دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: نرم افزار: سیستم ها: محاسبات علمی ویرایش: نویسندگان: Jessica D. Tenenbaum, Piper A. Ranallo سری: ISBN (شابک) : 3030705579, 9783030705572 ناشر: Springer سال نشر: 2021 تعداد صفحات: 540 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 14 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Mental Health Informatics: Enabling a Learning Mental Healthcare System به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب انفورماتیک سلامت روان: توانمندسازی سیستم مراقبت بهداشت روانی یادگیری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Acknowledgments Contents Chapter 1: Precision Medicine and a Learning Health System for Mental Health 1.1 Introduction 1.2 The Need for Precision Mental Healthcare 1.2.1 Informatics: A Brief Preview 1.3 The Path to the Learning Health System 1.3.1 The Traditional Model for the Discovery and Application of Knowledge in Healthcare 1.3.2 Translational Science 1.3.2.1 Limitations of Translational Research 1.3.3 The Learning Health System Paradigm 1.3.3.1 Limitations of the Learning Health System Paradigm 1.3.4 Foundational Requirements of a Learning Health System in Mental Health 1.3.5 Learning Health System Models: The Role of Informatics 1.4 Precision Medicine in Mental Health 1.4.1 The Role of Informatics in Precision Medicine 1.4.2 A Learning Heath System for Precision Mental Health 1.5 Summary and Conclusions References Chapter 2: What Is Informatics? 2.1 History and Role in Biomedicine and Health 2.2 From Data to Knowledge (D2K) 2.2.1 Knowledge Discovery Process 2.2.2 Data and Databases 2.2.3 Natural Language Processing and Text Mining 2.2.4 Data Mining and Machine Learning 2.2.5 Standards and Interoperability 2.3 From Knowledge to Performance (K2P) 2.3.1 Clinical Decision Support 2.3.2 Software and Knowledge Engineering 2.3.3 Human Factors Engineering 2.4 From Performance to Data (P2D) 2.4.1 Evaluation Models 2.4.2 Quantitative and Qualitative Methods 2.5 Summary References Chapter 3: The Mental Health System: Definitions and Diagnoses 3.1 Introduction 3.2 Defining Mental Health and Mental Illness 3.2.1 The Concept of Mental Health 3.2.2 Health and Disease 3.2.3 Definitions of Mental Health 3.2.4 Mental Health and Somatic Health 3.3 The Concept of Mental Illness 3.3.1 The Continuums of Mental Health and Illness 3.4 Theories of Psychopathology 3.4.1 Biological Theories of Psychopathology 3.4.2 Psychological Theories of Psychopathology 3.4.3 Social Theories of Psychopathology 3.4.4 The Biopsychosocial Theory of Psychopathology 3.5 Defining Mental Disorders 3.5.1 Diagnostic Classification Systems Used in Mental Healthcare: DSM-5 and ICD-11 3.5.2 Mental Health Conditions 3.6 Conclusions References Chapter 4: The Mental Healthcare System: Organization and Structure 4.1 Introduction 4.2 Mental Healthcare Professionals 4.2.1 Types of Mental Healthcare Professionals 4.3 Mental Healthcare Settings 4.3.1 Inpatient Settings 4.3.2 Outpatient Settings 4.4 Disparities in the Mental Health Workforce 4.5 Mental Healthcare Payment Models 4.5.1 Privately-Funded Insurances 4.5.2 Publicly-Funded Insurances 4.6 Summary References Chapter 5: The Mental Health System: Access, Diagnosis, Treatment, and Monitoring 5.1 Introduction 5.2 Access to Mental Healthcare 5.2.1 Pathways to Care: Primary Care 5.2.2 Alternate Pathways to Care 5.2.3 Delays in Care 5.3 Mental Health Assessment and Diagnosis 5.3.1 The Assessment of Illness 5.3.2 Diagnosis and Case Conceptualization 5.4 Mental Health Treatment 5.4.1 The Treatment Setting 5.4.2 Selecting the Right Treatment 5.4.3 Psychotherapy and Social Interventions 5.4.4 Pharmacotherapy 5.4.5 Neuromodulation and Surgical Interventions 5.5 Treatment Monitoring 5.5.1 Patient Reported Outcome Measures 5.5.2 Side Effect Monitoring 5.6 Conclusion References Chapter 6: Mental Health Informatics 6.1 Mental Health Informatics as an Informatics Subdiscipline 6.2 Contrasting Mental Health Informatics with Related Disciplines 6.2.1 How Mental Health Informatics Differs from Mainstream Biomedical and Health Informatics 6.2.1.1 Differences in the Phenomena of Interest 6.2.1.2 Differences in the Knowledge Acquisition Cycle 6.2.1.3 How Mental Health Informatics Differs from Other Informatics Work in Mental Health 6.2.2 Mental, Behavioral, and Social Phenomena in Mainstream Health Informatics 6.3 Mental Health Informatics: Bridging the Biological, Behavioral, and Social Sciences 6.3.1 Mainstream Health Informatics Has Not Fully Embraced Social and Behavioral Phenomena 6.3.2 Epistemological Differences Between the Behavioral and Biological Sciences 6.3.3 A Primary Epistemological Challenge for Informaticians: The Relationship Between the Mind and Brain 6.3.4 Epistemological Differences within the Behavioral and Social Sciences: A Multiplicity of Theories of ‘Mind’ and Behavior 6.3.5 Points of Intersection Between the Biological, Behavioral, and Social Sciences 6.4 How Mental Health Informatics Extends Informatics 6.5 Summary References Chapter 7: Technologies for the Computable Representation and Sharing of Data and Knowledge in Mental Health 7.1 Introduction 7.2 Technologies for Representing Data, Information, and Knowledge 7.2.1 The Terminology Used to Describe “Terminology” 7.2.2 Concept Representation 7.2.3 Controlled Vocabularies 7.2.4 Classifications 7.2.5 Terminologies 7.2.6 Information Models 7.2.7 Knowledge Representation 7.3 What Is a Standard? 7.3.1 Content Standards 7.3.2 Syntax Standards 7.3.3 Semantic Standards 7.3.3.1 SNOMED CT 7.3.3.2 LOINC 7.4 Interoperability Standards 7.4.1 HL7 Messages 7.4.2 Consolidated Clinical Document Architecture (C-CDA) 7.4.3 Fast Health Interoperability Resources (FHIR) 7.5 Repositories of Standards 7.5.1 FAIRSharing 7.5.2 Interoperability Standards Advisory (ISA) 7.6 Addressing Gaps in Standards to Accommodate Mental Health 7.6.1 Standards for Concept and Knowledge Representation in Mental Health 7.6.2 Minimum Clinical Data Sets 7.6.3 Quality of Terminologies Relative to Mental Health 7.7 Conclusions and Recommendations References Chapter 8: Use of Medical Imaging to Advance Mental Health Care: Contributions from Neuroimaging Informatics 8.1 Introduction 8.2 Capturing Meaningful Neuroscientific Anatomic and Physiologic Data 8.3 Radiology Workflow: From Order to Storage 8.4 Data and Standards 8.5 Image-Derived Features for Mental Health 8.5.1 Magnetic Resonance Imaging 8.5.2 Nuclear Medicine Imaging 8.5.3 Neurophysiology Workflows 8.5.4 Neuroimaging Informatics 8.6 Challenges and Opportunities References Chapter 9: Informatics Technologies for the Acquisition of Psychological, Behavioral, Interpersonal, Social and Environmental Data 9.1 Introduction 9.2 Psychometrics: A Brief Primer 9.3 Types of Data Relevant for Mental Health 9.3.1 Psychological Data 9.3.1.1 What Is Measured 9.3.1.2 Measurement Approaches 9.3.2 Behavioral Data 9.3.3 Social and Interpersonal Data 9.3.4 Environmental Data 9.4 Informatics Technologies for Data Acquisition 9.5 Challenges, Limitations and Future Directions References Chapter 10: Data to Information: Computational Models and Analytic Methods 10.1 Introduction 10.2 Analytic Approaches to Computational Modeling 10.3 Theory-Based Approaches 10.3.1 Dynamical Systems 10.3.2 Causal Networks 10.4 Data-Driven Approaches 10.4.1 The Workflow in Machine Learning 10.5 Preprocessing 10.5.1 Dimensionality Reduction 10.5.2 Feature Selection Methods 10.5.3 Feature Extraction Methods 10.6 Machine Learning Algorithms 10.6.1 Supervised Learning 10.6.2 Unsupervised Learning 10.6.3 Semi-Supervised Learning 10.6.4 Deep Learning 10.7 Evaluation of Model Performance 10.7.1 Supervised Models 10.7.2 Unsupervised Models 10.8 Applications of Computational Models in Mental Health 10.9 Standards for Reporting Models 10.10 Policy, Ethical, and Safety Issues 10.11 Conclusion References Chapter 11: Bioinformatics in Mental Health: Deriving Knowledge from Molecular and Cellular Data 11.1 Introduction 11.1.1 Translational Bioinformatics and Biomarker Discovery 11.1.2 How Bioinformatics and Data Science Contribute to Biomarker Discovery in Mental Health 11.2 Types of Data in Biomarker Discovery 11.2.1 Genomics: The Study of the DNA 11.2.1.1 Data Processing 11.2.1.2 Strengths and Limitations 11.2.1.3 Examples in Mental Health 11.2.2 Transcriptomics: The Study of the RNA 11.2.2.1 Data Processing 11.2.2.2 Strengths and Limitations 11.2.2.3 Examples in Mental Health 11.2.3 Proteomics: The Study of Proteins 11.2.3.1 Data Processing 11.2.3.2 Strengths and Limitations 11.2.3.3 Examples in Mental Health 11.2.4 Metabolomics: The Study of Metabolites 11.2.4.1 Data Processing 11.2.4.2 Strengths and Limitations 11.2.4.3 Examples in Mental Health 11.2.5 Epigenetics/Epigenomics 11.2.5.1 Data Processing 11.2.5.2 Strengths and Limitations 11.2.5.3 Examples in Mental Health 11.2.6 microRNA 11.2.6.1 Data Processing 11.2.6.2 Strengths and Limitations 11.2.6.3 Examples in Mental Health 11.2.7 DNA Copy Number 11.2.7.1 Data Processing 11.2.7.2 Strengths and Limitations 11.2.7.3 Examples in Mental Health 11.2.8 Neuro-Imaging 11.2.8.1 Data Processing 11.2.8.2 Strengths and Limitations 11.2.8.3 Examples in Mental Health 11.2.9 Emerging Data Types: Microbiome 11.2.9.1 Data Processing 11.2.9.2 Strengths and Limitations 11.2.9.3 Examples in Mental Health 11.3 Cellular Attributes in Biomarker Discovery 11.4 Systems Biology in Mental Health 11.5 Mental Health Vs. Medical Conditions 11.5.1 Bioinformatics Knowledge Discovery and Application: An Example in Mental Health 11.6 Conclusion References Chapter 12: Integrative Paradigms for Knowledge Discovery in Mental Health: Overcoming the Fragmentation of Knowledge Inherent in Disparate Theoretical Paradigms 12.1 Introduction 12.2 Integrative Semantic Frameworks and the RDoC Initiative 12.3 Integrative Computational Methods 12.3.1 Factor Analysis 12.3.2 Network Analysis 12.3.3 Computational Psychiatry 12.3.4 Within- and Between-Person Reasoning 12.4 Discussion: Epistemology and the Limitations of Integrative Paradigms 12.5 Conclusions References Chapter 13: Natural Language Processing in Mental Health Research and Practice 13.1 Introduction 13.2 Corpus Generation 13.2.1 Using Medical Records as a Corpus 13.2.1.1 Collecting Medical Records 13.2.1.2 De-Identification of Medical Records 13.2.1.3 Annotation of Medical Records 13.2.1.4 Publicly Available Medical Record Datasets 13.2.2 Generating a Corpus from Social Media Data 13.2.2.1 Collecting and Annotating Social Media Data 13.2.2.2 Privacy with Social Media Data 13.2.3 Other Data Sources 13.3 Data Processing 13.3.1 Preprocessing 13.3.2 Featurization 13.3.2.1 Term Vectors 13.3.2.2 Sentence and Document Vectors 13.3.2.3 Count-Based Features 13.3.2.4 Rule-Based Features 13.3.2.5 Sentiment and Psycholinguistic Features 13.3.2.6 Sociability Features 13.3.2.7 Temporal Features 13.3.3 Analyzing Natural Language Data 13.3.3.1 Rule-Based Systems 13.3.3.2 Supervised Machine Learning Systems 13.3.3.3 Deep Learning Systems 13.3.3.4 Unsupervised Machine Learning 13.4 Applications of Natural Language Processing in Mental Health 13.4.1 Mental Illness Detection 13.4.2 Symptom and Severity Extraction 13.4.3 Lexicon and Ontology Construction 13.4.4 Knowledge Discovery 13.4.5 Other Applications 13.5 NLP in Mental Health Practice 13.6 Challenges, Limitations, and Ethical Considerations 13.6.1 Challenges 13.6.2 Ethical Considerations 13.7 Conclusions References Chapter 14: Information Visualization in Mental Health Research and Practice 14.1 Introduction 14.2 A Crash Course in Information Visualization 14.2.1 Why Visualization? 14.2.2 Visualization Tasks 14.2.3 Building Visualizations 14.2.3.1 Understanding User Needs and Goals 14.2.3.2 Preparing Data 14.2.3.3 Displaying Data 14.2.3.4 Interacting with Data 14.3 Mental Health Data 14.3.1 Survey and Psychometric Instrument Data 14.3.2 Electronic Health Record (EHR) Data 14.3.3 Genetic Data 14.3.4 Environmental Data 14.3.5 Mobile Health Data 14.3.6 Using Data and Predictive Models in Mental Health Visualization 14.4 Current State and Outstanding Challenges 14.4.1 Uncertainty 14.4.2 Evaluation 14.5 Conclusion References Chapter 15: Big Data: Knowledge Discovery and Data Repositories 15.1 What Is “Big Data”: The Big Part, the Data Part? 15.2 Methods and Paradigms 15.2.1 Essential Elements for Big Data Repositories 15.2.1.1 Governance Technical Infrastructure Metadata 15.3 Big Data and Data Repositories 15.3.1 The Fair Guiding Principles 15.4 Secondary Usage 15.4.1 Biobanks 15.5 Categories of Data and Data Repositories 15.5.1 Refined Scientific Knowledge: Publication Databases and Specialist Databases 15.5.2 Biological Data 15.5.3 Behavioral Data 15.5.4 Clinical Administrative Data Repositories 15.5.5 Electronic Health Records 15.5.6 Linked Multi-Modal Data Repositories: Multiple Data Sources 15.5.7 Practical Challenges of Using Data Repositories for Mental Health Research 15.6 Case Study: Developing a Big Data Registry/Repository 15.6.1 Who Develops Disease-Specific Data Repositories in Mental Health and Why? 15.7 Closing Thoughts: Opportunities and Challenges References Chapter 16: Electronic Health Records (EHRS) and Other Clinical Information Systems in Mental Health 16.1 Introduction 16.1.1 Historical Perspective 16.1.2 Federal Initiatives Related to Health IT 16.1.3 ACOs and PCMHs 16.1.3.1 The State Innovation Models (SIM) Initiative 16.1.4 Overview of EHRs 16.1.4.1 Landscape of EHRs Across Medical and Mental Health Care 16.1.4.2 Common EHR Vendors in the Mental Health Field 16.1.4.3 Medical EHRs with Behavioral Health Components 16.1.5 The Proposed Value of EHRs 16.1.5.1 Patient Safety and Quality of Care 16.1.5.2 Improved Efficiency 16.1.5.3 EHR Disadvantages 16.1.5.4 Secondary Uses for EHRs Research Uses Learning Health Systems (LHS) and Quality Improvement (QI) 16.1.6 Personal Health Records (PHRs) 16.1.6.1 Types of PHRs 16.1.6.2 Drawbacks of PHRs 16.1.7 Future Directions 16.1.8 Conclusion References Chapter 17: Informatics Technologies in the Diagnosis and Treatment of Mental Health Conditions 17.1 Introduction 17.2 Detection and Diagnosis 17.2.1 Consumer Facing Technologies 17.2.1.1 Wearable Devices 17.2.1.2 Smartphone Based Assessment 17.2.1.3 Social Media 17.2.1.4 Implications for Mental Health Conditions 17.2.2 Provider Facing Technologies 17.2.2.1 Computerized Psychometric Assessment 17.2.2.2 Telemedicine 17.2.2.3 Mobile Medical Devices 17.2.2.4 Specialized Clinical Information Systems 17.3 Prevention and Treatment 17.3.1 Consumer and Provider Facing Technologies 17.3.1.1 Online Support Groups 17.3.1.2 Web Based and Mobile Applications 17.3.1.3 Coordination and Continuity of Care 17.4 Ongoing Issues and Challenges 17.4.1 Contemporary Psychiatric Diagnostics 17.4.2 Clinician Acceptance 17.4.3 Patient Acceptance, Access and Equity 17.5 Summary and Conclusion References Chapter 18: Ethical, Legal, and Social Issues (ELSI) in Mental Health Informatics 18.1 Introduction 18.2 Stigma and Data Sharing 18.3 Ethical AI in Mental Healthcare 18.3.1 Ethical Issues at Data-Level 18.3.2 Ethical Issues in Designing AI-Based Systems 18.3.3 Ethical Issues in Deploying AI-Based Systems in Practice 18.4 Mobile Health and eHealth Applications for Mental Health 18.4.1 Passive Data Collection 18.4.2 Telepsychiatry and Telemental Health 18.4.3 Virtual Helpers and Providers 18.4.3.1 Minders 18.4.3.2 Prostheses 18.4.3.3 Caregivers 18.4.3.4 Providers 18.4.3.5 Personhood and AI 18.5 Mental Health Advocacy 18.5.1 What Role Does Patient Advocacy Play in General? 18.5.2 What Motivates Self-Advocacy in Mental Health? 18.5.3 How Do Mental Health Service Users and Advocates Bring Lived Experience to Mental Health Treatment? 18.6 Genomics and Mental Health Informatics 18.7 Laws and Regulations 18.7.1 Health Insurance Portability and Accountability Act of 1996 (HIPAA) 18.7.2 HIPAA Privacy Rule 18.7.3 HIPAA Security Rule 18.7.4 Confidentiality of Substance Use Disorder Records 18.7.5 21st Century Cures Act 18.7.6 Research Regulations 18.7.7 General Data Protection Regulation (GDPR) 18.7.8 California Consumer Privacy Act (CCPA) 18.8 Concluding Remarks 18.9 Discussion Questions for Reader Consideration References Chapter 19: The Future of Mental Health Informatics 19.1 Envisioning an Ambitious Future 19.1.1 Essential Component 1: Datasets, Data Storage, and Workflows 19.1.2 Essential Component 2: Harmonizing and Integrating across Datasets 19.1.3 Training 19.2 Making a Difference Now: Informatics and a Learning Health System for Psychosis 19.3 Conclusion References Index