ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Mediterranean Fruits Bio-wastes: Chemistry, Functionality and Technological Applications

دانلود کتاب ضایعات زیستی میوه های مدیترانه ای: شیمی، کارکرد و کاربردهای فناوری

Mediterranean Fruits Bio-wastes: Chemistry, Functionality and Technological Applications

مشخصات کتاب

Mediterranean Fruits Bio-wastes: Chemistry, Functionality and Technological Applications

ویرایش: [1st ed. 2022] 
نویسندگان:   
سری:  
ISBN (شابک) : 3030844358, 9783030844356 
ناشر: Springer 
سال نشر: 2022 
تعداد صفحات: 869
[844] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 16 Mb 

قیمت کتاب (تومان) : 52,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 3


در صورت تبدیل فایل کتاب Mediterranean Fruits Bio-wastes: Chemistry, Functionality and Technological Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب ضایعات زیستی میوه های مدیترانه ای: شیمی، کارکرد و کاربردهای فناوری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب ضایعات زیستی میوه های مدیترانه ای: شیمی، کارکرد و کاربردهای فناوری



میوه‌های سنتی مدیترانه‌ای (مانند انگور، پرتقال، سیب، گلابی، هلو، گیلاس، آلو، انجیر، خربزه، هندوانه و خرما) از ارزش تجاری و تغذیه‌ای عمده برای منطقه هستند. با این حال، فرآوری چنین میوه هایی منجر به تولید مقادیر زیادی مواد زاید زیستی می شود. بنابراین استفاده کارآمد، ارزان و سازگار با محیط زیست از ضایعات صنعت میوه بسیار مقرون به صرفه است و اثرات زیست محیطی را به حداقل می رساند. آنتی اکسیدان های طبیعی و ترکیبات فعال زیستی موجود در ضایعات زیستی میوه های مدیترانه ای می توانند نقش مهمی در مزایای سلامتی ادعایی رژیم مدیترانه ای داشته باشند و می توانند در داروسازی و همچنین کاربردهای غذایی جدید استفاده شوند.

< p>این کتاب یک انجمن چند رشته ای بحث در مورد شیمی، خواص عملکردی و اثرات ارتقاء دهنده سلامت ترکیبات فعال زیستی در ضایعات زیستی میوه های مدیترانه ای، و همچنین کاربردهای غذایی جدید و غیرغذایی را ارائه می دهد. این متن مبانی علمی فواید و کاربردهای سلامتی ضایعات زیستی میوه های مدیترانه ای را ارائه می دهد، مسائل مربوط به بازیابی را بررسی می کند و تکنیک های مختلف را برای توسعه برنامه های کاربردی جدید بررسی می کند. با دیدگاه‌های گوناگون، از علوم غذایی گرفته تا تحقیقات شیمی محیطی و باغبانی،  این جلد دانش جامع و به‌روز را در اختیار محققان و متخصصان صنعت که در زمینه ارزش‌گذاری ضایعات غذایی کار می‌کنند، می‌دهد.

توضیحاتی درمورد کتاب به خارجی

Traditional Mediterranean fruits (i.e., be grapes, oranges, apples, pears, peaches, cherries, plums, figs, melons, watermelon and dates) are of major commercial and nutritional value to the region. Processing of such fruits, however, results in large amounts of bio-waste material. Efficient, inexpensive and environmentally friendly use of fruit industry waste is thus highly cost-effective and minimizes environmental impact. The natural antioxidants and bioactive compounds found in Mediterranean fruit bio-wastes could play a major role in the alleged health benefits of the Mediterranean diet, and could be used in pharmaceuticals as well as novel food applications.

This book presents a multidisciplinary forum of discussion on the chemistry, functional properties and health-promoting effects of bioactive compounds in Mediterranean fruit bio-wastes, as well as novel food and non-food applications. The text provides the scientific fundamentals of the health-promoting benefits and applications of Mediterranean fruit bio-wastes, reviews the relevant recovery issues and explores different techniques to develop new applications. With a diversity of perspectives, from food science to environmental chemistry and horticultural research,  this volume provides comprehensive, up-to-date knowledge to researchers and industry professionals working in the areas of food waste valorization. 


فهرست مطالب

Preface
Contents
About the Editors
Part I: General Aspects
	Chapter 1: Introduction to Mediterranean Fruits Bio-wastes: Chemistry, Functionality and Techno-Applications
		1.1 Description and Contents of the Mediterranean Diet
		1.2 Fruits of the Mediterranean Diet
		1.3 Mediterranean Diet as a Functional Food
		1.4 Epidemiological Studies
		1.5 UN Sustainable Development Goals and Promoting Environmental-Friendly Food Production
		1.6 Definition, Main Sources, and Statistics of MTD Wastes
		1.7 Key Molecules and Bioactive Compounds in MTD-Fruit-Waste
		1.8 Major Application Fields of MTD-Fruit-Waste
		1.9 Anticipated Output and Potential Impact on the Economy and Environment
		1.10 Aims and Features of the Book
		References
	Chapter 2: Potentials of Biowaste Carbohydrates in Gut Health Enhancement
		2.1 Barrier Function and Intestinal Permeability
		2.2 Regulation of Tight Junctions by Dietary Components
		2.3 Carbohydrates and Intestinal Barrier Function
			2.3.1 Non-digestible Polysaccharides
			2.3.2 Non-digestible Oligosaccharides
		2.4 Mediterranean Fruit Biowaste Sources for Increased Gut Health
			2.4.1 Apple Pomace
			2.4.2 Olive Pomace
			2.4.3 Pomegranate Peel
		References
Part II: Olive Bio-wastes: Chemistry, Functionality and Technological Applications
	Chapter 3: Olive Fruit by-Products: From Waste Streams into a Promising Source of Value-Added Products
		3.1 Olive oil Industry and Olive Biomass Residue
			3.1.1 Kinds of Olive Oil Industry Machines
				3.1.1.1 Discontinuous Pressing Process
				3.1.1.2 The Continuous Centrifugation Process
					Continuous Three-Phase Decanter
					The Two-Phase Extraction
					The Multi-Phase Decanters (DMF)
			3.1.2 Olive Biomass Residue
				3.1.2.1 Olive Wood and Leaves
				3.1.2.2 Olive Fruit Bio-Waste
					Olive Skins (OSks)
					Olive Stones (OSts)
					Olive Pomace (OP)
					Olive Mill Waste Water (OMWW)
					Olive Paste: Patè Olive Cake (POC)
		3.2 Olive Bio-wastes Applications
			3.2.1 Food Applications of Olive Wastes
			3.2.2 Feed Uses of Olive Bio-Wastes
			3.2.3 Olive by-Product in Food Packaging
			3.2.4 Production of Energy, Biochars, and Agriculture Applications of Olive Waste
			3.2.5 Olive Wastes for Human Health Uses
		References
	Chapter 4: Anaerobic Digestion Technology of Solid and Liquid Forms of Olive Wastes in the Mediterranean Region
		4.1 Introduction
		4.2 Current Situation of Olive Crops in the Mediterranean Region
		4.3 Characterization of Mediterranean Olive Fruit
		4.4 How Is Olive Oil Produced from Olive Fruit in the Mediterranean Region?
			4.4.1 Collection, Leaf Removal, and Washing
			4.4.2 Crushing and Malaxation
			4.4.3 Extraction
		4.5 Olive Mill Waste: Types, Characteristics, and Environmental Impacts
		4.6 Anaerobic Digestion (AD) of Olive Pomace
			4.6.1 The Necessity of Pretreatment
			4.6.2 Anaerobic Co-digestion
		4.7 Anaerobic Digestion of Olive Mill Wastewater
			4.7.1 Dilution
			4.7.2 Pretreatment Process
			4.7.3 Anaerobic Co-digestion
		4.8 Conclusions and Future Directions
		References
	Chapter 5: Agronomic Olive Bio-waste Management: Combination of Olive Mill Wastewater Spreading and Compost Amendment - Effect...
		5.1 Olive Sector
		5.2 Olive Processing and Biomass Residues from the Olive Oil Industry
		5.3 Olive Mill Wastewater (OMW) Characterizations
		5.4 Olive Mill Wastewater Agronomic Valorisation
			5.4.1 OMW Spreading in an Olive Field
				5.4.1.1 Olive Extraction Effluent Effects on Soil Properties
				5.4.1.2 Olive Tree Performances Improvement by OMW Spreading
					Olive Tree Performance
					Olive Oil Quality
			5.4.2 OMW Co-composting and Compost Amendment for Agricultural Land
		5.5 Conclusion
		References
	Chapter 6: Olive Waste as a Promising Approach to Produce Antioxidants, Biofertilizers and Biogas
		6.1 Introduction
		6.2 OMWW Composition and Toxicity
		6.3 Biotreatments of OMWW and the Valuable Products
		6.4 Extraction and Valorization of Bioactive Compounds
		6.5 Composting is an Eco-Friendly Valorization Technic´s of OMWW.
		6.6 Anaerobic Digestion of OMWW
		6.7 Conclusion
		References
Part III: Citurs Bio-wastes: Chemistry, Functionality and Technological Applications
	Chapter 7: Citrus Biowastes: Applications in Production and Quality Enhancement of Food from Animal Sources
		7.1 Introduction
		7.2 Taxonomy, Nomenclature, and Distribution
		7.3 Global Production of Citrus Biowastes
		7.4 Chemical Composition of Citrus Biowastes
		7.5 Chemistry and Concentration of Bioactive Phytochemicals in Citrus Biowastes
		7.6 Biofunctional Properties of Bioactive Phytochemicals from Citrus Biowastes
			7.6.1 Binding Activity
			7.6.2 Antioxidant Activity
			7.6.3 Antibacterial Activity
			7.6.4 Anti-Inflammatory and Immunomodulatory Activities
			7.6.5 Bioavailability of Bioactive Compounds from Citrus Biowastes
		7.7 Applications of Bioactive Compounds from Citrus Biowastes in Animal Production and Health
			7.7.1 Application in Animal Nutrition
				7.7.1.1 Ruminants
				7.7.1.2 Non-ruminants
			7.7.2 Applications in Animal Health
				7.7.2.1 Helminth Suppression
				7.7.2.2 Prevention and Treatment of Animal Diseases
				7.7.2.3 Reduction of Nutritional Disorders
			7.7.3 Applications in Animal Growth and Carcass Quality
		7.8 Application of Citrus Biowastes for Improving Quality of Food from Animal Sources
			7.8.1 Physico-Chemical Quality of Eggs, Meat, and Milk
			7.8.2 Fatty Acid Composition of Eggs, Meat, and Milk
			7.8.3 Shelf-Life Extension of Eggs, Meat, and Milk
			7.8.4 Sensory Quality of Eggs, Meat, and Milk
		7.9 Future Directions
		References
	Chapter 8: Valorization of Grapefruit (Citrus x paradisi) Processing Wastes
		8.1 Introduction
		8.2 Grapefruit Wastes: Composition and Chemical Specificities
			8.2.1 Lipophilic Compounds in Grapefruit Wastes
				8.2.1.1 Essential Oils
				8.2.1.2 Fatty Acids and Sterols
			8.2.2 Dietary Fibers in Grapefruit Wastes
			8.2.3 Proteins in Grapefruit Wastes
			8.2.4 Secondary Metabolites in Grapefruit Wastes
				8.2.4.1 Carotenoids
				8.2.4.2 Flavanones
			8.2.5 Phenolic acids
				8.2.5.1 Furanocoumarin
				8.2.5.2 Limonoids
			8.2.6 Other Nutrients in Grapefruit Wastes
		8.3 Biological and Functional Properties of Grapefruit Wastes Compounds
			8.3.1 Flavanones Biological and Functional Properties
			8.3.2 Essential Oils Biological and Functional Properties
			8.3.3 Carotenoids Biological and Functional Properties
			8.3.4 Furanocoumarins Biological and Functional Properties
			8.3.5 Limonoids Biological and Functional Properties
			8.3.6 Dietary Fiber Biological and Functional Properties
			8.3.7 Biological and Functional Properties of Other Types of Compounds
		8.4 Food and Non-food Valorizations of Grapefruit Wastes
			8.4.1 Applications in Food Industries
				8.4.1.1 GPW as a Texture Enhancer, Gelling and Emulsifying Agent
				8.4.1.2 GPW as a Flavoring and Aroma Agent
				8.4.1.3 GPW as a Food Antioxidant and Antimicrobial Agent
			8.4.2 Applications in Agricultural, Livestock and Environmental Sectors
				8.4.2.1 Use as Animal Feed
				8.4.2.2 Conversion into Compost
				8.4.2.3 Bioethanol and Biogas Production
					Bioethanol Production
					Biogas Production
				8.4.2.4 Biosorption of Contaminants in Water Treatment
				8.4.2.5 Use as an Antioxidant and Antimicrobial Agent in Non-food Applications
		8.5 Focus on the Extraction of Bioactive Compounds from Grapefruit Wastes: Global Context and Technical Aspects
			8.5.1 Enzyme-Assisted Extraction (EAE)
			8.5.2 Ultrasound-Assisted Extraction Or Sonication (UAE)
			8.5.3 Microwave-Assisted Extraction (MAE)
			8.5.4 Extraction Assisted by Pulsed Electric Fields (PEF)
			8.5.5 Supercritical Fluids Extraction (SFE)
		8.6 Conclusion
		References
	Chapter 9: Citrus Bio-wastes: A Source of Bioactive, Functional Products and Non-food Uses
		9.1 Introduction and Economic Values of Fruit Wastes
		9.2 Composition and Bioactive Compounds of Waste Extracts
			9.2.1 Bioactive Compounds in Peels
			9.2.2 Bioactive Compounds in Seeds
		9.3 Biological and Functional Properties of Extracts and Bioactive Compounds from Fruit Bio-wastes
			9.3.1 Dietary Fibers
			9.3.2 Citric Acid
			9.3.3 Carotenoids
			9.3.4 Polyphenols
			9.3.5 Terpenoids
			9.3.6 Limonoids
			9.3.7 Unsaturated Fatty Acids
		9.4 Food and Non-food Applications of Extracts and Bioactive Compounds from Fruit Wastes
			9.4.1 Food Products
			9.4.2 Feed Products
			9.4.3 Food Additives
				9.4.3.1 Dietary Fibers as Thickeners, Emulsifiers, Stabilizers, Texturizers, and Fat Replacers
				9.4.3.2 Coloring Agents
				9.4.3.3 Preservative Agents
				9.4.3.4 Flavoring Agent
			9.4.4 Functional Food
			9.4.5 Nutraceuticals
			9.4.6 Pharmaceutical Applications
			9.4.7 Cosmetics Uses
		9.5 Valorization of Fruit Waste for Industrial and Agronomic Purposes
			9.5.1 Agronomic Uses
				9.5.1.1 Fertilizer
				9.5.1.2 Allelopathy
				9.5.1.3 Phytosanitary Products
			9.5.2 Energy Recovery
			9.5.3 Biosolvent and Biosrbent
			9.5.4 Bio-based Packaging Material
			9.5.5 Novel Materials
		9.6 Conclusion
		References
	Chapter 10: Citrus sinensis (Sweet Oranges) Wastes: The Orange Wealth
		10.1 Economic Values of Citrus sinensis Wastes
		10.2 Bioactive and Functional Compounds in CS Wastes
		10.3 Extraction of Citrus sinensis Waste
			10.3.1 Ultrasound-Assisted Extraction (UAE)
			10.3.2 Microwave-Assisted Extraction (MAE)
			10.3.3 Supercritical Fluid Extraction (SFE)
			10.3.4 Pressurized Water Extraction (PWE)
			10.3.5 Pulsed Electric Field
		10.4 Health Benefits of Citrus Wastes
			10.4.1 Anti-Microbial and Anti-Helminthic Effects
			10.4.2 Anti-Inflammatory and Anti-Allergic Effects
			10.4.3 Anti-Cancer Effects
			10.4.4 Gastrointestinal Effects
			10.4.5 Anti-Diabetic and Cholesterol-Lowering Effects
			10.4.6 Neuroprotective Effects
		10.5 Applications of Extracts and Bioactive Compounds from CS Wastes
			10.5.1 Food Industries and Pharmaceutical Applications
			10.5.2 Valorisation of CS Waste In Industry
		10.6 Conclusion
		References
	Chapter 11: Tangerine (Citrus reticulata L.) Wastes: Chemistry, Properties and Applications
		11.1 Introduction
		11.2 Tangerine Bio-wastes Chemistry and Properties
		11.3 Anti-neuroinflammatory Activity of Tangerine Peel
		11.4 Essential Oil and Other Metabolic Components In Tangerine Peel
		11.5 Tangerine Wastes Functionality and Technological Applications
		11.6 Future Prospective for Tangerine Byproducts
		References
	Chapter 12: Lemon (Citrus limon) Bio-waste: Chemistry, Functionality and Technological Applications
		12.1 Introduction and Economic Values of Lemon (Citrus limon) Bio-waste
		12.2 Composition and Bioactive Compounds of Citrus limon Bio-waste Extracts
		12.3 Biological and Functional Properties of Extracts and Bioactive Compounds from Fruit Bio-wastes
		12.4 Food and Non-food Applications of Extracts and Bioactive Compounds from Fruit Wastes
			12.4.1 Essential oil (EO)
			12.4.2 Pectin
			12.4.3 Packaging
			12.4.4 Natural Colorant
		12.5 Valorization of Fruit Waste for Non-health Purposes
			12.5.1 Biomaterial
			12.5.2 Biofuel
		References
Part IV: Apple and Pear Bio-wastes: Chemistry, Functionality and Technological Applications
	Chapter 13: Valorisation of Apple (Malus domestica) Wastes
		13.1 Introduction
		13.2 Chemical Composition and Bioactive Compounds of Apple Waste Extracts
			13.2.1 Chemical Composition of Apple and Apple Waste
			13.2.2 Bioactive Compounds of Apple Waste
		13.3 Biological and Functional Properties of Extracts and Bioactive Compounds from Apple Bio-wastes
		13.4 Food and Non-food Applications of Extracts and Bioactive Compounds from Apple Wastes
			13.4.1 Apple Pomace Utilization as a Functional Ingredient in the Food Industry
			13.4.2 Bioprocesses Involving Apple Pomace and Application in Different Industries
		13.5 Valorisation of Apple Waste for Non-health Purposes
		13.6 Conclusion
		References
	Chapter 14: Apple (Malus domestica) By-products: Chemistry, Functionality and Industrial Applications
		14.1 Apple Economic Relevance
		14.2 Apple Processing
		14.3 Apple Pomace
			14.3.1 A Source of Pectin
			14.3.2 Recovery of Other Carbohydrates
			14.3.3 Recovery of Phenolic Compounds
			14.3.4 Drying Approaches
		14.4 Apple Juice Retentate
		14.5 Industrial and Commercial Strategies for Apple by-Products Valuation
		References
	Chapter 15: Chemistry, Functionality and Technological Applications of Pear Bio-waste
		15.1 Introduction
		15.2 Chemistry and Functionality of Pear Bio-Waste
		15.3 Sugars and Organic Acids
			15.3.1 Triterpenoids
			15.3.2 Phenolics
			15.3.3 Oils from Pear Bio-wastes
				15.3.3.1 Phytosterols in Peer Seed Oil
				15.3.3.2 Tocochromanols in Pear Bio-wastes
		15.4 Technological Applications of Pear Bio-wastes
			15.4.1 Pear Bio-wastes Use in Cosmetics
			15.4.2 Pear Peel as Anti-diabetic and Anti-inflammatory Agent
			15.4.3 Health Benefits of Pear Bio-wastes
		15.5 Conclusion
		References
Part V: Date Palm Bio-wastes: Chemistry, Functionality and Technological Applications
	Chapter 16: Valorization of Date Palm (Phoenix dactylifera) Wastes and By-Products
		16.1 Introduction and Economical Values of Date Palm (Phoenix dactylifera) Wastes and By-Products
		16.2 Composition, Biological and Functional Properties and Bioactive Compounds of Date Palm Wastes and By-Products
		16.3 Food and Non-Food Applications of Date Palm Wastes and By-Products
		16.4 Valorisation of Date Palm Wastes and By-Products for Non-Health Purposes
		16.5 Conclusion
		References
	Chapter 17: Date Palm (Phoenix dactylifera L.) Wastes Valorization: A Circular Economy Approach
		17.1 Introduction and Economic Values of Date Palm Fruit Waste
		17.2 Botanical Aspects and Maintenance
			17.2.1 General Characteristics
			17.2.2 Propagation and Production Phases
			17.2.3 Maintenance
		17.3 Date Production and Stone Valorization
			17.3.1 Fruit Nutritional Value and Health Effects
			17.3.2 Downgrade Date Valorization
			17.3.3 Date Stone Valorization
		17.4 Valorization of Date Palm Tree Wastes
			17.4.1 Energetic Valorization
				17.4.1.1 Bioethanol Production
				17.4.1.2 Biogas Production
			17.4.2 Biochar from Date Palm Tree Waste
			17.4.3 Compost from Date Palm Waste
		17.5 Conclusion
		References
Part VI: Bio-wastes from Grape and Berries: Chemistry, Functionality and Technological Applications
	Chapter 18: An Insight into the Brilliant Benefits of Grape Waste
		18.1 Introduction
		18.2 Botanical Aspects
		18.3 Chemical Composition of Grape Waste Components
			18.3.1 Lignocellulosic components of Grape Waste
			18.3.2 Grape Leaves
			18.3.3 Grape Pomace and Peels
			18.3.4 Grape Seeds
				18.3.4.1 Seed Extract
				18.3.4.2 Seed Flour
				18.3.4.3 Seed Oil
		18.4 Biological Activities
			18.4.1 Antioxidant Activity
			18.4.2 Antimicrobial Activity
			18.4.3 Cardiovascular Effect
			18.4.4 Anticancer Activity
			18.4.5 Antidiabetic Activity
			18.4.6 Other Biological Activities
		18.5 Food Application of Grape Wastes
			18.5.1 Preservatives in the Food Industry
			18.5.2 As Foodstuff or Food Adding Matter
			18.5.3 As a Food Coloring Agent
			18.5.4 As a Food Flavoring Agent
			18.5.5 Processing of Beverages
		18.6 Non-food application of Waste
			18.6.1 Animal Feeding Applications
			18.6.2 Cosmetic Usage of Seeds
		18.7 Valorization of Grape Waste for Non-health Purposes
			18.7.1 The Use of Waste as Compost or Fertilizers
			18.7.2 Usage as Bio-Pesticides
			18.7.3 Grape Wastes as Rich Source for Bio-Energy
				18.7.3.1 Generation of Bio-Energy
				18.7.3.2 Production of alcohols and Other Compounds
				18.7.3.3 Industrial application of Grape Wastes
		18.8 Discussion
		18.9 Conclusion and Future Prospective
		References
	Chapter 19: Grape (Vitis vinifera) Biowastes: Applications in Egg, Meat and Dairy Production and Products
		19.1 Introduction
		19.2 Grape Biowastes Produced During Vinification
		19.3 Chemical and Bioactive Phytochemical Profiles of Grape Biowastes
			19.3.1 Chemical Profiles of Grape Biowastes
			19.3.2 Bioactive Phytochemical Profile of Grape Biowastes
		19.4 Bio-functional Properties of Bioactive Phytochemicals in Grape Biowastes
			19.4.1 Binding Properties
			19.4.2 Antioxidant Properties
			19.4.3 Antimicrobial Properties
			19.4.4 Anti-inflammatory Properties
		19.5 Grape Biowastes Phytochemicals: Digestion, Absorption, and Bioavailability in Animals
		19.6 Grape Biowastes: Applications in Animal Production and Health
			19.6.1 Application in Animal Production
				19.6.1.1 Non-ruminants
				19.6.1.2 Ruminants
			19.6.2 Application to Reduce Methane and Nitrogen Emissions
			19.6.3 Applications in Animal Health
		19.7 Grape Biowastes: Applications for Quality Enhancement of Animal Source Foods
			19.7.1 Enhancement of Physicochemical Quality of Animal Source Foods
			19.7.2 Enhancement of the Health Value of Animal Source Foods
			19.7.3 Enhancement of Shelf Life of Animal Source Foods
			19.7.4 Enhancement of Sensory Quality of Animal Source Foods
		19.8 Future Perspectives for the Valorisation of Grape Biowastes
		19.9 Conclusions
		References
	Chapter 20: Vaccinium Berry Processing Wastes: Composition and Biorefinery Possibilities
		20.1 Food Waste and The Significance of its Processing to Make Food Production Sustainable
		20.2 Vaccinium Berries and Their Value
		20.3 Chemical Composition of Vaccinium Berries and Their Processing Waste
		20.4 Extraction and Biorefinery Possibilities of Vaccinium Berries and Their Processing Wastes
		20.5 Vaccinium Berry Waste Products and Their Application Potential
		References
	Chapter 21: Strawberry Fruit Waste: Chemistry, Functionality and Technological Applications
		21.1 Introduction
		21.2 Chemical Composition of Strawberry Fruit Waste
			21.2.1 Unsaturated Fatty Acids
			21.2.2 Sugar Content
			21.2.3 Dietary Fibre
			21.2.4 Pectin
		21.3 Bioactive Compounds in Strawberry Fruit Waste
			21.3.1 Flavonoids
				21.3.1.1 Quercetin
				21.3.1.2 Kaempferol Glycosides
				21.3.1.3 Catechin
				21.3.1.4 Anthocyanins
			21.3.2 Phenolics
				21.3.2.1 Ellagitannins and Ellagic Acid
				21.3.2.2 Vitamin C
		21.4 Biological Activity of Strawberry Fruit Waste
			21.4.1 Anticarcinogenic Effect
			21.4.2 Anti-inflammatory Effect
			21.4.3 Antioxidant Activity
			21.4.4 Antimicrobial Activity
			21.4.5 Therapeutic Effects on Other Health Complications
		21.5 Applications of Strawberry Fruit Waste
			21.5.1 Pharmaceutical Industry
			21.5.2 Food Industry
			21.5.3 Biotechnology
		21.6 Volarisation of Strawberry Fruit Waste
		References
Part VII: Prunus Bio-wastes: Chemistry, Functionality and Technological Applications
	Chapter 22: Apricot (Prunus armeniaca L.) Kernel: A Valuable by-Product
		22.1 Introduction
		22.2 Utilization of Apricot by-Products
			22.2.1 Kernel (Seed) Fixed Oil
			22.2.2 Kernel (Seed) Essential Oil
			22.2.3 Protein Isolate
			22.2.4 Kernel (Seed)Flour
			22.2.5 Bio-Oil Production
		22.3 Novel Techniques in the Extraction of Various Compounds from Apricot
		22.4 Conclusion
		References
	Chapter 23: Valorization of Sweet Cherry (Prunus avium) Wastes as a Source of Advanced Bioactive Compounds
		23.1 Production, Processing, and Chemistry of Sweet Cherry (Prunus avium)
		23.2 Sweet Cherry Wastes
			23.2.1 Stems
			23.2.2 Petiole and Leave
			23.2.3 Seed (Kernel)
			23.2.4 Pomace (Press Cake or Skin)
		23.3 Recovery of Bioactive Compounds from Cherry Wastes
		23.4 Microencapsulation of Sweet Cherry Wastes
		23.5 Value-Added Utilization in Food, Cosmetics and Pharmaceutical Industries
		23.6 Conclusions and Future Remarks
		References
	Chapter 24: Peach (Prunus persica) Bio-Waste: Chemistry, Functionality and Technological Applications
		24.1 Introduction and Economic Values of Peach (Prunus persica) Bio-Waste
		24.2 Chemical Composition, Bioactive Compounds, Biological and Functional Properties of Extracts of Peach (Prunus persica) Bio...
		24.3 Food and Non-food Applications of Extracts and Bioactive Compounds from Peach Wastes
		24.4 Valorization of Fruit Waste for Non-health Purposes (Source of Bioenergy)
		References
	Chapter 25: Valorization of Peach (Prunus persica) Fruit Waste
		25.1 Introduction
		25.2 Economical Value of Peach Fruit Waste
		25.3 Composition and Bioactive Compounds of Peach Waste Extracts
			25.3.1 Phenolic Compounds
				25.3.1.1 Flavonoids
				25.3.1.2 Phenolic Acids
		25.4 Biological and Functional Properties of Peach Fruit Extracts
		25.5 Food and Non-food Applications of Peach Fruit Extracts
		25.6 Valorization of Peach Fruit Waste
		References
	Chapter 26: Plum (Prunus domestica L.) Wastes
		26.1 Introduction
		26.2 Bioactive Nutrients in Plum Fruit by-Products
			26.2.1 Chemical Composition and Energy Value of Plum Pomaces
		26.3 Biological and Functional Properties of Extracts and Bioactive Compounds from Plum Fruit Bio-Wastes
		26.4 Industrial Applications of Extracts and Bioactive Compounds from Fruit Wastes
		References
Part VIII: Cucurbitaceae Bio-wastes: Chemistry, Functionality and Technological Applications
	Chapter 27: Leveraging the Cucumis melo Wastes
		27.1 Introduction
			27.1.1 Domestication of Melon
			27.1.2 Melon Diversity
			27.1.3 Sweet Melon Production
		27.2 Melon Pulp
		27.3 Melon Peels
		27.4 Melon Seeds
		27.5 Conclusions
		References
	Chapter 28: Citrullus Lanatus (Watermelon) Wastes: Maximizing the Benefits and Saving the Environment
		28.1 Introduction
		28.2 Bioactive Compounds in the CL Wastes
		28.3 CL Rind and Peel
		28.4 CL Seeds
		28.5 Medicinal Uses of CLS
			28.5.1 Neuroprotective Properties
			28.5.2 Cardio-Protective Properties
			28.5.3 Kidney-Protective Properties
			28.5.4 Antidiabetic Properties
			28.5.5 Antimicrobial Properties
			28.5.6 Effects on the Sexual Function
		28.6 Medicinal Values of CLR & CLP
			28.6.1 Antimicrobial and Insecticidal Properties
			28.6.2 Anti-Carcinogenic Properties
			28.6.3 Analgesic, Antipyretic and Anti-Inflammatory Properties
			28.6.4 Antidiabetic and Hypocholesterolemic Properties
			28.6.5 Cardioprotective Properties
			28.6.6 Effects on the Sexual Function
		28.7 Valorization of CL Wastes and Industrial Applications
			28.7.1 Nutrition and Food Industry
			28.7.2 Industry and Biodiesel
		28.8 Conclusion and Future Prospectives
		References
	Chapter 29: Pumpkin Bio-Wastes as Source of Functional Ingredients
		29.1 Introduction
		29.2 Chemical Composition and Bioactive Compounds of Pumpkin Fruits
			29.2.1 Pumpkin Nutritional and Medicinal Components
				29.2.1.1 Fatty Acids
				29.2.1.2 Phytosterols, Alcohols and Squalene
				29.2.1.3 Phenolic Acids
				29.2.1.4 Carotenoids
				29.2.1.5 Fibers and Minerals
				29.2.1.6 Pectin
				29.2.1.7 Polysaccharides
				29.2.1.8 Proteins
				29.2.1.9 Vitamins
		29.3 Biological and Functional Properties of Extracts and Bioactive Compounds from Pumpkin Bio-Wastes
			29.3.1 Nutraceutical and Antioxidant Activity
			29.3.2 Anticancer Activity
			29.3.3 Antimicrobial Activity
			29.3.4 Antidiabetic and Hypocholestremic Activity
			29.3.5 Antihypertensive and Cardioprotective Activity
			29.3.6 Anti-Inflammatory and Wound Healing Activity
		29.4 Pumpkin Bio-Wastes and their Application
			29.4.1 Food and Medical Application
				29.4.1.1 Pumpkin Rind or Peel
				29.4.1.2 Pumpkin Seed
				29.4.1.3 Pumpkin Seed Cake
				29.4.1.4 Pumpkin Fruit Pulp
			29.4.2 Non-food Application
		29.5 Valorization of Pumpkin Seeds and Peels into Biodegradable Packaging Films
		References
Part IX: Bio-wastes from Other Fruits: Chemistry, Functionality and Technological Applications
	Chapter 30: Avocado (Persea Americana) Wastes: Chemical Composition, Biological Activities and Industrial Applications
		30.1 Introduction
		30.2 Composition and Bioactive Compounds of Avocado Peel and Seed
		30.3 Biological and Functional Properties of Avocado Waste Bioactive Compounds
			30.3.1 Ethnomedicine
			30.3.2 Biological Activity
		30.4 Food and Non-food Applications of Extracts from Avocado Wastes
		30.5 Valorisation of Avocado Fruit Waste in Bioenergy
		30.6 Conclusion
		References
	Chapter 31: Industrial Pomegranate Wastes and their Functional Benefits in Novel Food Formulations
		31.1 Pomegranate Production and Processing
		31.2 Industrial Pomegranate Wastes
			31.2.1 Pomegranate Peel
			31.2.2 Pomegranate Seeds
			31.2.3 Pomegranate Aril Pomace
		31.3 Valorization of Pomegranate Wastes
		31.4 Functional Properties of Bioactive Compounds Obtained from Pomegranate Wastes
			31.4.1 Health Effects
			31.4.2 Technological Benefits in Food Formulations
			31.4.3 Other Technological and Industrial Benefits of Pomegranate Wastes
		References
	Chapter 32: Valorization of Persimmon (Diospyros kaki) Wastes to Be Used as Functional Ingredients
		32.1 Introduction
		32.2 Materials and Methods
			32.2.1 Raw Materials
			32.2.2 Processes for Obtaining Persimmon Residues Powders
			32.2.3 Analytical Determinations
				32.2.3.1 Physicochemical Properties
					Antioxidant Properties
				32.2.3.2 Water Interaction Properties
				32.2.3.3 Oil Interaction Properties
			32.2.4 Persimmon Waste as a Medium to Grow Lactobacillus Salivarius Spp. Salivarius: Probiotic and Antioxidant Properties of F...
			32.2.5 Statistical Analysis
		32.3 Results and Discussion
			32.3.1 Physicochemical Properties of Persimmon Waste Powders
			32.3.2 Particle Size
			32.3.3 Antioxidant Properties
				32.3.3.1 Phenols and Flavonoids Content
				32.3.3.2 Antioxidant (AO) Activity
			32.3.4 Optical Properties
			32.3.5 Fibre Content
			32.3.6 Solubility, Specific Volume, and Hydration and Emulsifying Properties of Persimmon Waste Powders
			32.3.7 Sorption Isotherms
			32.3.8 Development of a Probiotic Powder Enriched with Lactobacillus Salivarius Spp. Salivarius
				32.3.8.1 Viability of the Probiotic Microorganism in the Powders
				32.3.8.2 Physicochemical Properties of the Inoculated Powders
		32.4 Conclusions
		References
	Chapter 33: Carob-Agro-Industrial Waste and Potential Uses in the Circular Economy
		33.1 Carob Tree and its Products
			33.1.1 Introduction
			33.1.2 Traditional and Modern Products
			33.1.3 Carob Production
				33.1.3.1 Human Nutrition and the Cocoa Shortage
				33.1.3.2 Application in Food and Beverages, Pharmaceutical, Cosmetics, Bakery, Cereals, and Dairy Products
				33.1.3.3 Animal Feed
				33.1.3.4 Advantages for Agro-Ecology
				33.1.3.5 Other Applications Such as Biofuel Production
		33.2 Agro-Industrial Processes and Produced Waste
			33.2.1 Agricultural Applications
				33.2.1.1 Agri-Waste
			33.2.2 Industrial Waste
				33.2.2.1 Air Pollutants
		33.3 Carob in the Framework of the Circular Economy (CE)
			33.3.1 Agro-Industrial Waste in CE
			33.3.2 Chemical Composition and Bioactive Compounds
			33.3.3 Other Research Trends
				33.3.3.1 Carob By-Products Extracts
				33.3.3.2 Carob Leaves
				33.3.3.3 Carob Pulp and Carob Pod
					Bioenergy/Biofuels
					Lactic Acid Production
					Citric Acid
					Single-Cell Oil Production
					Food Packaging Applications
					Pullulan Production
					Wastewater Treatment
				33.3.3.4 Carob Seed Residues
					Biofertilizers
					Unclogging for Emitters
		33.4 Conclusions
		References
	Chapter 34: Utilization of Tomato (Solanum lycopersicum) by-Products: An Overview
		34.1 Introduction
		34.2 Chemical Composition of Tomato by-Products
		34.3 Novel Approaches in the Extraction of Bioactive Compounds from Tomato Wastes
		34.4 Usage of Tomato by-Products in Food Applications
			34.4.1 Meat and Meat Products
			34.4.2 Bakery Products
			34.4.3 Edible Oils
			34.4.4 Fermented Cereal Products
			34.4.5 Tomato Products
		34.5 Usage of Tomato by-Products as Ingredients of Animal Feed
		34.6 Usage of Tomato by-Products in non-Food Applications
		34.7 Conclusion
		References
	Chapter 35: Valorization of Guava Fruit Byproducts: Chemical Composition, Bioactive Components, and Technical Concerns to the ...
		35.1 Introduction
		35.2 Guava Fruits and their Wastes
		35.3 Chemical Composition of Guava Fruit Wastes
		35.4 Bioactive Components of Guava Fruit Wastes
		35.5 Health-Promoting Effects of Guava Fruit Wastes
		35.6 Food Applications of Guava Fruit Wastes
		35.7 Technical Concerns to Guava Waste
		35.8 Concluding Remarks and Future Prospective
		References
Index




نظرات کاربران