دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Ruidan Su (editor). Han Liu (editor)
سری: Lecture Notes in Electrical Engineering 633
ISBN (شابک) : 9811551987, 9789811551987
ناشر: Springer
سال نشر: 2020
تعداد صفحات: 254
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 29 مگابایت
در صورت تبدیل فایل کتاب Medical Imaging and Computer-Aided Diagnosis: Proceeding of 2020 International Conference on Medical Imaging and Computer-Aided Diagnosis (MICAD 2020) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تصویربرداری پزشکی و تشخیص به کمک رایانه: مجموعه مقالات کنفرانس بینالمللی تصویربرداری پزشکی و تشخیص به کمک رایانه در سال 2020 (MICAD 2020) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب تقریباً تمام جنبههای تشکیل تصویر در تصویربرداری پزشکی را پوشش میدهد، از جمله سیستمهای مبتنی بر تشعشعات یونیزان (اشعه ایکس، پرتوهای گاما) و تکنیکهای غیریونیزان (اولتراسوند، نوری، حرارتی، تشدید مغناطیسی و مغناطیسی). تصویربرداری ذرات) به طور یکسان. علاوه بر این، توسعه و کاربرد سیستمهای تشخیص و تشخیص به کمک رایانه (CAD) در تصویربرداری پزشکی را مورد بحث قرار میدهد.
با توجه به پوششی که دارد، این کتاب هم یک انجمن و هم منبع ارزشمندی برای محققان درگیر در شکلگیری تصویر، روشهای تجربی، عملکرد تصویر، تقسیمبندی، تشخیص الگو، استخراج ویژگی، طراحی طبقهبندی، یادگیری ماشین / یادگیری عمیق، رادیومیک، طراحی ایستگاه کاری CAD، تعامل انسان و کامپیوتر، پایگاه های داده و ارزیابی عملکرد.
This book covers virtually all aspects of image formation in medical imaging, including systems based on ionizing radiation (x-rays, gamma rays) and non-ionizing techniques (ultrasound, optical, thermal, magnetic resonance, and magnetic particle imaging) alike. In addition, it discusses the development and application of computer-aided detection and diagnosis (CAD) systems in medical imaging.
Given its coverage, the book provides both a forum and valuable resource for researchers involved in image formation, experimental methods, image performance, segmentation, pattern recognition, feature extraction, classifier design, machine learning / deep learning, radiomics, CAD workstation design, human–computer interaction, databases, and performance evaluation.
Preface Organization Honorable Chair General Chair Program Chairs Publication Chair Keynote Speakers Technical Program Committee Contents Computer Modeling and Laser Stereolithography in Cranio-Orbital Reconstructive Surgery 1 Introduction 2 Materials and Methods 3 Results 4 Discussion 5 Conclusion References Sparse Representation Label Fusion Method Combining Pixel Grayscale Weight for Brain MR Segmentation 1 Introduction 2 Methods 2.1 Atlas Registration 2.2 Parse Representation Method 2.3 Pixel Grayscale Weight Setting 2.4 Label Fusion 3 Experiments and Results 3.1 Segmentation Evaluation Index 3.2 Influence of the Iterations 3.3 Detailed Segmentation Results 4 Discussion and Conclusion References Deep Learning for Mental Illness Detection Using Brain SPECT Imaging 1 Introduction 2 Main Results: CNN Models for Single Conditions 2.1 CNN Model 2.2 Cross-validation with Few Samples 2.3 The Amber Zone 3 Conclusion and Future Work References Vessel Segmentation and Stenosis Quantification from Coronary X-Ray Angiograms 1 Introduction 2 Methodology 2.1 Data Acquisition 2.2 Vessel Segmentation and Edge Detection 2.3 Quantitative Coronary Arteriography 3 Results 3.1 Contour Detection 3.2 Stenosis Quantification 4 Conclusions References Improved Brain Tumor Segmentation and Diagnosis Using an SVM-Based Classifier 1 Introduction 2 Background 3 Methodology 4 Results and Discussions 5 Conclusion and Future Scope References 3D-Reconstruction and Semantic Segmentation of Cystoscopic Images 1 Introduction 2 3D Reconstruction 2.1 Endoscope Calibration 2.2 Structure-from-Motion 2.3 Current Work and Results 3 Deep Learning 3.1 Feed-Forward Neural Networks 3.2 RaVeNNA 4pi: Semantic Segmentation 4 Conclusion and Outlook References A Biomedical Survey on Osteoporosis Classification Techniques 1 Introduction 1.1 Motivation 2 Related Works 3 Medical Assessment of Osteoporosis 3.1 Background 4 Classification of Osteoporosis Diagnosis Techniques 4.1 Radiographic Techniques 4.2 Biochemistry Bio-Markers Classification 4.3 Invasive Techniques 4.4 Osteoporosis Biosensors Classification 5 Bone Turnover Markers (BTMs) 5.1 Advantages of Using BTMs 5.2 Disadvantage of Using BTMs 6 Proposed Simulations and Experimental Results 6.1 Bone Stress Properties in Osteoporosis 7 Conclusion and Future Works References Segment Medical Image Using U-Net Combining Recurrent Residuals and Attention 1 Introduction 2 Related Work 2.1 Deep Learning 2.2 Medical Segmentation Based on Deep Learning 2.3 Segmentation Research Based on U-Net 3 Method 3.1 U-Net Module 3.2 Recurrent Residuals Module 3.3 Attention Units 4 Experiment 4.1 Implementation Details 4.2 Evaluation Metric 4.3 Result 5 Discussion and Conclusions References A New Importance-Performance Analysis by Size-Insensitive Integrity-Based Fuzzy C-Means 1 Introduction 2 Methodology 2.1 Conventional IPA Method 2.2 Importance-Performance Analysis by Size-Insensitive Integrity-Based Fuzzy C-Means (IPASIIBFCM) 3 Results and Analysis 3.1 Samples Collection 3.2 Traditional IPA Analysis 3.3 IPASIIBFCM Analysis 4 Conclusion References Gingivitis Identification via GLCM and Artificial Neural Network 1 Introduction 2 Dataset 3 Methodology 3.1 Gray-Level Co-occurrence Matrix 3.2 Artificial Neural Network 3.3 Genetic Algorithm 3.4 10-Fold Cross-Validation 4 Experiment Results and Discussions 4.1 Statistical Results 4.2 Training Algorithm Comparison 4.3 Comparison to State-of-the-Art Approaches 5 Conclusions References A Novel Classification Method of Medical Image Segmentation Algorithm 1 Introduction 2 The Novel Classification Method 2.1 Segmentation Method Based on Organ Section Shape 2.2 Based on the Outline of the Organ Section 2.3 Based on Pixel Features of the Organs 3 Conclusion References Pathological Changes Discover Network: Discover the Pathological Changes of Perivascular Dermatitis by Semi-supervised Learning 1 Introduction 2 Proposed Methods 2.1 Pathological Changes Discover Module 2.2 Restricted Boundary Loss 2.3 Pathological Changes Guided Module 3 Experiments 3.1 Dataset and Preprocessing 3.2 Evaluation Metrics 3.3 Pathological Changes Analysis 3.4 Perivascular Dermatitis Classification 4 Conclusion References Optical Micro-scanning Reconstruction Technique for a Thermal Microscope Imaging System 1 Introduction 2 Different Interpolation Reconstruction Models 2.1 Local Gradient Interpolation Reconstruction Model 2.2 Interpolation Model Based on Gradient Threshold 2.3 Micro-scanning Error Correction Technique Based on Local Gradient Interpolation Reconstruction 3 Simulation Research 4 Experimental Research 5 Conclusion References A Survey for Traditional, Cascaded Regression, and Deep Learning-Based Face Alignment 1 Introduction 2 Algorithm 2.1 Traditional Algorithms 2.2 Cascade Regression-Based Algorithm 2.3 Deep Learning-Based Algorithm 3 Experiments 3.1 Experiment on Tradition Algorithms 3.2 Experiment on Cascade Regression-Based Algorithm 3.3 Experiment on Deep Learning-Based Algorithm 4 Conclusion and Future Work References Automatic Detection and Counting of Malaria Parasite-Infected Blood Cells 1 Introduction 1.1 Background 1.2 The Current Study 2 Related Work 3 Method 3.1 Data 3.2 Network Architecture 3.3 Counting 4 Results 5 Discussion 6 Conclusion References Classification of Chest Diseases Using Wavelet Transforms and Transfer Learning 1 Introduction 2 Background and Previous Work 2.1 Wavelet Transform 2.2 Augmentation 2.3 Deep Neural Network (DNN) 3 Dataset 4 Methodology 4.1 Wavelet Transforms 4.2 Deep Neural Network (DNN) 5 Results and Discussion References Performance Analysis of Different 2D and 3D CNN Model for Liver Semantic Segmentation: A Review 1 Introduction 2 Related Work 2.1 ResNet 2.2 FCN 2.3 U-Net 2.4 3D U-Net 3 Results 4 Discussion 5 Conclusion References Application of Image Segmentation and Convolutional Neural Network in Classification Algorithms for Mammary X-ray Molybdenum Target Image 1 Introduction 2 Materials and Methods 3 Image Processing and Model Designing 3.1 ROI Location 3.2 Mini-image Segmentation 3.3 Model Design 4 Results 5 Discussion 6 Conclusion References Fusion Segmentation of Head Medical Image with Partially Annotated Data 1 Introduction 2 Method 2.1 DeepLabv3+ 2.2 U-Net 2.3 Mean Teachers 2.4 Full Pipeline 2.5 Loss Function 3 Experiment 3.1 Data 3.2 Preprocess 3.3 Detail 3.4 Result 4 Conclusion References Application of U-Shaped Convolutional Neural Network Based on Attention Mechanism in Liver CT Image Segmentation 1 Introduction 2 Related Works 2.1 U-Shaped Convolutional Neural Networks 2.2 Attention Mechanism 3 Methodology 4 Experiments and Results 4.1 Experimental Setup 4.2 Experimental Results and Analysis 5 Conclusions References Design of Photovoltaic Power Intelligent Patrol Robot 1 Information 2 System Hardware Design 2.1 Photovoltaic Power Supply Circuit Design 2.2 Video Transmission Control Circuit Design 2.3 Inclination Adjustment Circuit and Structural 3 Software Design 3.1 Wireless LAN Module Driver Transplantation 3.2 Design of Video Transmission Server 3.3 Design of Control Lower Computer Program 3.4 Design of Solar Panel Inclination Angle Adjustment Program 4 System Test 4.1 Booster Circuit Conversion Efficiency 4.2 Video Transmission Image Resolution and Frame Rate 5 Summary References Application of Intelligent Calculation Method in the Cage Simulation 1 Instruction 2 Modelling 3 Intelligent Calculation 4 Conclusion References An Analysis of Multi-organ Segmentation Performance of CNNs on Abdominal Organs with an Emphasis on Kidney 1 Introduction 2 Related Work 3 Results 4 Discussion 5 Conclusion References Author Index