دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Jan Treur. Laila Van Ments
سری: Studies in Systems, Decision and Control, 394
ISBN (شابک) : 3030858200, 9783030858209
ناشر: Springer
سال نشر: 2022
تعداد صفحات: 627
[611]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 27 Mb
در صورت تبدیل فایل کتاب Mental Models and Their Dynamics, Adaptation, and Control: A Self-Modeling Network Modeling Approach به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مدلهای ذهنی و پویایی، سازگاری و کنترل آنها: رویکرد مدلسازی شبکه خود مدلسازی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب یک رویکرد کلی را برای مدل سازی استفاده و انطباق مدل های ذهنی، از جمله کنترل بر این، معرفی می کند. در فرآیندهای ذهنی خود، انسان ها اغلب از مدل های ذهنی درونی به عنوان نوعی طرح اولیه برای فرآیندهایی که می توانند در جهان یا در افراد دیگر اتفاق بیفتند، استفاده می کنند. آنها با شبیه سازی ذهنی درونی چنین مدل ذهنی در مغز خود می توانند پیش بینی کنند و برای آنچه در آینده اتفاق می افتد آماده شوند. معمولاً مدلهای ذهنی تطبیقی هستند: مثلاً میتوان آنها را آموخت، اصلاح کرد، تجدیدنظر کرد یا فراموش کرد. اگرچه ادبیات زیادی در مورد مدلهای ذهنی در رشتههای مختلف وجود دارد، اما گزارشی سیستماتیک از نحوه مدلسازی محاسباتی آنها به شیوهای شفاف وجود ندارد. این رویکرد امکان مدلسازی محاسباتی انسانها را با استفاده از مدلهای ذهنی بدون نیاز به مهارتهای الگوریتمی یا برنامهنویسی فراهم میکند و امکان تمرکز بر فرآیند مفهومسازی، مدلسازی و شبیهسازی فرآیندها و رفتارهای ذهنی پیچیده و دنیای واقعی را فراهم میکند. این کتاب برای دوره های کارشناسی ارشد و دکتری چند رشته ای مناسب است و از آن استفاده می شود. دانش آموزان.
This book introduces a generic approach to model the use and adaptation of mental models, including the control over this. In their mental processes, humans often make use of internal mental models as a kind of blueprints for processes that can take place in the world or in other persons. By internal mental simulation of such a mental model in their brain, they can predict and be prepared for what can happen in the future. Usually, mental models are adaptive: they can be learned, refined, revised, or forgotten, for example. Although there is a huge literature on mental models in various disciplines, a systematic account of how to model them computationally in a transparent manner is lacking. This approach allows for computational modeling of humans using mental models without a need for any algorithmic or programming skills, allowing for focus on the process of conceptualizing, modeling, and simulating complex, real-world mental processes and behaviors. The book is suitable for and is used as course material for multidisciplinary Master and Ph.D. students.
Preface Contents Part I Introduction 1 Dynamics, Adaptation and Control for Mental Models: A Cognitive Architecture 1.1 Introduction 1.2 Mental Models and What They Model 1.2.1 Mental Models as Small-Scale Models Within the Head 1.2.2 Mental Models for Individual Processes 1.2.3 Mental Models in Social Processes 1.2.4 A Mental Models Overview According to Mental Versus World and Static Versus Dynamic 1.3 Learning and Development of Mental Models 1.3.1 Learning and Development as Adaptation of Mental Models 1.3.2 Learning of Mental Models by Observation and by Instruction 1.3.3 Control for Learning of Mental Models Based on Metacognition 1.4 A Cognitive Architecture for Mental Models 1.4.1 Higher-Order Relations 1.4.2 What Exactly Do Mental Models Do? 1.4.3 A Cognitive Architecture for Handling Mental Models 1.5 Discussion References 2 Bringing Networks to the Next Level: Self-modeling Networks for Adaptivity and Control of Mental Models 2.1 Introduction 2.2 Modeling Adaptivity by Self-modeling Networks 2.2.1 Network-Oriented Modeling 2.2.2 Using Self-modeling Networks to Model Adaptive Networks 2.3 Modeling Adaptation Principles 2.3.1 First-Order Self-models for First-Order Adaptation Principles 2.3.2 Second-Order Self-models for Second-Order Adaptation Principles 2.4 A Second-Order Adaptive Mental Self-modeling Network Model for Emotion Regulation Dysfunction 2.4.1 Design of the Adaptive Network Model for Emotion Regulation Dysfunction 2.4.2 Specification of the Adaptive Network Model for Emotion Regulation Disfunction 2.4.3 Simulations for the Adaptive Network for Emotion Regulation Dysfunction 2.5 An Example Network Model for Mental Model Handling 2.5.1 An Example Scenario for Mental Model Handling 2.5.2 Connectivity and Aggregation for the Adaptive Network Model 2.5.3 Specification of the Example Network Model for Mental Model Handling 2.6 Discussion References Part II Self-Modelling Network Models for Mental Models in Individual Processes 3 On Becoming a Good Driver: Modeling the Learning of a Mental Model 3.1 Introduction 3.2 Literature Overview 3.3 An Adaptive Network Model for Mental Model Development 3.3.1 Observational Learning 3.3.2 Self-directed Learning 3.3.3 Learning from Instruction 3.3.4 Integrating Self-Directed Learning and Learning from Instruction 3.4 Example Simulations 3.5 Discussion and Conclusion 3.6 Explanation of All States of the Model References 4 Controlling Your Mental Models: Using Metacognition to Control Use and Adaptation for Multiple Mental Models Abstract 4.1 Introduction 4.2 Metacognition and Multiple Mental Models 4.3 Higher-Order Adaptive Network Models 4.4 A Mental Network Model for Metacognitive Control of Learning from Multiple Internal Mental Models 4.4.1 Network Characteristics: Connectivity and Timing 4.4.2 Network Characteristics: Aggregation 4.5 Example Simulation Scenarios 4.6 Discussion References 5 Disturbed by Flashbacks: A Controlled Adaptive Network Model Addressing Mental Models for Flashbacks from PTSD 5.1 Introduction 5.2 Background Knowledge on Adaptation Principles Used 5.2.1 First-Order Adaptation Principle: Hebbian Learning 5.2.2 Second-Order Adaptation Principle: Stress Reduces Adaptation Speed 5.3 The Second-Order Adaptive Network Model 5.3.1 The General Format 5.3.2 Translating the Domain Knowledge into a Conceptual Causal Model 5.3.3 Transcribing the Conceptual Model Into Role Matrices 5.4 Example Simulations 5.5 Discussion 5.6 Appendix: Full Specification of the Adaptive Network Model References 6 ‘What if I Would Have Done Otherwise…’: A Controlled Adaptive Network Model for Mental Models in Counterfactual Thinking 6.1 Introduction 6.2 Literature Review 6.3 The Modeling Approach for Controlled Adaptive Networks 6.4 A Controlled Adaptive Network Model for Counterfactual Thinking 6.5 Simulation Results 6.6 Verification of the Model by Analysis of Stationary Points 6.7 Discussion 6.8 Appendix: Full Specification of the Adaptive Network Model by Role Matrices. References 7 Do You Get Me: Controlled Adaptive Mental Models for Analysis and Support Processes 7.1 Introduction 7.2 Network Models Using Self-models 7.3 Modeling the Adaptation Principles Used 7.3.1 First-Order Self-models for the First-Order Adaptation Principles Used 7.3.2 Second-Order Self-model for the Second-Order Adaptation Principle 7.4 Analysis and Support Processes 7.5 The Second-Order Adaptive Network Model 7.5.1 The Base Level 7.5.2 First-Order Self-models 7.5.3 Second-Order Self-models 7.6 Simulation Scenarios 7.6.1 Using Adaptive Excitability Thresholds and Constant Connection Weights 7.6.2 Using Both Adaptive Excitability Thresholds and Connection Weights 7.7 Discussion 7.8 Appendix: Specification of the Network Model by Role Matrices References 8 Who Am I Really: An Adaptive Network Model Addressing Mental Models for Self-referencing, Self-awareness and Self-interpretation 8.1 Introduction 8.2 Perspectives from a Psychiatric Context 8.2.1 Self-referentiality 8.2.2 Self-awareness 8.2.3 Self-interpretation 8.2.4 Other Literature 8.2.5 Point of Departure for the Case Study Used 8.3 Self-modeling Network Models 8.3.1 Using Self-models Within a Network Model 8.3.2 Self-modeling Network Modeling 8.4 The Overall Cognitive Architecture 8.4.1 Base Level 8.4.2 First Self-model Level: Self-referencing 8.4.3 Second Self-model Level: Self-awareness 8.4.4 Third Self-model Level: Self-interpretation 8.5 The Four-Level Self-modeling Network Model for the Case Study 8.6 Detailed Specification 8.7 Example Simulation for the Case Study 8.8 Discussion References Part III Self-Modelling Network Models for Mental Models in Social Processes 9 In Control of Your Instructor: Modeling Learner-Controlled Mental Model Learning 9.1 Introduction 9.2 Overview of Background Knowledge on Mental Models 9.2.1 Learning by Observation 9.2.2 Learning by Instruction 9.2.3 Learner-Controlled Learning 9.3 Network Architecture for Controlled Mental Model Learning 9.4 Detailed Description of the Second-Order Adaptive Network Model for a Case Study 9.5 Simulation Results for an Example Scenario 9.6 Verification of the Network Model by Equilibrium Analysis 9.6.1 Criterion for Equilibria of Self-modeling Network Models 9.6.2 Equilibrium Analysis of the LW-States and the CIW-States 9.6.3 Equilibrium Analysis of the IW-States 9.6.4 Equilibrium Analysis of the RW-States 9.7 Discussion 9.8 Appendix: Full Specification of the Second-Order Adaptive Network Model References 10 Work Together or Fight Together: Modeling Adaptive Cooperative and Competitive Metaphors as Mental Models for Joint Decision Making 10.1 Introduction 10.2 Background Knowledge 10.2.1 Mirror Neurons and Internal Simulation 10.2.2 Ownership and Empathic Understanding 10.2.3 Cognitive Metaphors as Mental Models 10.3 The Self-modeling Network Modeling Approach Used 10.3.1 Network States and Network Characteristics 10.3.2 Self-models Representing Network Characteristics by Network States 10.4 The Second-Order Adaptive Network Model 10.4.1 The Base Model for Metaphors in Joint Decision Making 10.4.2 Modeling First- and Second-Order Self-models for Adaptation and Control 10.5 Simulation of an Example Scenario 10.6 Discussion 10.7 Appendix: Specification of the Network Model by Role Matrices References 11 How Empathic is Your God: An Adaptive Network Model for Formation and Use of a Mental God-Model and Its Effect on Human Empathy 11.1 Introduction 11.2 Literature Overview 11.3 The Adaptive Network Model 11.3.1 Mirror Neurons and Internal Simulation 11.3.2 Action Ownership States for God and Self 11.3.3 The Input Used for the Mental God-Model 11.3.4 Conceptual Description of the Mental God-Model 11.3.5 Conceptual Representation of the Overall Network Model 11.3.6 Numerical Representation of the Network Model 11.4 Simulation Scenarios 11.4.1 A Person with a Neutral Mental God-Model 11.4.2 A Person with an Empathic Mental God-Model 11.4.3 A Person with a Disempathic Mental God-Model 11.4.4 A Person with Autism 11.4.5 A Person that is Atheist 11.4.6 A Person with Fundamentalist Tendencies 11.5 Discussion and Conclusion 11.6 Appendix: Specification of the Adaptive Network Model by Role Matrices References 12 You Feel so Familiar, You Feel so Different: A Controlled Adaptive Network Model for Attachment Patterns as Adaptive Mental Models 12.1 Introduction 12.2 Attachment Theory 12.3 The Modeling Approach Used 12.4 Designing the Adaptive Network Model for Attachment Theory 12.5 Simulation Scenarios 12.6 Discussion 12.7 Appendix: Specification of the Network Model by Role Matrices References 13 Taking Control of Your Bonding: Controlled Social Network Adaptation Using Mental Models 13.1 Introduction 13.2 Higher-Order Adaptive Network Models 13.3 A Network Model for Controlled Social Network Adaptation 13.4 Simulation for a Tetradic Relationship Example 13.5 A Social Network Model for Bonding Based on Faking 13.6 Simulation: Faking Homophily for Bonding 13.7 Discussion 13.8 Specification of the Main Adaptive Network Model References 14 Are We on the Same Page: A Controlled Adaptive Network Model for Shared Mental Models in Hospital Teamwork 14.1 Introduction 14.2 Background 14.2.1 Mental Models 14.2.2 Shared Mental Models 14.2.3 Case Description 14.2.4 Network-Oriented Modeling 14.2.5 Self-modeling Networks to Model Adaptivity and Control 14.3 The Adaptive Network Model Using a Shared Mental Model 14.3.1 Base Level: Overview 14.3.2 Base Level: Memory States in the Mental Models 14.3.3 Base Level: Action Ownership States 14.3.4 Middle Level: Adaptation of the Mental Models (Plasticity) 14.3.5 Upper Level: Control of the Adaptation of Mental Models (Metaplasticity) 14.4 Simulation for the Example Scenario 14.4.1 The World States 14.4.2 The Doctor’s Mental Processes Based on Her Mental Model 14.4.3 The Nurse’s Mental Processes Based on Her Mental Model 14.4.4 The Learning and Forgetting States 14.5 Discussion 14.6 Appendix: Specification of the Network Model References Part IV Relating Mental Models to Brain, Body and World 15 How Do Mental Models Actually Exist in the Brain: On Context-Dependent Neural Correlates of Mental Models 15.1 Introduction 15.2 Literature on Neural Correlates for Mental Models 15.2.1 Some Literature from Neuroscience 15.2.2 Internal Simulation 15.2.3 Neural Correlates for Adaptation and Control for Mental Models 15.3 Context-Dependent Realisation of Mental States 15.3.1 Context-Dependent Multiple Realisation of Mental States 15.3.2 An Illustration from Biology: Multiple Realisation of Behavioural Choice 15.3.3 An Illustration from Physics: Multiple Realisation of Force 15.4 Context-Dependent Realisation of Mental Models 15.5 Context-Dependent Realisation from Different Perspectives 15.5.1 Context-Dependent Bridge Principle Realisation 15.5.2 Context-Dependent Interpretation Mapping Realisation 15.5.3 Relating Bridge Principle Realisation and Interpretation Mapping Realisation 15.6 Discussion References 16 How the Brain Creates Emergent Information by the Development of Mental Models: An Analysis from the Perspective of Temporal Factorisation and Criterial Causation 16.1 Introduction 16.2 Temporal Factorisation Versus Criterial Causation 16.2.1 Temporal Factorisation 16.2.2 Criterial Causation 16.2.3 How Criterial Causation Relates to Temporal Factorisation 16.3 Network-Oriented Modeling for Adaptive Networks 16.3.1 Network Models 16.3.2 Modeling Adaptive Networks as Self-Modeling Networks 16.4 Temporal Factorisation Modeled by Networks 16.4.1 An Example Network Model Illustrating Temporal Factorisation 16.4.2 Simulation for the Network Model Illustrating Temporal Factorisation 16.4.3 Application of the Network Model to Delayed Response Behaviour 16.5 Modeling Criteria for Criterial Causation for Network Models 16.5.1 Criteria Using Logistic Combination Functions 16.5.2 Criteria Using Other Combination Functions 16.6 How a Developing Mental Model Creates Emergent Information in the Brain 16.6.1 An Example Scenario for Learning and Use of a Mental Model 16.6.2 Connectivity and Aggregation for the Adaptive Network Model 16.6.3 Specification of the Adaptive Network Model by Role Matrices 16.7 Simulation of the Development and Use of the Mental Model 16.7.1 Past Pattern a (Time Point 0 to 100) 16.7.2 Criterion Formed at Time Point 100 16.7.3 Future Pattern b (Time Point 100–200) 16.8 Defining Informational Content by Temporal Relational Specification 16.8.1 Relational Specification of Mental Content 16.8.2 Applying Temporal Relational Specification to Informational Content 16.9 Formalisation of Temporal Factorisation and Criterial Causation in Temporal Trace Predicate Logic 16.9.1 Formalisation of Temporal Factorisation in Temporal Trace Predicate Logic 16.9.2 Formalisation of Temporal Factorisation in Reified Temporal Trace Predicate Logic 16.10 Discussion References Part V Design and Analysis of Self-Modelling Network Models 17 With a Little Help: A Modeling Environment for Self-modeling Network Models 17.1 Introduction 17.2 Role Matrices as Specification Format for Self-Modeling Networks 17.2.1 The Role Matrix Format 17.2.2 Splitting the Role Matrices and Copying Them into the Software Environment 17.3 The Combination Function Library 17.3.1 The Standard Format of Combination Functions 17.3.2 Different Types of Combination Functions 17.3.3 Composing New Combination Functions from Available Combination Functions 17.4 The Computational Self-modeling Network Engine 17.4.1 Retrieving Information from the Role Matrices 17.4.2 The Iteration Step from t to t + Δt 17.5 Discussion References 18 Where is This Leading Me: Stationary Point and Equilibrium Analysis for Self-Modeling Network Models 18.1 Introduction 18.2 Modeling and Analysis of Dynamics within Network Models 18.3 Verification of a Network Model via Checking the Stationary Point Equations 18.4 Verification of a Network Model via Solving Equilibrium Equations 18.5 Using a Linear Solver to Symbolically Solve Linear Equilibrium Equations 18.6 Solving Nonlinear Equilibrium Equations for Euclidean Functions 18.7 Solving Nonlinear Equilibrium Equations for Geometric Functions 18.8 Solving Nonlinear Equilibrium Equations for Examples of Self-Model States 18.8.1 Solving Nonlinear Equations for Self-Model States for Hebbian Learning 18.8.2 Solving the Nonlinear Equations for Self-Model States for Bonding by Homophily 18.9 General Equilibrium Analysis for a Class of Nonlinear Functions 18.10 Additive, Multiplicative, Log-like and Exp-like Functions 18.11 Weakly Scalar-Free and Scalar-Free Functions 18.12 Scalar-Free Functions based on Function Conjugates 18.13 Appendix: Proofs 18.13.1 Additive, Multiplicative, Log-Like and Exp-Like Functions 18.13.2 Weakly Scalar-Free And Scalar-Free Functions 18.13.3 Creating Scalar-Free Functions Based on Conjugates 18.14 Discussion References 19 Does This Suit Me? Validation of Self-modeling Network Models by Parameter Tuning 19.1 Introduction 19.2 Determining Characteristics and the Use of Requirements 19.2.1 The Choice of Network Characteristics in a Network Model 19.2.2 Direct Measuring of Network Characteristics in a Real-World Situation 19.2.3 Using Requirements to Find Characteristics of a Situation 19.2.4 Using Error Measures for Requirements Based on Data Points 19.3 Description of an Example Model 19.4 Parameter Tuning by Exhaustive Search 19.5 Parameter Tuning by Simulated Annealing 19.6 Pros and Cons of Different Parameter Tuning Methods 19.7 Applying Parameter Tuning by the Modeling Environment 19.7.1 Basic Elements Needed for Parameter Tuning 19.7.2 Preparation for the Tuning Process 19.7.3 Running the Tuning Process 19.7.4 How It Works 19.8 Discussion References 20 How Far Do Self-Modeling Networks Reach: Relating Them to Adaptive Dynamical Systems 20.1 Introduction 20.2 The State-Determined System Assumption 20.3 Dynamical Systems and First-Order Differential Equations 20.4 Self-Modeling Network Modeling 20.5 Relating Dynamical Systems to Network Models 20.5.1 Transforming a Dynamical System Model into a Network Model 20.5.2 Illustration of the Transformation for an Example Dynamical System 20.6 Relating Adaptive Dynamical Systems to Self-Modeling Network Models 20.6.1 Transforming an Adaptive Dynamical System Model into a Self-Modeling Network Model 20.6.2 Illustration of the Transformation for an Example Adaptive Dynamical System 20.7 Discussion References Part VI Design and Analysis of Self-Modelling Network Models 21 Dynamics, Adaptation, and Control for Mental Models Analysed from a Self-modeling Network Viewpoint 21.1 Introduction 21.2 Self-modeling Network Models 21.2.1 Network Models 21.2.2 Modeling Adaptive Networks as Self-Modeling Networks 21.3 Modeling the Cognitive Architecture for Mental Models as a Self-Modeling Network 21.4 How Mental Models Can Be Used 21.5 How Mental Models Can Be Adapted 21.6 How Mental Model Adaptation Can Be Controlled 21.7 Discussion References Index