 5 November Pyroclastic Density Currents 16.4.4 Evaluation of Simulation Results 16.5 Towards an Integration of Numerical Modelling Results into Hazard Maps Acknowledgements References 17 Merapi’s Lahars: Characteristics, Behaviour, Monitoring, Impact, Hazard Modelling and Risk Assessment Abstract 17.1 Introduction 17.1.1 Terminology and Scope 17.1.2 Population at Risk 17.2 Merapi, Java’s Largest Lahar Producer 17.2.1 Lahar Triggering at Merapi 17.2.2 Why is Merapi Prone to Producing Lahars? 17.2.3 Lahar Activity Following the 2010 VEI 4 Eruption 17.3 Lahar Monitoring and Warnings at Merapi 17.3.1 Monitoring Instrumentation 17.3.2 Warning System 17.4 Lahar Behaviour and Dynamics at Merapi 17.4.1 Direct Measurement 17.4.2 Sedimentological and Hydraulic Analysis 17.4.3 Remote Sensing, DEM and Channel Morphometry Analysis 17.5 Geophysical Measurements 17.5.1 Early Experimental Measures 17.5.2 Signal Characteristics 17.5.3 Recent Geophysical Measurements in the Kali Gendol Valley 17.5.4 Combining Measurements: 28 February 2014 Lahar Event 17.6 Lahar Impact 17.7 Revised Lahar-Prone Maps and Modelling Lahar Inundation Extent and Impact 17.7.1 LAHARZ Modelling 17.7.2 New Developments in Lahar Modelling Using the FLO2D Code 17.8 Assessment of Lahar Risk 17.9 Summary Acknowledgements References 18 Merapi: Evolving Knowledge and Future Challenges Abstract 18.1 Introduction 18.2 Geology and Volcanic History 18.3 Petrogenesis, Magma Plumbing System and Magmatic Processes 18.4 Eruptions and Transitions in Eruptive Style 18.5 Volcano Monitoring 18.6 Early Warning System 18.7 Emergency Planning and Volcanic Crisis Management 18.8 Social and Communication Changes 18.9 International Collaboration 18.10 Post-2010 Activity and Current Status of Merapi References