دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: ریاضیات محاسباتی ویرایش: 1 نویسندگان: C. R. Gallistel, Adam Philip King سری: Blackwell/Maryland Lectures in Language and Cognition ISBN (شابک) : 9781405122887, 1405122889 ناشر: Wiley-Blackwell سال نشر: 2009 تعداد صفحات: 172 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 26 مگابایت
در صورت تبدیل فایل کتاب Memory and the Computational Brain: Why Cognitive Science will Transform Neuroscience به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب حافظه و مغز محاسباتی: چرا علم شناختی علوم اعصاب را تغییر خواهد داد نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
گالیستل به درستی استدلال میکند که سیناپسها آنقدر ناکارآمد هستند که نمیتوانند بهعنوان «نوار تورینگ» که برای محاسبات (نمادین) لازم است عمل کنند، اگرچه استدلال او اشتباه است: مشکل واقعی سیناپسها این است که انعطافپذیری آنها برهمکنش میکند، در نتیجه بسیار زیادشان. بسته بندی بسته (که دقیقاً همان چیزی است که بالقوه را بسیار مفید می کند). این "تقاطع" می تواند یادگیری پیچیده، شبه نمادین و سیناپسی را تضعیف کند. اما «راهحل» پیشنهادی او، مبنی بر اینکه برخی از فرآیندهای ذخیرهسازی عصبی جدید ناشناخته مشابه دیانای زیربنای محاسبات مغزی شبه نمادین قدرتمندی است، در آسمان است. طبیعت یک قلع و قمع است، و به نظر بسیار محتمل تر است که او به سادگی نقص های اجتناب ناپذیر سیناپس ها را با استفاده از مواد عمدتاً آماده برطرف کرده است. به طور خاص، این احتمال وجود دارد، اگرچه ثابت نشده است، که نئوکورتکس برای اجرای نوعی «تصحیح سیناپسی» تخصصی است، که به سیناپسها اجازه میدهد به عنوان نماد عمل کنند (به [...] مراجعه کنید). و همین ایده اصلی، تصحیح، همچنین زیربنای فرآیند کپی برداری فوق العاده دقیق است که اساس تکامل داروینی است. بنابراین \"ذهن\" نسخه سیناپسی \"زندگی\" خواهد بود.
Gallistel correctly argues that synapses are too inefficient to act as the "Turing tape" that is necessary for (symbolic) computation, though his reasoning is wrong: the real problem with synapses is that their plasticity interacts, as a result of their extremely close-packing (which is precisely what makes the potentially so useful). This "crosstalk" can undermine sophisticated, quasi-symbolic, synaptic learning. But his proposed "solution", that some unknown new neural storage process analogous to DNA underpins powerful quasi-symbolic brain computations, is pie-in the-sky. Nature is a tinkerer, and it seems much more likely that she has simply patched up the unavoidable defects of synapses using largely ready-made materials. In particular, it's likely, though not proven, that the neocortex is specialised to implement a type of "synaptic proofreading", which allows synapses to act as symbols (see [...]). And the same basic idea, proofreading, also underlies the extraordinarily accurate copying process that underpins Darwinian evolution. So "mind" would be a synaptic version of "life".
nn.2391.pdf......Page 0
Figure 1 Tempero-ammonic input controls postsynaptic spike timing of CA1 pyramidal neurons during theta oscillation.......Page 15
References......Page 17
Figure 3 Enforcement of potentiation and depression by external input during theta oscillation.......Page 16
Figure 1 Ventral hippocampal commissural stimulation interrupts SPW-Rs and hippocampal cell discharges without changing global sleep architecture.......Page 18
Figure 2 Suppression of SPW-Rs interferes with memory consolidation.......Page 19
Figure 1 Intact rapid, automatic and nonconscious detection of fearful \nfaces in the absence of the amygdala.......Page 20
References......Page 21
Figure 1 Lesion study: mean preferred distances from the experimenter.......Page 22
Figure 2 fMRI study: activation of the amygdala by close (relative to far) interpersonal distance.......Page 23
AP2 regulates basal progenitor fate in a region- and layer-specific manner in the developing cortex......Page 24
Figure 1 AP2γ expression in the mouse brain.......Page 25
Figure 2 Cell division and basal progenitor identity in the cerebral cortex of AP2γ−/− mice at mid-neurogenesis.......Page 26
Figure 6 Neurogenesis at E14 in the cerebral cortex of AP2γ−/− mice.......Page 28
Figure 7 Visual physiology of wild-type and AP2γ−/− cortices.......Page 29
Region- and layer-specific functions of AP2......Page 30
References......Page 31
Electrophysiology.......Page 33
Data analysis.......Page 34
Figure 4 AP2γ overexpression in the \ndeveloping cortex.......Page 27
Sox2 deletion causes hippocampal defects with NSC loss......Page 48
Figure 1 Sox2 conditional null allele, SOX2 protein ablation by nestin-Cre in mutant embryonic brain and in vivo morphological defects of nestin-cre Sox2-deleted mutants (Sox2null).......Page 49
Figure 3 Sox2-deleted mutant brains have defective Shh and Wnt3a mRNA expression.......Page 50
Figure 5 Stimulation of the Shh signaling pathway rescues hippocampal NSC and neurogenesis in Sox2 mutants.......Page 51
Figure 6 Sox2 deletion in adult brain leads to rapid loss of radial glia cells and of cell proliferation in the hippocampus dentate gyrus.......Page 52
Figure 7 Impaired maintenance of Sox2null NSCs in culture and rescue by extracellular factors.......Page 53
Figure 8 Shh is a direct target of SOX2.......Page 54
References......Page 55
Sox2-GFP lentivirus transduction.......Page 57
ChIP and EMSA.......Page 58
The CaV2 1 subunit UNC-2 localizes to presynaptic zones......Page 59
Figure 1 GFP-tagged UNC-2 localizes to presynaptic puncta in sensory neurons and motor neurons.......Page 60
Figure 3 calf-1 encodes a type I transmembrane protein.......Page 62
Figure 4 CALF-1 acts cell-autonomously in neurons and localizes to endoplasmic reticulum.......Page 63
Figure 5 Structure-function analysis of \nCALF-1.......Page 64
Figure 6 CALF-1 and UNC-36 have related trafficking functions.......Page 65
Figure 7 Acute CALF-1 expression transports UNC-2 from the cell body to the synapse.......Page 66
Swimming assay.......Page 68
Statistical analysis.......Page 69
References......Page 67
Figure 2 Presynaptic GFPUNC-2 puncta are lost in calf-1(ky867) mutants.......Page 61
EFHC1 interacts with microtubules to regulate cell division and cortical development......Page 70
Figure 2 EFHC1 is a MAP.......Page 71
Figure 3 EFHC1 is necessary for mitotic spindle organization and M phase progression.......Page 72
Figure 4 EFHC1 loss of function induces microtubule bundling and apoptosis.......Page 73
Figure 5 Essential role of EFHC1 in radial neuronal migration.......Page 74
Figure 6 EFHC1 is crucial for mitosis and cell cycle exit of cortical progenitors.......Page 75
Figure 7 EFHC1 is implicated in the locomotion of postmitotic neurons.......Page 76
References......Page 77
In vitro microtubule binding assays.......Page 79
Statistical analysis.......Page 80
Epac2 induces synapse remodeling and depression and its disease-associated forms alter spines......Page 81
Figure 1 Epac2 is present in synapses in cultured cortical pyramidal neurons.......Page 82
Figure 2 Epac2 activation induces dendritic spine shrinkage, reduces presynaptic contact and enhances spine motility and turnover.......Page 83
Figure 3 Epac2 interacts with GluR2/3-containing AMPAR and removes them from spines.......Page 84
Figure 4 Epac2 activation depresses AMPAR-mediated synaptic transmission.......Page 85
Figure 5 Dopamine D1/D5-like receptors modulate Rap activity, spine morphology and GluR2 surface expression.......Page 86
Figure 6 Epac2 interacts with neuroligins.......Page 87
References......Page 90
Time-lapse imaging.......Page 91
Statistical analysis.......Page 92
Figure 7 Disease-associated missense mutations affect Epac2 function.......Page 88
Figure 8 Epac2 missense mutants affect spine morphology.......Page 89
Neuron-glia communication via EphA4/ephrin-A3 modulates LTP through glial glutamate transport......Page 93
Figure 2 Ephrin-A3 is required for TBS-induced LTP.......Page 94
Figure 4 Astrocytic glutamate transporter currents.......Page 95
Figure 5 Glutamate levels, postsynaptic responses to high frequency stimulation and pharmacological rescue of LTP.......Page 96
Figure 6 Ephrin-A3 overexpression in astrocytes reduces glutamate transporters.......Page 97
Figure 7 Ephrin-A3 overexpression in astrocytes increases susceptibility to excitotoxicity and seizures.......Page 98
References......Page 99
Immunofluorescence and immunohistochemistry.......Page 101
Statistical analysis.......Page 102
Nicotine activates TRPA1......Page 103
Figure 6 TRPA1 mediates the airway constriction reflex triggered by nasal instillation of nicotine and mustard oil.......Page 106
Figure 7 Menthol inhibits nicotine-induced activation of TRPA1.......Page 107
References......Page 109
Statistics.......Page 110
Figure 2 Nicotine activates TRPA1 in cell-free inside-out patches.......Page 104
Figure 4 TRPA1 activation is prevented by the nAChR inhibitor mecamylamine, but is unaffected by hexamethonium.......Page 105
Suppression of hippocampal TRPM7 protein prevents delayed neuronal death in brain ischemia......Page 111
Figure 1 Suppression of TRPM7 expression in adult rat hippocampal neurons.......Page 112
Figure 5 Persistence of function in surviving TRPM7-deficient CA1 neurons 30 d after ischemia.......Page 114
Figure 6 TRPM7 deficiency prevents loss of memory functions in rats subjected to global ischemia.......Page 115
DISCUSSION......Page 116
References......Page 117
Contextual fear memory.......Page 119
Statistics.......Page 120
Figure 3 TRPM7 suppression in vivo imparts resilience to DND.......Page 113
A ganglion cell type is sensitive to approaching motion......Page 121
Figure 2 PV-5 ganglion cells respond to approaching motion even in the absence of dimming.......Page 122
Figure 6 The rapid inhibitory pathway is mediated by an electrical synapse.......Page 124
Figure 8 The functional properties of AII amacrine cells are consistent with the rapid inhibitory signal in PV-5 ganglion cells.......Page 126
Implementation of approach sensitivity......Page 127
References......Page 128
Immunohistochemistry.......Page 130
Computational model.......Page 131
Figure 4 PV-5 ganglion cells receive a rapid inhibitory input required to suppress responses to lateral motion.......Page 123
Figure 7 PV-5 cells receive an inhibitory input from AII amacrine cells.......Page 125
Coding of stimulus sequences by population responses in visual cortex......Page 132
Figure 1 Population responses to an oriented stimulus.......Page 133
Figure 3 Predicting the membrane potential responses of the population to the full stimulus sequence.......Page 134
Figure 5 Predicting the interactions between population responses to successive orientations.......Page 135
Figure 6 Unexplained persistence of population responses after stimulus offset.......Page 136
Figure 7 Decoding stimulus orientation from the population responses.......Page 137
DISCUSSION......Page 138
References......Page 139
Bayesian decoder.......Page 140
RESULTS......Page 142
Figure 1 Grid fields repeat across arms with similar running directions.......Page 143
Figure 4 Representations were reset near the turning points.......Page 145
Figure 5 Shortcut experiments suggest a path-integration mechanism.......Page 146
Figure 6 Firing pattern of hippocampal place cells in the hairpin maze.......Page 147
Figure 7 Preserved two-dimensional grid representations in a virtual hairpin maze.......Page 148
References......Page 149
Population vector construction and correlation procedures.......Page 150
Histology.......Page 151
Figure 3 Population analysis for all trials and all rats.......Page 144
Transformation of nonfunctional spinal circuits into functional states after the loss of brain input......Page 152
Figure 1 Accessing spinal locomotor circuits 1 week after the interruption of all supraspinal input.......Page 153
Figure 5 Functional remodeling of spinal circuits after rehabilitative locomotor training.......Page 156
Figure 6 Effects of velocity-dependent afferent input on motor patterns.......Page 157
Accessing the circuits and receptors in lumbosacral spinal cord......Page 159
Methods......Page 160
Limb endpoint trajectory.......Page 162
Statistical analyses .......Page 163
References......Page 161
Figure 3 Site-specific effects of EES during standing and stepping.......Page 154
Figure 4 Rehabilitation locomotor training enabled by pharmacological and EES interventions improves stepping ability.......Page 155
Figure 8 Effects of direction-dependent afferent input on motor patterns.......Page 158
Classical conditioning in the vegetative and minimally conscious state......Page 164
Figure 2 Learning during the anticipatory interval.......Page 165
Figure 3 Single-subject measures of learning during the anticipatory interval.......Page 166
Table 1 Learning differences at the group level......Page 167
Table 2 Cortical atrophy partially explains anticipatory activity (learning) in trace conditioning......Page 168
Figure 6 Intact latencies, but smaller amplitudes, in event-related auditory potentials in DOCs.......Page 169
References......Page 170
Statistical analysis at the group level.......Page 171