دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1st ed. 2022]
نویسندگان: Mohamed Fawzy Ramadan (editor). Mohamed A. Farag (editor)
سری:
ISBN (شابک) : 3030844358, 9783030844356
ناشر: Springer
سال نشر: 2022
تعداد صفحات: 869
[844]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 16 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Mediterranean Fruits Bio-wastes: Chemistry, Functionality and Technological Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ضایعات زیستی میوه های مدیترانه ای: شیمی، کارکرد و کاربردهای فناوری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
میوههای سنتی مدیترانهای (مانند انگور، پرتقال، سیب، گلابی، هلو، گیلاس، آلو، انجیر، خربزه، هندوانه و خرما) از ارزش تجاری و تغذیهای عمده برای منطقه هستند. با این حال، فرآوری چنین میوه هایی منجر به تولید مقادیر زیادی مواد زاید زیستی می شود. بنابراین استفاده کارآمد، ارزان و سازگار با محیط زیست از ضایعات صنعت میوه بسیار مقرون به صرفه است و اثرات زیست محیطی را به حداقل می رساند. آنتی اکسیدان های طبیعی و ترکیبات فعال زیستی موجود در ضایعات زیستی میوه های مدیترانه ای می توانند نقش مهمی در مزایای سلامتی ادعایی رژیم مدیترانه ای داشته باشند و می توانند در داروسازی و همچنین کاربردهای غذایی جدید استفاده شوند.
< p>این کتاب یک انجمن چند رشته ای بحث در مورد شیمی، خواص عملکردی و اثرات ارتقاء دهنده سلامت ترکیبات فعال زیستی در ضایعات زیستی میوه های مدیترانه ای، و همچنین کاربردهای غذایی جدید و غیرغذایی را ارائه می دهد. این متن مبانی علمی فواید و کاربردهای سلامتی ضایعات زیستی میوه های مدیترانه ای را ارائه می دهد، مسائل مربوط به بازیابی را بررسی می کند و تکنیک های مختلف را برای توسعه برنامه های کاربردی جدید بررسی می کند. با دیدگاههای گوناگون، از علوم غذایی گرفته تا تحقیقات شیمی محیطی و باغبانی، این جلد دانش جامع و بهروز را در اختیار محققان و متخصصان صنعت که در زمینه ارزشگذاری ضایعات غذایی کار میکنند، میدهد.Traditional Mediterranean fruits (i.e., be grapes, oranges, apples, pears, peaches, cherries, plums, figs, melons, watermelon and dates) are of major commercial and nutritional value to the region. Processing of such fruits, however, results in large amounts of bio-waste material. Efficient, inexpensive and environmentally friendly use of fruit industry waste is thus highly cost-effective and minimizes environmental impact. The natural antioxidants and bioactive compounds found in Mediterranean fruit bio-wastes could play a major role in the alleged health benefits of the Mediterranean diet, and could be used in pharmaceuticals as well as novel food applications.
This book presents a multidisciplinary forum of discussion on the chemistry, functional properties and health-promoting effects of bioactive compounds in Mediterranean fruit bio-wastes, as well as novel food and non-food applications. The text provides the scientific fundamentals of the health-promoting benefits and applications of Mediterranean fruit bio-wastes, reviews the relevant recovery issues and explores different techniques to develop new applications. With a diversity of perspectives, from food science to environmental chemistry and horticultural research, this volume provides comprehensive, up-to-date knowledge to researchers and industry professionals working in the areas of food waste valorization.Preface Contents About the Editors Part I: General Aspects Chapter 1: Introduction to Mediterranean Fruits Bio-wastes: Chemistry, Functionality and Techno-Applications 1.1 Description and Contents of the Mediterranean Diet 1.2 Fruits of the Mediterranean Diet 1.3 Mediterranean Diet as a Functional Food 1.4 Epidemiological Studies 1.5 UN Sustainable Development Goals and Promoting Environmental-Friendly Food Production 1.6 Definition, Main Sources, and Statistics of MTD Wastes 1.7 Key Molecules and Bioactive Compounds in MTD-Fruit-Waste 1.8 Major Application Fields of MTD-Fruit-Waste 1.9 Anticipated Output and Potential Impact on the Economy and Environment 1.10 Aims and Features of the Book References Chapter 2: Potentials of Biowaste Carbohydrates in Gut Health Enhancement 2.1 Barrier Function and Intestinal Permeability 2.2 Regulation of Tight Junctions by Dietary Components 2.3 Carbohydrates and Intestinal Barrier Function 2.3.1 Non-digestible Polysaccharides 2.3.2 Non-digestible Oligosaccharides 2.4 Mediterranean Fruit Biowaste Sources for Increased Gut Health 2.4.1 Apple Pomace 2.4.2 Olive Pomace 2.4.3 Pomegranate Peel References Part II: Olive Bio-wastes: Chemistry, Functionality and Technological Applications Chapter 3: Olive Fruit by-Products: From Waste Streams into a Promising Source of Value-Added Products 3.1 Olive oil Industry and Olive Biomass Residue 3.1.1 Kinds of Olive Oil Industry Machines 3.1.1.1 Discontinuous Pressing Process 3.1.1.2 The Continuous Centrifugation Process Continuous Three-Phase Decanter The Two-Phase Extraction The Multi-Phase Decanters (DMF) 3.1.2 Olive Biomass Residue 3.1.2.1 Olive Wood and Leaves 3.1.2.2 Olive Fruit Bio-Waste Olive Skins (OSks) Olive Stones (OSts) Olive Pomace (OP) Olive Mill Waste Water (OMWW) Olive Paste: Patè Olive Cake (POC) 3.2 Olive Bio-wastes Applications 3.2.1 Food Applications of Olive Wastes 3.2.2 Feed Uses of Olive Bio-Wastes 3.2.3 Olive by-Product in Food Packaging 3.2.4 Production of Energy, Biochars, and Agriculture Applications of Olive Waste 3.2.5 Olive Wastes for Human Health Uses References Chapter 4: Anaerobic Digestion Technology of Solid and Liquid Forms of Olive Wastes in the Mediterranean Region 4.1 Introduction 4.2 Current Situation of Olive Crops in the Mediterranean Region 4.3 Characterization of Mediterranean Olive Fruit 4.4 How Is Olive Oil Produced from Olive Fruit in the Mediterranean Region? 4.4.1 Collection, Leaf Removal, and Washing 4.4.2 Crushing and Malaxation 4.4.3 Extraction 4.5 Olive Mill Waste: Types, Characteristics, and Environmental Impacts 4.6 Anaerobic Digestion (AD) of Olive Pomace 4.6.1 The Necessity of Pretreatment 4.6.2 Anaerobic Co-digestion 4.7 Anaerobic Digestion of Olive Mill Wastewater 4.7.1 Dilution 4.7.2 Pretreatment Process 4.7.3 Anaerobic Co-digestion 4.8 Conclusions and Future Directions References Chapter 5: Agronomic Olive Bio-waste Management: Combination of Olive Mill Wastewater Spreading and Compost Amendment - Effect... 5.1 Olive Sector 5.2 Olive Processing and Biomass Residues from the Olive Oil Industry 5.3 Olive Mill Wastewater (OMW) Characterizations 5.4 Olive Mill Wastewater Agronomic Valorisation 5.4.1 OMW Spreading in an Olive Field 5.4.1.1 Olive Extraction Effluent Effects on Soil Properties 5.4.1.2 Olive Tree Performances Improvement by OMW Spreading Olive Tree Performance Olive Oil Quality 5.4.2 OMW Co-composting and Compost Amendment for Agricultural Land 5.5 Conclusion References Chapter 6: Olive Waste as a Promising Approach to Produce Antioxidants, Biofertilizers and Biogas 6.1 Introduction 6.2 OMWW Composition and Toxicity 6.3 Biotreatments of OMWW and the Valuable Products 6.4 Extraction and Valorization of Bioactive Compounds 6.5 Composting is an Eco-Friendly Valorization Technic´s of OMWW. 6.6 Anaerobic Digestion of OMWW 6.7 Conclusion References Part III: Citurs Bio-wastes: Chemistry, Functionality and Technological Applications Chapter 7: Citrus Biowastes: Applications in Production and Quality Enhancement of Food from Animal Sources 7.1 Introduction 7.2 Taxonomy, Nomenclature, and Distribution 7.3 Global Production of Citrus Biowastes 7.4 Chemical Composition of Citrus Biowastes 7.5 Chemistry and Concentration of Bioactive Phytochemicals in Citrus Biowastes 7.6 Biofunctional Properties of Bioactive Phytochemicals from Citrus Biowastes 7.6.1 Binding Activity 7.6.2 Antioxidant Activity 7.6.3 Antibacterial Activity 7.6.4 Anti-Inflammatory and Immunomodulatory Activities 7.6.5 Bioavailability of Bioactive Compounds from Citrus Biowastes 7.7 Applications of Bioactive Compounds from Citrus Biowastes in Animal Production and Health 7.7.1 Application in Animal Nutrition 7.7.1.1 Ruminants 7.7.1.2 Non-ruminants 7.7.2 Applications in Animal Health 7.7.2.1 Helminth Suppression 7.7.2.2 Prevention and Treatment of Animal Diseases 7.7.2.3 Reduction of Nutritional Disorders 7.7.3 Applications in Animal Growth and Carcass Quality 7.8 Application of Citrus Biowastes for Improving Quality of Food from Animal Sources 7.8.1 Physico-Chemical Quality of Eggs, Meat, and Milk 7.8.2 Fatty Acid Composition of Eggs, Meat, and Milk 7.8.3 Shelf-Life Extension of Eggs, Meat, and Milk 7.8.4 Sensory Quality of Eggs, Meat, and Milk 7.9 Future Directions References Chapter 8: Valorization of Grapefruit (Citrus x paradisi) Processing Wastes 8.1 Introduction 8.2 Grapefruit Wastes: Composition and Chemical Specificities 8.2.1 Lipophilic Compounds in Grapefruit Wastes 8.2.1.1 Essential Oils 8.2.1.2 Fatty Acids and Sterols 8.2.2 Dietary Fibers in Grapefruit Wastes 8.2.3 Proteins in Grapefruit Wastes 8.2.4 Secondary Metabolites in Grapefruit Wastes 8.2.4.1 Carotenoids 8.2.4.2 Flavanones 8.2.5 Phenolic acids 8.2.5.1 Furanocoumarin 8.2.5.2 Limonoids 8.2.6 Other Nutrients in Grapefruit Wastes 8.3 Biological and Functional Properties of Grapefruit Wastes Compounds 8.3.1 Flavanones Biological and Functional Properties 8.3.2 Essential Oils Biological and Functional Properties 8.3.3 Carotenoids Biological and Functional Properties 8.3.4 Furanocoumarins Biological and Functional Properties 8.3.5 Limonoids Biological and Functional Properties 8.3.6 Dietary Fiber Biological and Functional Properties 8.3.7 Biological and Functional Properties of Other Types of Compounds 8.4 Food and Non-food Valorizations of Grapefruit Wastes 8.4.1 Applications in Food Industries 8.4.1.1 GPW as a Texture Enhancer, Gelling and Emulsifying Agent 8.4.1.2 GPW as a Flavoring and Aroma Agent 8.4.1.3 GPW as a Food Antioxidant and Antimicrobial Agent 8.4.2 Applications in Agricultural, Livestock and Environmental Sectors 8.4.2.1 Use as Animal Feed 8.4.2.2 Conversion into Compost 8.4.2.3 Bioethanol and Biogas Production Bioethanol Production Biogas Production 8.4.2.4 Biosorption of Contaminants in Water Treatment 8.4.2.5 Use as an Antioxidant and Antimicrobial Agent in Non-food Applications 8.5 Focus on the Extraction of Bioactive Compounds from Grapefruit Wastes: Global Context and Technical Aspects 8.5.1 Enzyme-Assisted Extraction (EAE) 8.5.2 Ultrasound-Assisted Extraction Or Sonication (UAE) 8.5.3 Microwave-Assisted Extraction (MAE) 8.5.4 Extraction Assisted by Pulsed Electric Fields (PEF) 8.5.5 Supercritical Fluids Extraction (SFE) 8.6 Conclusion References Chapter 9: Citrus Bio-wastes: A Source of Bioactive, Functional Products and Non-food Uses 9.1 Introduction and Economic Values of Fruit Wastes 9.2 Composition and Bioactive Compounds of Waste Extracts 9.2.1 Bioactive Compounds in Peels 9.2.2 Bioactive Compounds in Seeds 9.3 Biological and Functional Properties of Extracts and Bioactive Compounds from Fruit Bio-wastes 9.3.1 Dietary Fibers 9.3.2 Citric Acid 9.3.3 Carotenoids 9.3.4 Polyphenols 9.3.5 Terpenoids 9.3.6 Limonoids 9.3.7 Unsaturated Fatty Acids 9.4 Food and Non-food Applications of Extracts and Bioactive Compounds from Fruit Wastes 9.4.1 Food Products 9.4.2 Feed Products 9.4.3 Food Additives 9.4.3.1 Dietary Fibers as Thickeners, Emulsifiers, Stabilizers, Texturizers, and Fat Replacers 9.4.3.2 Coloring Agents 9.4.3.3 Preservative Agents 9.4.3.4 Flavoring Agent 9.4.4 Functional Food 9.4.5 Nutraceuticals 9.4.6 Pharmaceutical Applications 9.4.7 Cosmetics Uses 9.5 Valorization of Fruit Waste for Industrial and Agronomic Purposes 9.5.1 Agronomic Uses 9.5.1.1 Fertilizer 9.5.1.2 Allelopathy 9.5.1.3 Phytosanitary Products 9.5.2 Energy Recovery 9.5.3 Biosolvent and Biosrbent 9.5.4 Bio-based Packaging Material 9.5.5 Novel Materials 9.6 Conclusion References Chapter 10: Citrus sinensis (Sweet Oranges) Wastes: The Orange Wealth 10.1 Economic Values of Citrus sinensis Wastes 10.2 Bioactive and Functional Compounds in CS Wastes 10.3 Extraction of Citrus sinensis Waste 10.3.1 Ultrasound-Assisted Extraction (UAE) 10.3.2 Microwave-Assisted Extraction (MAE) 10.3.3 Supercritical Fluid Extraction (SFE) 10.3.4 Pressurized Water Extraction (PWE) 10.3.5 Pulsed Electric Field 10.4 Health Benefits of Citrus Wastes 10.4.1 Anti-Microbial and Anti-Helminthic Effects 10.4.2 Anti-Inflammatory and Anti-Allergic Effects 10.4.3 Anti-Cancer Effects 10.4.4 Gastrointestinal Effects 10.4.5 Anti-Diabetic and Cholesterol-Lowering Effects 10.4.6 Neuroprotective Effects 10.5 Applications of Extracts and Bioactive Compounds from CS Wastes 10.5.1 Food Industries and Pharmaceutical Applications 10.5.2 Valorisation of CS Waste In Industry 10.6 Conclusion References Chapter 11: Tangerine (Citrus reticulata L.) Wastes: Chemistry, Properties and Applications 11.1 Introduction 11.2 Tangerine Bio-wastes Chemistry and Properties 11.3 Anti-neuroinflammatory Activity of Tangerine Peel 11.4 Essential Oil and Other Metabolic Components In Tangerine Peel 11.5 Tangerine Wastes Functionality and Technological Applications 11.6 Future Prospective for Tangerine Byproducts References Chapter 12: Lemon (Citrus limon) Bio-waste: Chemistry, Functionality and Technological Applications 12.1 Introduction and Economic Values of Lemon (Citrus limon) Bio-waste 12.2 Composition and Bioactive Compounds of Citrus limon Bio-waste Extracts 12.3 Biological and Functional Properties of Extracts and Bioactive Compounds from Fruit Bio-wastes 12.4 Food and Non-food Applications of Extracts and Bioactive Compounds from Fruit Wastes 12.4.1 Essential oil (EO) 12.4.2 Pectin 12.4.3 Packaging 12.4.4 Natural Colorant 12.5 Valorization of Fruit Waste for Non-health Purposes 12.5.1 Biomaterial 12.5.2 Biofuel References Part IV: Apple and Pear Bio-wastes: Chemistry, Functionality and Technological Applications Chapter 13: Valorisation of Apple (Malus domestica) Wastes 13.1 Introduction 13.2 Chemical Composition and Bioactive Compounds of Apple Waste Extracts 13.2.1 Chemical Composition of Apple and Apple Waste 13.2.2 Bioactive Compounds of Apple Waste 13.3 Biological and Functional Properties of Extracts and Bioactive Compounds from Apple Bio-wastes 13.4 Food and Non-food Applications of Extracts and Bioactive Compounds from Apple Wastes 13.4.1 Apple Pomace Utilization as a Functional Ingredient in the Food Industry 13.4.2 Bioprocesses Involving Apple Pomace and Application in Different Industries 13.5 Valorisation of Apple Waste for Non-health Purposes 13.6 Conclusion References Chapter 14: Apple (Malus domestica) By-products: Chemistry, Functionality and Industrial Applications 14.1 Apple Economic Relevance 14.2 Apple Processing 14.3 Apple Pomace 14.3.1 A Source of Pectin 14.3.2 Recovery of Other Carbohydrates 14.3.3 Recovery of Phenolic Compounds 14.3.4 Drying Approaches 14.4 Apple Juice Retentate 14.5 Industrial and Commercial Strategies for Apple by-Products Valuation References Chapter 15: Chemistry, Functionality and Technological Applications of Pear Bio-waste 15.1 Introduction 15.2 Chemistry and Functionality of Pear Bio-Waste 15.3 Sugars and Organic Acids 15.3.1 Triterpenoids 15.3.2 Phenolics 15.3.3 Oils from Pear Bio-wastes 15.3.3.1 Phytosterols in Peer Seed Oil 15.3.3.2 Tocochromanols in Pear Bio-wastes 15.4 Technological Applications of Pear Bio-wastes 15.4.1 Pear Bio-wastes Use in Cosmetics 15.4.2 Pear Peel as Anti-diabetic and Anti-inflammatory Agent 15.4.3 Health Benefits of Pear Bio-wastes 15.5 Conclusion References Part V: Date Palm Bio-wastes: Chemistry, Functionality and Technological Applications Chapter 16: Valorization of Date Palm (Phoenix dactylifera) Wastes and By-Products 16.1 Introduction and Economical Values of Date Palm (Phoenix dactylifera) Wastes and By-Products 16.2 Composition, Biological and Functional Properties and Bioactive Compounds of Date Palm Wastes and By-Products 16.3 Food and Non-Food Applications of Date Palm Wastes and By-Products 16.4 Valorisation of Date Palm Wastes and By-Products for Non-Health Purposes 16.5 Conclusion References Chapter 17: Date Palm (Phoenix dactylifera L.) Wastes Valorization: A Circular Economy Approach 17.1 Introduction and Economic Values of Date Palm Fruit Waste 17.2 Botanical Aspects and Maintenance 17.2.1 General Characteristics 17.2.2 Propagation and Production Phases 17.2.3 Maintenance 17.3 Date Production and Stone Valorization 17.3.1 Fruit Nutritional Value and Health Effects 17.3.2 Downgrade Date Valorization 17.3.3 Date Stone Valorization 17.4 Valorization of Date Palm Tree Wastes 17.4.1 Energetic Valorization 17.4.1.1 Bioethanol Production 17.4.1.2 Biogas Production 17.4.2 Biochar from Date Palm Tree Waste 17.4.3 Compost from Date Palm Waste 17.5 Conclusion References Part VI: Bio-wastes from Grape and Berries: Chemistry, Functionality and Technological Applications Chapter 18: An Insight into the Brilliant Benefits of Grape Waste 18.1 Introduction 18.2 Botanical Aspects 18.3 Chemical Composition of Grape Waste Components 18.3.1 Lignocellulosic components of Grape Waste 18.3.2 Grape Leaves 18.3.3 Grape Pomace and Peels 18.3.4 Grape Seeds 18.3.4.1 Seed Extract 18.3.4.2 Seed Flour 18.3.4.3 Seed Oil 18.4 Biological Activities 18.4.1 Antioxidant Activity 18.4.2 Antimicrobial Activity 18.4.3 Cardiovascular Effect 18.4.4 Anticancer Activity 18.4.5 Antidiabetic Activity 18.4.6 Other Biological Activities 18.5 Food Application of Grape Wastes 18.5.1 Preservatives in the Food Industry 18.5.2 As Foodstuff or Food Adding Matter 18.5.3 As a Food Coloring Agent 18.5.4 As a Food Flavoring Agent 18.5.5 Processing of Beverages 18.6 Non-food application of Waste 18.6.1 Animal Feeding Applications 18.6.2 Cosmetic Usage of Seeds 18.7 Valorization of Grape Waste for Non-health Purposes 18.7.1 The Use of Waste as Compost or Fertilizers 18.7.2 Usage as Bio-Pesticides 18.7.3 Grape Wastes as Rich Source for Bio-Energy 18.7.3.1 Generation of Bio-Energy 18.7.3.2 Production of alcohols and Other Compounds 18.7.3.3 Industrial application of Grape Wastes 18.8 Discussion 18.9 Conclusion and Future Prospective References Chapter 19: Grape (Vitis vinifera) Biowastes: Applications in Egg, Meat and Dairy Production and Products 19.1 Introduction 19.2 Grape Biowastes Produced During Vinification 19.3 Chemical and Bioactive Phytochemical Profiles of Grape Biowastes 19.3.1 Chemical Profiles of Grape Biowastes 19.3.2 Bioactive Phytochemical Profile of Grape Biowastes 19.4 Bio-functional Properties of Bioactive Phytochemicals in Grape Biowastes 19.4.1 Binding Properties 19.4.2 Antioxidant Properties 19.4.3 Antimicrobial Properties 19.4.4 Anti-inflammatory Properties 19.5 Grape Biowastes Phytochemicals: Digestion, Absorption, and Bioavailability in Animals 19.6 Grape Biowastes: Applications in Animal Production and Health 19.6.1 Application in Animal Production 19.6.1.1 Non-ruminants 19.6.1.2 Ruminants 19.6.2 Application to Reduce Methane and Nitrogen Emissions 19.6.3 Applications in Animal Health 19.7 Grape Biowastes: Applications for Quality Enhancement of Animal Source Foods 19.7.1 Enhancement of Physicochemical Quality of Animal Source Foods 19.7.2 Enhancement of the Health Value of Animal Source Foods 19.7.3 Enhancement of Shelf Life of Animal Source Foods 19.7.4 Enhancement of Sensory Quality of Animal Source Foods 19.8 Future Perspectives for the Valorisation of Grape Biowastes 19.9 Conclusions References Chapter 20: Vaccinium Berry Processing Wastes: Composition and Biorefinery Possibilities 20.1 Food Waste and The Significance of its Processing to Make Food Production Sustainable 20.2 Vaccinium Berries and Their Value 20.3 Chemical Composition of Vaccinium Berries and Their Processing Waste 20.4 Extraction and Biorefinery Possibilities of Vaccinium Berries and Their Processing Wastes 20.5 Vaccinium Berry Waste Products and Their Application Potential References Chapter 21: Strawberry Fruit Waste: Chemistry, Functionality and Technological Applications 21.1 Introduction 21.2 Chemical Composition of Strawberry Fruit Waste 21.2.1 Unsaturated Fatty Acids 21.2.2 Sugar Content 21.2.3 Dietary Fibre 21.2.4 Pectin 21.3 Bioactive Compounds in Strawberry Fruit Waste 21.3.1 Flavonoids 21.3.1.1 Quercetin 21.3.1.2 Kaempferol Glycosides 21.3.1.3 Catechin 21.3.1.4 Anthocyanins 21.3.2 Phenolics 21.3.2.1 Ellagitannins and Ellagic Acid 21.3.2.2 Vitamin C 21.4 Biological Activity of Strawberry Fruit Waste 21.4.1 Anticarcinogenic Effect 21.4.2 Anti-inflammatory Effect 21.4.3 Antioxidant Activity 21.4.4 Antimicrobial Activity 21.4.5 Therapeutic Effects on Other Health Complications 21.5 Applications of Strawberry Fruit Waste 21.5.1 Pharmaceutical Industry 21.5.2 Food Industry 21.5.3 Biotechnology 21.6 Volarisation of Strawberry Fruit Waste References Part VII: Prunus Bio-wastes: Chemistry, Functionality and Technological Applications Chapter 22: Apricot (Prunus armeniaca L.) Kernel: A Valuable by-Product 22.1 Introduction 22.2 Utilization of Apricot by-Products 22.2.1 Kernel (Seed) Fixed Oil 22.2.2 Kernel (Seed) Essential Oil 22.2.3 Protein Isolate 22.2.4 Kernel (Seed)Flour 22.2.5 Bio-Oil Production 22.3 Novel Techniques in the Extraction of Various Compounds from Apricot 22.4 Conclusion References Chapter 23: Valorization of Sweet Cherry (Prunus avium) Wastes as a Source of Advanced Bioactive Compounds 23.1 Production, Processing, and Chemistry of Sweet Cherry (Prunus avium) 23.2 Sweet Cherry Wastes 23.2.1 Stems 23.2.2 Petiole and Leave 23.2.3 Seed (Kernel) 23.2.4 Pomace (Press Cake or Skin) 23.3 Recovery of Bioactive Compounds from Cherry Wastes 23.4 Microencapsulation of Sweet Cherry Wastes 23.5 Value-Added Utilization in Food, Cosmetics and Pharmaceutical Industries 23.6 Conclusions and Future Remarks References Chapter 24: Peach (Prunus persica) Bio-Waste: Chemistry, Functionality and Technological Applications 24.1 Introduction and Economic Values of Peach (Prunus persica) Bio-Waste 24.2 Chemical Composition, Bioactive Compounds, Biological and Functional Properties of Extracts of Peach (Prunus persica) Bio... 24.3 Food and Non-food Applications of Extracts and Bioactive Compounds from Peach Wastes 24.4 Valorization of Fruit Waste for Non-health Purposes (Source of Bioenergy) References Chapter 25: Valorization of Peach (Prunus persica) Fruit Waste 25.1 Introduction 25.2 Economical Value of Peach Fruit Waste 25.3 Composition and Bioactive Compounds of Peach Waste Extracts 25.3.1 Phenolic Compounds 25.3.1.1 Flavonoids 25.3.1.2 Phenolic Acids 25.4 Biological and Functional Properties of Peach Fruit Extracts 25.5 Food and Non-food Applications of Peach Fruit Extracts 25.6 Valorization of Peach Fruit Waste References Chapter 26: Plum (Prunus domestica L.) Wastes 26.1 Introduction 26.2 Bioactive Nutrients in Plum Fruit by-Products 26.2.1 Chemical Composition and Energy Value of Plum Pomaces 26.3 Biological and Functional Properties of Extracts and Bioactive Compounds from Plum Fruit Bio-Wastes 26.4 Industrial Applications of Extracts and Bioactive Compounds from Fruit Wastes References Part VIII: Cucurbitaceae Bio-wastes: Chemistry, Functionality and Technological Applications Chapter 27: Leveraging the Cucumis melo Wastes 27.1 Introduction 27.1.1 Domestication of Melon 27.1.2 Melon Diversity 27.1.3 Sweet Melon Production 27.2 Melon Pulp 27.3 Melon Peels 27.4 Melon Seeds 27.5 Conclusions References Chapter 28: Citrullus Lanatus (Watermelon) Wastes: Maximizing the Benefits and Saving the Environment 28.1 Introduction 28.2 Bioactive Compounds in the CL Wastes 28.3 CL Rind and Peel 28.4 CL Seeds 28.5 Medicinal Uses of CLS 28.5.1 Neuroprotective Properties 28.5.2 Cardio-Protective Properties 28.5.3 Kidney-Protective Properties 28.5.4 Antidiabetic Properties 28.5.5 Antimicrobial Properties 28.5.6 Effects on the Sexual Function 28.6 Medicinal Values of CLR & CLP 28.6.1 Antimicrobial and Insecticidal Properties 28.6.2 Anti-Carcinogenic Properties 28.6.3 Analgesic, Antipyretic and Anti-Inflammatory Properties 28.6.4 Antidiabetic and Hypocholesterolemic Properties 28.6.5 Cardioprotective Properties 28.6.6 Effects on the Sexual Function 28.7 Valorization of CL Wastes and Industrial Applications 28.7.1 Nutrition and Food Industry 28.7.2 Industry and Biodiesel 28.8 Conclusion and Future Prospectives References Chapter 29: Pumpkin Bio-Wastes as Source of Functional Ingredients 29.1 Introduction 29.2 Chemical Composition and Bioactive Compounds of Pumpkin Fruits 29.2.1 Pumpkin Nutritional and Medicinal Components 29.2.1.1 Fatty Acids 29.2.1.2 Phytosterols, Alcohols and Squalene 29.2.1.3 Phenolic Acids 29.2.1.4 Carotenoids 29.2.1.5 Fibers and Minerals 29.2.1.6 Pectin 29.2.1.7 Polysaccharides 29.2.1.8 Proteins 29.2.1.9 Vitamins 29.3 Biological and Functional Properties of Extracts and Bioactive Compounds from Pumpkin Bio-Wastes 29.3.1 Nutraceutical and Antioxidant Activity 29.3.2 Anticancer Activity 29.3.3 Antimicrobial Activity 29.3.4 Antidiabetic and Hypocholestremic Activity 29.3.5 Antihypertensive and Cardioprotective Activity 29.3.6 Anti-Inflammatory and Wound Healing Activity 29.4 Pumpkin Bio-Wastes and their Application 29.4.1 Food and Medical Application 29.4.1.1 Pumpkin Rind or Peel 29.4.1.2 Pumpkin Seed 29.4.1.3 Pumpkin Seed Cake 29.4.1.4 Pumpkin Fruit Pulp 29.4.2 Non-food Application 29.5 Valorization of Pumpkin Seeds and Peels into Biodegradable Packaging Films References Part IX: Bio-wastes from Other Fruits: Chemistry, Functionality and Technological Applications Chapter 30: Avocado (Persea Americana) Wastes: Chemical Composition, Biological Activities and Industrial Applications 30.1 Introduction 30.2 Composition and Bioactive Compounds of Avocado Peel and Seed 30.3 Biological and Functional Properties of Avocado Waste Bioactive Compounds 30.3.1 Ethnomedicine 30.3.2 Biological Activity 30.4 Food and Non-food Applications of Extracts from Avocado Wastes 30.5 Valorisation of Avocado Fruit Waste in Bioenergy 30.6 Conclusion References Chapter 31: Industrial Pomegranate Wastes and their Functional Benefits in Novel Food Formulations 31.1 Pomegranate Production and Processing 31.2 Industrial Pomegranate Wastes 31.2.1 Pomegranate Peel 31.2.2 Pomegranate Seeds 31.2.3 Pomegranate Aril Pomace 31.3 Valorization of Pomegranate Wastes 31.4 Functional Properties of Bioactive Compounds Obtained from Pomegranate Wastes 31.4.1 Health Effects 31.4.2 Technological Benefits in Food Formulations 31.4.3 Other Technological and Industrial Benefits of Pomegranate Wastes References Chapter 32: Valorization of Persimmon (Diospyros kaki) Wastes to Be Used as Functional Ingredients 32.1 Introduction 32.2 Materials and Methods 32.2.1 Raw Materials 32.2.2 Processes for Obtaining Persimmon Residues Powders 32.2.3 Analytical Determinations 32.2.3.1 Physicochemical Properties Antioxidant Properties 32.2.3.2 Water Interaction Properties 32.2.3.3 Oil Interaction Properties 32.2.4 Persimmon Waste as a Medium to Grow Lactobacillus Salivarius Spp. Salivarius: Probiotic and Antioxidant Properties of F... 32.2.5 Statistical Analysis 32.3 Results and Discussion 32.3.1 Physicochemical Properties of Persimmon Waste Powders 32.3.2 Particle Size 32.3.3 Antioxidant Properties 32.3.3.1 Phenols and Flavonoids Content 32.3.3.2 Antioxidant (AO) Activity 32.3.4 Optical Properties 32.3.5 Fibre Content 32.3.6 Solubility, Specific Volume, and Hydration and Emulsifying Properties of Persimmon Waste Powders 32.3.7 Sorption Isotherms 32.3.8 Development of a Probiotic Powder Enriched with Lactobacillus Salivarius Spp. Salivarius 32.3.8.1 Viability of the Probiotic Microorganism in the Powders 32.3.8.2 Physicochemical Properties of the Inoculated Powders 32.4 Conclusions References Chapter 33: Carob-Agro-Industrial Waste and Potential Uses in the Circular Economy 33.1 Carob Tree and its Products 33.1.1 Introduction 33.1.2 Traditional and Modern Products 33.1.3 Carob Production 33.1.3.1 Human Nutrition and the Cocoa Shortage 33.1.3.2 Application in Food and Beverages, Pharmaceutical, Cosmetics, Bakery, Cereals, and Dairy Products 33.1.3.3 Animal Feed 33.1.3.4 Advantages for Agro-Ecology 33.1.3.5 Other Applications Such as Biofuel Production 33.2 Agro-Industrial Processes and Produced Waste 33.2.1 Agricultural Applications 33.2.1.1 Agri-Waste 33.2.2 Industrial Waste 33.2.2.1 Air Pollutants 33.3 Carob in the Framework of the Circular Economy (CE) 33.3.1 Agro-Industrial Waste in CE 33.3.2 Chemical Composition and Bioactive Compounds 33.3.3 Other Research Trends 33.3.3.1 Carob By-Products Extracts 33.3.3.2 Carob Leaves 33.3.3.3 Carob Pulp and Carob Pod Bioenergy/Biofuels Lactic Acid Production Citric Acid Single-Cell Oil Production Food Packaging Applications Pullulan Production Wastewater Treatment 33.3.3.4 Carob Seed Residues Biofertilizers Unclogging for Emitters 33.4 Conclusions References Chapter 34: Utilization of Tomato (Solanum lycopersicum) by-Products: An Overview 34.1 Introduction 34.2 Chemical Composition of Tomato by-Products 34.3 Novel Approaches in the Extraction of Bioactive Compounds from Tomato Wastes 34.4 Usage of Tomato by-Products in Food Applications 34.4.1 Meat and Meat Products 34.4.2 Bakery Products 34.4.3 Edible Oils 34.4.4 Fermented Cereal Products 34.4.5 Tomato Products 34.5 Usage of Tomato by-Products as Ingredients of Animal Feed 34.6 Usage of Tomato by-Products in non-Food Applications 34.7 Conclusion References Chapter 35: Valorization of Guava Fruit Byproducts: Chemical Composition, Bioactive Components, and Technical Concerns to the ... 35.1 Introduction 35.2 Guava Fruits and their Wastes 35.3 Chemical Composition of Guava Fruit Wastes 35.4 Bioactive Components of Guava Fruit Wastes 35.5 Health-Promoting Effects of Guava Fruit Wastes 35.6 Food Applications of Guava Fruit Wastes 35.7 Technical Concerns to Guava Waste 35.8 Concluding Remarks and Future Prospective References Index