دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Sabina Spiga (editor), Abu Sebastian (editor), Damien Querlioz (editor), Bipin Rajendran (editor) سری: Woodhead Publishing Series in Electronic and Optical Materials ISBN (شابک) : 0081027826, 9780081027820 ناشر: Woodhead Publishing سال نشر: 2020 تعداد صفحات: 553 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 16 مگابایت
در صورت تبدیل فایل کتاب Memristive Devices for Brain-Inspired Computing: From Materials, Devices, and Circuits to Applications - Computational Memory, Deep Learning, and ... Series in Electronic and Optical Materials) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب دستگاه های خاطره انگیز برای محاسبه با الهام از مغز: از مواد ، دستگاه ها و مدارها تا برنامه های کاربردی - حافظه محاسباتی ، یادگیری عمیق و ... سری در مواد الکترونیکی و نوری) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
دستگاههای Memristive برای محاسبات الهامگرفته از مغز: از مواد، دستگاهها و مدارها تا برنامهها—حافظه محاسباتی، یادگیری عمیق، و شبکههای عصبی Spiking جدیدترینهای مهندسی مواد و دستگاهها را برای بهینهسازی دستگاههای memristive مرور میکند. فراتر از برنامه های ذخیره سازی و به سمت محاسبات الهام گرفته از مغز. این کتاب درکی از چهار مفهوم کلیدی، از جمله جنبههای مواد و دستگاه با دیدی از سیستمهای مواد فعلی و موانع باقیمانده آنها، جنبههای الگوریتمی شامل مفاهیم اساسی علوم اعصاب و همچنین مفاهیم مختلف محاسباتی، مدارها و معماریهای پیادهسازی آن الگوریتمها را برای خوانندگان فراهم میکند. بر اساس فنآوریهای حافظهدار و برنامههای هدف، از جمله محاسبات الهامگرفته از مغز، حافظه محاسباتی، و یادگیری عمیق.
این کتاب جامع برای مخاطبان بینرشتهای، از جمله دانشمندان مواد، فیزیکدانان، مهندسان برق، و کامپیوتر مناسب است. دانشمندان.
Memristive Devices for Brain-Inspired Computing: From Materials, Devices, and Circuits to Applications―Computational Memory, Deep Learning, and Spiking Neural Networks reviews the latest in material and devices engineering for optimizing memristive devices beyond storage applications and toward brain-inspired computing. The book provides readers with an understanding of four key concepts, including materials and device aspects with a view of current materials systems and their remaining barriers, algorithmic aspects comprising basic concepts of neuroscience as well as various computing concepts, the circuits and architectures implementing those algorithms based on memristive technologies, and target applications, including brain-inspired computing, computational memory, and deep learning.
This comprehensive book is suitable for an interdisciplinary audience, including materials scientists, physicists, electrical engineers, and computer scientists.
Cover Memristive Devices for Brain-Inspired Computing Copyright Contents List of contributors Preface Part I: Memristive devices for brain–inspired computing 1 Role of resistive memory devices in brain-inspired computing 1.1 Introduction 1.2 Type of resistive memory devices 1.3 Resistive memory devices for brain-inspired computing 1.4 Conclusions and perspectives References 2 Resistive switching memories 2.1 Introduction 2.2 Basic concepts of the physics of resistive switching 2.2.1 Resistive switching based on cation migration 2.2.2 Resistive switching based on anion migration 2.2.2.1 Filamentary bipolar switching 2.2.2.2 Complementary switching 2.2.2.3 Area-dependent switching 2.2.3 Negative differential resistance devices 2.2.4 Switching features related to physical processes 2.3 Resistance switching technology: performances and industrial-level prototypes 2.4 Advanced functionalities and programming schemes 2.4.1 Multilevel operation 2.4.2 Implementation of plasticity in resistive switching random access memories devices 2.4.2.1 Plasticity by analog switching dynamics 2.4.2.2 Plasticity by stochastic switching 2.4.2.3 Implementation of plasticity: assessment and practical issues 2.4.3 Rate and timing computing with resistive switching random access memories devices 2.4.4 Oscillatory systems 2.5 Conclusions and perspectives References 3 Phase-change memory 3.1 Introduction 3.1.1 Historical overview of phase-change memory 3.1.2 Applications of phase-change memory 3.1.2.1 Memory technology 3.1.2.2 Non-von Neumann computing 3.2 Essentials of phase-change memory 3.3 A detailed description of the write operation 3.3.1 SET/RESET operation 3.3.2 Switching process 3.3.3 Multilevel operation 3.4 A detailed description of the read operation 3.4.1 Subthreshold electrical transport: voltage and temperature dependence 3.4.2 Resistance drift 3.4.3 Noise 3.5 Key enablers for brain-inspired computing 3.5.1 Multilevel storage 3.5.2 Accumulative behavior 3.5.3 Inter and intradevice randomness 3.6 Outlook References 4 Magnetic and ferroelectric memories 4.1 Magnetic memories 4.1.1 “Spintronics” at a glance 4.1.2 Storing information 4.1.2.1 Ferromagnetism 4.1.2.2 Magnetic anisotropy and magnetic materials 4.1.3 Reading information 4.1.3.1 Electronic transport in magnetic structures 4.1.3.2 Spin-valve structure and the giant magnetoresistance 4.1.3.3 Tunneling magnetoresistance 4.1.3.4 Device design 4.1.4 Writing information 4.1.4.1 Acting on the magnetization by current flow: spin transfer 4.1.4.2 Electrical control of magnetic states 4.1.4.3 Magnetic domains and domain walls 4.1.5 Latest developments 4.1.5.1 Voltage control of magnetic anisotropy 4.1.5.2 Pure spin currents 4.2 Ferroelectric memories 4.2.1 Ferroelectric materials 4.2.1.1 Ferroelectricity 4.2.1.2 Perovskite-based ferroelectric materials 4.2.1.3 Fluoride structure ferroelectric materials 4.2.2 Capacitor-based ferroelectric memories 4.2.2.1 Ferroelectric random-access memory based on a one transistor–one capacitor cell 4.2.2.2 Antiferroelectric random-access memory 4.2.3 Transistor-based ferroelectric memories 4.2.4 Ferroelectric tunneling junctions 4.3 Memories beyond the Von Neumann architectures 4.3.1 Logic-in-memory 4.3.1.1 Ferroelectric field effect transistor-based logic-in-memory 4.3.1.2 Comparison with the integration of magnetic devices 4.3.2 Perspectives for neuromorphic computing: brain-inspired architectures 4.3.2.1 Magnetic synapse and neuron 4.3.2.2 Ferroelectric synapse and neuron 4.3.3 Leveraging stochastic switching: random number generation, approximate computing 4.3.4 Summary and outlook References 5 Selector devices for emerging memories 5.1 Introduction 5.2 Insulator–metal transition selector 5.3 Ovonic threshold switching 5.4 CBRAM-type selector 5.5 Conclusion References Part II: Computational memory 6 Memristive devices as computational memory 6.1 Introduction 6.2 In-memory computing 6.3 Future outlook References 7 Memristor-based in-memory logic and its application in image processing 7.1 Introduction 7.2 Memristor-based logic 7.2.1 Memristor Aided loGIC (MAGIC) 7.2.2 Digital image processing 7.2.3 Previous attempts to accelerate image processing with memristors 7.3 The memristive Memory Processing Unit 7.3.1 Challenges of the memristive Memory Processing Unit 7.4 Performing image processing in the memristive Memory Processing Unit 7.4.1 Fixed-Point multiplication 7.4.1.1 Performing Fixed-Point multiplicating using MAGIC 7.4.2 MAGIC-based algorithms for image processing 7.5 Evaluation 7.5.1 Methodology 7.5.2 Performance 7.5.3 Energy 7.6 Conclusions References 8 Hyperdimensional computing nanosystem: in-memory computing using monolithic 3D integration of RRAM and CNFET 8.1 Introduction 8.2 Background on HD computing 8.2.1 Arithmetic operations on hypervectors 8.2.2 General and scalable model of computing 8.2.3 Robustness of computations 8.2.4 Memory-centric with parallel operations 8.3 Case study: language recognition 8.3.1 Mapping and encoding module 8.3.2 Similarity search module 8.4 Emerging technologies for HD computing 8.4.1 Carbon nanotube field-effect transistors 8.4.2 Resistive RAM 8.4.3 Monolithic 3D integration 8.5 Experimental demonstrations for HD computing 8.5.1 3D VRRAM demonstration: in-memory MAP kernels 8.5.2 System demonstration using monolithic 3D integrated CNFETs and RRAM 8.6 Conclusion References 9 Vector multiplications using memristive devices and applications thereof 9.1 Introduction 9.2 Computing via physical laws 9.2.1 Data mapping to the crossbar 9.2.2 Input data encoding 9.2.3 Output data sampling 9.2.4 Additional design considerations 9.3 Soft computing applications 9.3.1 Data classification 9.3.1.1 Bio-faithful networks 9.3.1.2 Machine learning model implementations—classification 9.3.2 Feature extraction 9.3.3 Data clustering 9.3.4 Signal processing 9.3.5 Security applications 9.4 Precise computing applications 9.4.1 In-memory arithmetic accelerators 9.4.2 Logic circuitry 9.5 General memristor-based multiply-and-accumulate accelerators 9.6 Conclusion Acknowledgments References 10 Computing with device dynamics 10.1 Computation using oscillatory dynamics 10.2 Control of memristor resistance 10.3 Correlation detection and nonlinear solvers 10.4 Optimization using Hopfield networks and chaotic devices 10.5 Conclusions References 11 Exploiting the stochasticity of memristive devices for computing 11.1 Harnessing randomness 11.1.1 Trading-off reliability for low-power consumption 11.1.2 Embracing unreliability by using noise 11.1.2.1 Canonical model of stochastic resonance 11.1.2.2 Various types of stochastic resonance Aperiodic stochastic resonance and nonlinear systems Suprathreshold stochastic resonance 11.1.2.3 Relevance of stochastic resonance for computing 11.1.2.4 Broader paradigm of stochastic facilitation 11.1.2.5 Noise-induced synchronization for low-power computing? 11.1.3 Computing with probabilities: stochastic computing 11.2 Proposals of stochastic building blocks 11.2.1 Quantum dots cellular automata 11.2.2 Molecular approaches 11.2.2.1 Biomolecular automata 11.2.2.2 Resonant energy transfer between chromophores 11.2.3 Charge-based memristive devices 11.2.3.1 Memristors as random bitstream generators 11.2.3.2 Memristors as stochastic integrate and fire neurons 11.2.4 Spintronics 11.2.4.1 Modifying the magnetic state—spin torques Dynamics of the magnetization of a nanomagnet Spin transfer torque Stochastic switching of magnetic tunnel junctions 11.3 Test cases of stochastic computation: case of magnetic tunnel junction 11.3.1 Spin dice: a true random number generator 11.3.2 Stochastic synapses 11.3.3 Stochastic computation with superparamagnetic tunnel junctions 11.3.4 Population coding-based stochastic computation 11.4 Conclusion References Part III: Deep learning 12 Memristive devices for deep learning applications 12.1 Quick introduction to deep learning 12.1.1 Simple neural network 12.1.2 Backpropagation 12.1.3 Why going deep helps? 12.1.4 Modern deep neural networks 12.1.4.1 Multiple output neural networks 12.1.4.2 Convolutional and recurrent neural networks 12.1.4.3 Techniques for implementing learning 12.2 Why do deep neural networks consume more energy than the brain, and how memristive devices can help 12.2.1 Separation of logic and memory 12.2.2 Reliance on approximate computing 12.2.3 Cost of clock 12.2.4 Is backpropagation hardware compatible? 12.3 Conclusion References 13 Analog acceleration of deep learning using phase-change memory 13.1 Introduction 13.2 Deep learning with nonvolatile memory—an overview 13.3 Recent progress on phase-change memory for deep learning 13.4 Achieving software-equivalent accuracy in DNN training 13.4.1 PCM+3T1C 13.4.2 Polarity inversion 13.4.3 Mixed hardware–Software experiment 13.4.4 Results 13.5 Nonvolatile memory device requirements for deep learning revisited 13.5.1 Most significant pair programming 13.5.2 Dependence of accuracy on device nonidealities 13.6 Conclusions References 14 RRAM-based coprocessors for deep learning 14.1 Introduction 14.2 NN applications based on RRAM 14.2.1 Related simulation work 14.2.2 Experimental implementation 14.2.2.1 Associative memory 14.2.2.2 Pattern recognition 14.2.2.3 information processing 14.2.2.4 Scaling the demonstrations 14.3 Circuit and system-level implementation 14.3.1 Latest progress on circuit and system based on RRAM for NN processing 14.3.2 Practical challenges of implementing RRAM macros for DNN processing 14.3.2.1 Sneak current and array architecture 14.3.2.2 The influence of resistances of access device and memory cell 14.3.2.3 Influence of SA offset 14.3.2.4 Read margin degradation with increasing number of activated WLs 14.3.3 Advanced design techniques for performance and reliability enhancement 14.4 Summary References Part IV: Spiking neural networks 15 Memristive devices for spiking neural networks 15.1 Introduction 15.2 Signal encoding and processing with spikes 15.3 System architecture 15.4 Memristive devices for Spiking neural networks 15.5 Future outlook References 16 Neuronal realizations based on memristive devices 16.1 Introduction 16.1.1 Spiking neuron network 16.1.2 Conventional transistor-based spiking neurons 16.2 Novel memristor-based neurons 16.2.1 Phase-change memristor 16.2.2 Redox and electronic memristor 16.2.3 Ovonic chalcogenide glass 16.2.4 Mott insulators 16.2.5 Magnetic tunneling junction 16.3 Unsupervised programming of the synapses 16.3.1 Phase-change memristor neuron and synapse interaction 16.3.2 Redox memristor neuron 16.4 Conclusion References 17 Synaptic realizations based on memristive devices 17.1 Introduction 17.2 Biological synaptic plasticity rules 17.2.1 Long-term spike-timing-dependent plasticity and spike-rate-dependent plasticity 17.2.2 Short-term plasticity 17.2.3 State-dependent synaptic modulation 17.3 Memristive implementations 17.3.1 Resistive switching random access memory synapses 17.3.2 Phase-change memory synapses 17.3.3 Spin-transfer torque magnetic random access memory synapses 17.4 Hybrid complementary metal-oxide semiconductor/memristive synapses 17.4.1 One-transistor/one-resistor synapses 17.4.2 Two-transistor/one-resistor synapses 17.4.3 Differential synapses 17.4.4 Multimemristive synapses 17.5 Synaptic transistors (3-terminal synapses) 17.6 Triplet-based synapses 17.7 Spike-rate-dependent plasticity synapses 17.7.1 One-resistor synapses 17.7.2 Four-transistors/one-resistor synapses 17.7.3 One-selector/one-resistor synapses 17.8 Self-learning networks with memristive synapses 17.9 Conclusion Acknowledgments References 18 System-level integration in neuromorphic co-processors 18.1 Neuromorphic computing 18.2 Integrating memristive devices as synapses in neuromorphic computing architectures 18.3 Spike-based learning mechanisms for hybrid memristive-CMOS neuromorphic synapses 18.3.1 STDP mechanism 18.3.2 Spike timing- and rate-dependent plasticity mechanism 18.3.3 Spike-based stochastic weight update rules 18.3.4 Comparison between the spike-based learning architectures 18.4 Spike-based implementation of the neuronal intrinsic plasticity 18.5 Scalable mixed memristive–CMOS multicore neuromorphic computing systems 18.6 Conclusions and discussion References 19 Spiking neural networks for inference and learning: a memristor-based design perspective 19.1 Introduction 19.2 Spiking neural networks and synaptic plasticity 19.3 Memristive realization and nonidealities 19.3.1 Weight Mapping 19.3.2 RRAM endurance and retention 19.3.3 Sneak Path Effect 19.3.4 Delay 19.3.5 Asymmetric nonlinearity conductance update model 19.3.5.1 Asymmetric nonlinearity behavior example 19.3.5.2 RRAM updates for training 19.4 Synaptic plasticity and learning in SNN 19.4.1 Gradient-based learning in SNN and three-factor rules 19.5 Stochastic SNNs 19.5.1 Learning in stochastic SNNs 19.5.2 Three-factor learning in memristor arrays 19.6 Concluding remarks References Index Back Cover