دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Marleen de Bruijne, Philippe C. Cattin, Stéphane Cotin, Nicolas Padoy, Stefanie Speidel, Yefeng Zheng, Caroline Essert سری: Lecture Notes in Computer Science ISBN (شابک) : 3030872300, 9783030872304 ناشر: Springer سال نشر: 2021 تعداد صفحات: 657 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 166 مگابایت
در صورت تبدیل فایل کتاب Medical Image Computing and Computer Assisted Intervention – MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, ... Part VI به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب محاسبات تصویر پزشکی و مداخله به کمک کامپیوتر – MICCAI 2021: بیست و چهارمین کنفرانس بین المللی، استراسبورگ، فرانسه، 27 سپتامبر تا 1 اکتبر، ... قسمت ششم نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
531 مقاله کامل اصلاح شده ارائه شده با دقت بررسی و از بین 1630 مورد ارسالی در یک فرآیند بررسی دوسوکور انتخاب شدند. مقالات در بخشهای موضوعی زیر سازماندهی شدهاند:
بخش اول: تقسیمبندی تصویر
بخش دوم: یادگیری ماشینی - یادگیری خود نظارتی. یادگیری ماشین - یادگیری نیمه نظارتی؛ و یادگیری ماشین - یادگیری با نظارت ضعیف
بخش سوم: یادگیری ماشین - پیشرفت در نظریه یادگیری ماشین. یادگیری ماشین - مدل های توجه؛ یادگیری ماشین - تطبیق دامنه؛ یادگیری ماشینی - یادگیری فدرال؛ یادگیری ماشین - تفسیرپذیری / توضیح پذیری؛ و یادگیری ماشین - عدم قطعیت
بخش چهارم: ثبت تصویر. مداخلات و جراحی با هدایت تصویر؛ علم داده های جراحی؛ برنامه ریزی و شبیه سازی جراحی؛ تجزیه و تحلیل مهارت های جراحی و جریان کار؛ و تجسم جراحی و واقعیت ترکیبی، افزوده و مجازی
بخش پنجم: تشخیص به کمک کامپیوتر. ادغام تصویربرداری با نشانگرهای زیستی غیر تصویربرداری؛ و پیش بینی نتیجه/بیماری
بخش ششم: بازسازی تصویر. کاربردهای بالینی - قلبی؛ و کاربردهای بالینی - عروقی
بخش هفتم: کاربردهای بالینی - شکم. کاربردهای بالینی - پستان. کاربردهای بالینی - پوست؛ کاربردهای بالینی - تصویربرداری از جنین. کاربردهای بالینی - ریه؛ کاربردهای بالینی - تصویربرداری عصبی - رشد مغز. کاربردهای بالینی - تصویربرداری عصبی - DWI و tractography. کاربردهای بالینی - تصویربرداری عصبی - شبکه های عملکردی مغز. کاربردهای بالینی - تصویربرداری عصبی - سایرین. و کاربردهای بالینی - انکولوژی
بخش هشتم: کاربردهای بالینی - چشم پزشکی. آسیب شناسی محاسباتی (تلفیقی)؛ روش ها - میکروسکوپ. روش ها - هیستوپاتولوژی؛ و روش ها - سونوگرافی
*کنفرانس به صورت مجازی برگزار شد.
The 531 revised full papers presented were carefully reviewed and selected from 1630 submissions in a double-blind review process. The papers are organized in the following topical sections:
Part I: image segmentation
Part II: machine learning - self-supervised learning; machine learning - semi-supervised learning; and machine learning - weakly supervised learning
Part III: machine learning - advances in machine learning theory; machine learning - attention models; machine learning - domain adaptation; machine learning - federated learning; machine learning - interpretability / explainability; and machine learning - uncertainty
Part IV: image registration; image-guided interventions and surgery; surgical data science; surgical planning and simulation; surgical skill and work flow analysis; and surgical visualization and mixed, augmented and virtual reality
Part V: computer aided diagnosis; integration of imaging with non-imaging biomarkers; and outcome/disease prediction
Part VI: image reconstruction; clinical applications - cardiac; and clinical applications - vascular
Part VII: clinical applications - abdomen; clinical applications - breast; clinical applications - dermatology; clinical applications - fetal imaging; clinical applications - lung; clinical applications - neuroimaging - brain development; clinical applications - neuroimaging - DWI and tractography; clinical applications - neuroimaging - functional brain networks; clinical applications - neuroimaging – others; and clinical applications - oncology
Part VIII: clinical applications - ophthalmology; computational (integrative) pathology; modalities - microscopy; modalities - histopathology; and modalities - ultrasound
*The conference was held virtually.
Preface Organization Contents – Part VI Image Reconstruction Two-Stage Self-supervised Cycle-Consistency Network for Reconstruction of Thin-Slice MR Images 1 Introduction 2 Method 2.1 Interpolation Network 2.2 The First-Stage SSL Based on Synthesized LR-HR Image Pairs 2.3 The Second-Stage SSL with Cycle-Consistency Constraint 3 Experiments 3.1 Dataset 3.2 Experimental Design 3.3 Implementation Details 3.4 Experimental Results 4 Conclusion References Over-and-Under Complete Convolutional RNN for MRI Reconstruction 1 Introduction 2 Methodology 3 Experiments and Results 4 Discussion and Conclusion References TarGAN: Target-Aware Generative Adversarial Networks for Multi-modality Medical Image Translation 1 Introduction 2 Methods 2.1 Proposed Framework 2.2 Training Objectives 3 Experiments and Results 3.1 Settings 3.2 Results and Analyses 4 Conclusion References Synthesizing Multi-tracer PET Images for Alzheimer's Disease Patients Using a 3D Unified Anatomy-Aware Cyclic Adversarial Network 1 Introduction 2 Methods 2.1 Evaluation with Human Data 3 Results 4 Conclusion References Generalised Super Resolution for Quantitative MRI Using Self-supervised Mixture of Experts 1 Introduction 2 Method 2.1 Data Description 2.2 Backbone Network Architecture 2.3 Self-supervised Mixture of Experts 3 Experiments 3.1 Implementation Details 3.2 Results 4 Discussion and Conclusion References TransCT: Dual-Path Transformer for Low Dose Computed Tomography 1 Introduction 2 Method 2.1 TransCT 2.2 Loss Function 2.3 Implementation 3 Experiments 3.1 Ablation Study 4 Conclusion References IREM: High-Resolution Magnetic Resonance Image Reconstruction via Implicit Neural Representation 1 Introduction 2 Method 2.1 Image Spatial Normalization 2.2 Model Optimization 2.3 HR Image Reconstruction 3 Experiments 3.1 Data 3.2 Implementation Details 3.3 Results 4 Conclusion References DA-VSR: Domain Adaptable Volumetric Super-Resolution for Medical Images 1 Introduction 2 Domain Adaptable Volumetric Super-Resolution 2.1 Network Structure 2.2 Self-supervised Adaptation 3 Experiments 3.1 Implementation Details 3.2 Dataset 3.3 Ablation Study 3.4 Quantitative Evaluation 4 Conclusion References Improving Generalizability in Limited-Angle CT Reconstruction with Sinogram Extrapolation 1 Introduction and Motivation 2 Problem Formulation 3 Proposed Method 3.1 HQS-CG Algorithm 3.2 Dual-Domain Reconstruction Pipelines 4 Experimental Results 4.1 Datasets and Experimental Settings 4.2 Ablation Study 4.3 Quantitative and Qualitative Results Comparison 5 Conclusion References Fast Magnetic Resonance Imaging on Regions of Interest: From Sensing to Reconstruction 1 Introduction 2 Methods 2.1 Problem Statement 2.2 Adaptive Sampler 2.3 Deep Reconstructor 2.4 Training Strategy 3 Implementations 4 Experiments 4.1 Data 4.2 Results 5 Conclusions References InDuDoNet: An Interpretable Dual Domain Network for CT Metal Artifact Reduction 1 Introduction 2 Method 2.1 Optimization Algorithm 2.2 Overview of InDuDoNet 3 Experimental Results 3.1 Ablation Study 3.2 Performance Evaluation 4 Conclusion References Depth Estimation for Colonoscopy Images with Self-supervised Learning from Videos 1 Introduction 2 Methodology 2.1 Training Baseline Model with Synthetic Data 2.2 Self-supervision with Colonoscopy Videos 3 Experiments 3.1 Dataset and Implementation Details 3.2 Quantitative Evaluation 3.3 Qualitative Evaluation on Real Data 4 Conclusion References Joint Optimization of Hadamard Sensing and Reconstruction in Compressed Sensing Fluorescence Microscopy 1 Introduction 2 Background 2.1 Fluorescence Microscopy and Hadamard Sensing 2.2 Sensing and Reconstruction Optimization 3 Proposed Method 3.1 End-to-End Sensing and Reconstruction Scheme 3.2 Loss Function 3.3 Implementation 4 Experiments 4.1 Masks 4.2 Reconstruction Methods 5 Conclusion References Multi-contrast MRI Super-Resolution via a Multi-stage Integration Network 1 Introduction 2 Methodology 2.1 Overall Architecture 2.2 Multi-stage Integration Module 3 Experiments 4 Conclusion References Generator Versus Segmentor: Pseudo-healthy Synthesis 1 Introduction 2 Methods 2.1 Basic GVS Flowchart 2.2 Improved Residual Loss 2.3 Training a Segmentor with Strong Generalization Ability 3 Experiments 3.1 Implementation Details 3.2 Evaluation Metrics 3.3 Comparisons with Other Methods 3.4 Ablation Study 3.5 Results on LiTS Dataset 4 Conclusions References Real-Time Mapping of Tissue Properties for Magnetic Resonance Fingerprinting 1 Introduction 2 Methods 2.1 Problem Formulation 2.2 Proposed Framework 2.3 Sliding-Window Stacking of Spirals 2.4 Learned Density Compensation 2.5 Tissue Mapping via Agglomerated Neighboring Features 3 Experiments and Results 4 Conclusion References Estimation of High Framerate Digital Subtraction Angiography Sequences at Low Radiation Dose 1 Introduction and Related Work 2 Methods 2.1 Phase Decomposition Using Independent Component Analysis 2.2 Training and Optimization 2.3 Network Details 2.4 Final Composition 3 Results 4 Conclusion References RLP-Net: A Recursive Light Propagation Network for 3-D Virtual Refocusing 1 Introduction 2 Proposed Method 2.1 Recursive Light Propagation Network (RLP-Net) 2.2 Training RLP-Net 3 Experiments 3.1 Fluorescence Microscopy Dataset 3.2 Training Details 3.3 Evaluation Results 4 Conclusion References Noise Mapping and Removal in Complex-Valued Multi-Channel MRI via Optimal Shrinkage of Singular Values 1 Introduction 2 Methods 2.1 Redundancy in MR Data 2.2 Optimal Shrinkage of Singular Value and Noise Estimation 2.3 Noise Mapping and Removal 3 Experiments 3.1 Numerical Validation 3.2 In-Vivo High-Resolution Diffusion MRI 3.3 In-Vivo Human Lung MRI 4 Conclusion References Self Context and Shape Prior for Sensorless Freehand 3D Ultrasound Reconstruction 1 Introduction 2 Methodology 2.1 Online Self-supervised Learning for Context Consistency 2.2 Online Adversarial Learning for Shape Constraint 2.3 Differentiable Reconstruction Approximation 2.4 Loss Function 3 Experiments 4 Conclusion References Universal Undersampled MRI Reconstruction 1 Introduction 2 Methods 2.1 The Overall Framework 2.2 Anatomy-SPecific Instance Normalization (ASPIN) 2.3 Model Distillation 2.4 Network Training Pipeline 3 Experimental Results 3.1 Datasets and Network Configuration 3.2 Algorithm Comparison 3.3 Ablation Study 3.4 Model Complexity 4 Conclusion References A Neural Framework for Multi-variable Lesion Quantification Through B-Mode Style Transfer 1 Introduction 2 Method 2.1 BQI-Net Architecture 2.2 Training Details 3 Experiments 3.1 Numerical Simulation 3.2 Phantom, and Ex-Vivo Measurements 4 Conclusion References Temporal Feature Fusion with Sampling Pattern Optimization for Multi-echo Gradient Echo Acquisition and Image Reconstruction 1 Introduction 2 Method 2.1 Deep ADMM as Backbone 2.2 Temporal Feature Fusion Block 2.3 Sampling Pattern Optimization Block 3 Experiments 3.1 Data Acquisition and Preprocessing 3.2 Implementation Details and Ablation Study 3.3 Performance Comparison 4 Conclusion References Dual-Domain Adaptive-Scaling Non-local Network for CT Metal Artifact Reduction 1 Introduction 2 Method 2.1 Problem Formulation 2.2 The Proposed DAN-Net 3 Experiments 3.1 Dataset 3.2 Implementation Details 3.3 Comparison with State-of-the-Art Methods 3.4 Clinical Study 4 Ablation Study 5 Conclusion References Towards Ultrafast MRI via Extreme k-Space Undersampling and Superresolution 1 Introduction 2 Related Work 3 Method 3.1 Data Description 3.2 Models 4 Experiments 5 User Study 6 Discussion and Conclusion References Adaptive Squeeze-and-Shrink Image Denoising for Improving Deep Detection of Cerebral Microbleeds 1 Introduction 2 Adaptive Squeeze-and-Shrink Denoising 2.1 Overall Framework 2.2 Implicit Near-Optimal Sparse Representation 2.3 The Denoising Procedure 3 The Deep Detection of Cerebral Microbleeds 4 Gaussian White Noise Removal 5 Experiments on Real-World Data 5.1 Data 5.2 CMB Detection 6 Discussion and Conclusions References 3D Transformer-GAN for High-Quality PET Reconstruction 1 Introduction 2 Methodology 2.1 Architecture 2.2 Objective Functions 2.3 Training Details 3 Experiments and Results 4 Conclusion References Learnable Multi-scale Fourier Interpolation for Sparse View CT Image Reconstruction 1 Introduction 2 Main Body 3 Experiments 4 Conclusion References U-DuDoNet: Unpaired Dual-Domain Network for CT Metal Artifact Reduction 1 Introduction 2 Additive Property for Metal Artifacts 3 Methodology 3.1 Network Architecture 3.2 Dual-Domain Cyclic Learning 4 Experiment 4.1 Experimental Setup 4.2 Comparison on Simulated and Real Data 4.3 Ablation Study 5 Conclusion References Task Transformer Network for Joint MRI Reconstruction and Super-Resolution 1 Introduction 2 Method 2.1 Task Transformer Network 2.2 Task Transformer Module 3 Experiments 4 Conclusion References Conditional GAN with an Attention-Based Generator and a 3D Discriminator for 3D Medical Image Generation 1 Introduction 2 Method 3 Experimental Results 4 Conclusion References Multimodal MRI Acceleration via Deep Cascading Networks with Peer-Layer-Wise Dense Connections 1 Introduction 2 Problem Formulation 3 Proposed Method 4 Experiments 5 Conclusion References Rician Noise Estimation for 3D Magnetic Resonance Images Based on Benford's Law 1 Introduction 2 Methodology 3 Experimental Setting 4 Results 5 Conclusions References Deep J-Sense: Accelerated MRI Reconstruction via Unrolled Alternating Optimization 1 Introduction 2 System Model and Related Work 2.1 Deep Learning for MRI Reconstruction 3 Deep J-Sense: Unrolled Alternating Optimization 4 Experimental Results 4.1 Performance on Matching Test-Time Conditions 4.2 Robustness to Test-Time Varying Acceleration Factors 4.3 Robustness to Train-Time Varying ACS Size 5 Discussion and Conclusions References Label-Free Physics-Informed Image Sequence Reconstruction with Disentangled Spatial-Temporal Modeling 1 Introduction 2 Methodology 2.1 Physics-Informed Loss Function 2.2 Spatial Modeling via GCNN 2.3 Temporal Modeling via Neural ODEs 3 Experiments 3.1 Synthetic Experiments 3.2 Clinical Data 4 Conclusion References High-Resolution Hierarchical Adversarial Learning for OCT Speckle Noise Reduction 1 Introduction 2 Method 2.1 Proposed Model 2.2 Dataset 2.3 Evaluation Metrics 3 Experiments and Results 3.1 Implementation Details 3.2 Ablation Study 3.3 Comparison Study 4 Discussion 5 Conclusion References Self-supervised Learning for MRI Reconstruction with a Parallel Network Training Framework 1 Introduction 2 Methods 2.1 Mathematical Model of CS-MRI Reconstruction 2.2 Brief Recap of ISTA-Net 2.3 Proposed Self-supervised Learning Method 2.4 Implementation Details 3 Experiments and Results 4 Conclusion References Acceleration by Deep-Learnt Sharing of Superfluous Information in Multi-contrast MRI 1 Introduction 2 Method 3 Results 4 Discussion 5 Conclusion References Sequential Lung Nodule Synthesis Using Attribute-Guided Generative Adversarial Networks 1 Introduction 2 Proposed Method 2.1 Model Architecture 2.2 Loss Functions 3 Experimental Results 3.1 Dataset and Implementation 3.2 Analysis of Lung Nodule Synthesis and Computation Costs 3.3 Visual Turing Test 3.4 Ablation Study 4 Conclusion References A Data-Driven Approach for High Frame Rate Synthetic Transmit Aperture Ultrasound Imaging 1 Introduction 2 Methods 2.1 Theory Basis and Network Architecture 2.2 Training Configurations 2.3 Simulations and In-Vivo Experiments 2.4 Metrics 3 Results 4 Conclusion References Interpretable Deep Learning for Multimodal Super-Resolution of Medical Images 1 Introduction 2 Sparse Modelling for Image Reconstruction 3 Deep Unfolding 4 A Multimodal Convolutional Deep Unfolding Design for Medical Image Super-Resolution 5 Experiments 6 Conclusion References MRI Super-Resolution Through Generative Degradation Learning 1 Introduction 2 Methods 2.1 Theory 2.2 GDN-Based SRR 2.3 Materials 2.4 Experimental Design 3 Results 4 Discussion References Task-Oriented Low-Dose CT Image Denoising 1 Introduction 2 Method 2.1 WGAN for LDCT Denoising 2.2 Analysis of Task-Oriented Loss 2.3 Training Strategy 3 Experiments 3.1 Datasets 3.2 Segmentation Networks 3.3 Implementation Details 3.4 Enhancement on Task-Related Regions 3.5 Boosting Downstream Task Performance 4 Conclusion References Revisiting Contour-Driven and Knowledge-Based Deformable Models: Application to 2D-3D Proximal Femur Reconstruction from X-ray Images 1 Introduction and Related Work 2 Method and Material 3 Results and Discussion 4 Conclusion References Memory-Efficient Learning for High-Dimensional MRI Reconstruction 1 Introduction 2 Methods 2.1 Memory-Efficient Learning 2.2 Memory-Efficient Learning for MoDL 2.3 Training and Evaluation of Memory-Efficient Learning 3 Results 4 Conclusions References SA-GAN: Structure-Aware GAN for Organ-Preserving Synthetic CT Generation 1 Introduction 2 Method 2.1 Global Stream in SA-GAN 2.2 Segmentation Network in the Local Stream 2.3 Organ Style Transfer with AdaON 3 Experiments and Results 4 Conclusion References Clinical Applications - Cardiac Distortion Energy for Deep Learning-Based Volumetric Finite Element Mesh Generation for Aortic Valves 1 Introduction 2 Methods 2.1 Template Deformation-Based Mesh Generation 2.2 Distortion Energy (Larap) 2.3 Weighted Larap (Lwarap) 3 Experiments and Results 3.1 Data Acquisition and Preprocessing 3.2 Implementation Details 3.3 Spatial Accuracy and Volumetric Mesh Quality 3.4 FE Stress Analysis During Valve Closure 3.5 Limitations and Future Works 4 Conclusion References Ultrasound Video Transformers for Cardiac Ejection Fraction Estimation 1 Introduction 2 Method 3 Experimentation 4 Conclusion References EchoCP: An Echocardiography Dataset in Contrast Transthoracic Echocardiography for Patent Foramen Ovale Diagnosis 1 Introduction 2 The EchoCP Dataset 2.1 Data Characteristics 2.2 PFO Diagnosis and Evaluation Protocol 3 Experiments of Baseline Method 4 Results and Analysis 5 Conclusion References Transformer Network for Significant Stenosis Detection in CCTA of Coronary Arteries 1 Introduction 2 Method 2.1 Semantic Feature Extraction for Local Cubic Volumes 2.2 Transformer Structure for Global Sequence Analysis 3 Experiment 3.1 Dataset 3.2 Experimental Results 4 Conclusion References Training Automatic View Planner for Cardiac MR Imaging via Self-supervision by Spatial Relationship Between Views 1 Introduction 2 Methods 3 Experiments 4 Conclusion References Phase-Independent Latent Representation for Cardiac Shape Analysis 1 Introduction 2 Methodology 2.1 Pre-processing Pipeline 2.2 Graph Representation of the LA 2.3 Design of Fusion and Classification Loss Function 3 Synthetic Experiments 3.1 Noisy Labels 4 Application to LAA Graphs 5 Conclusion References Cardiac Transmembrane Potential Imaging with GCN Based Iterative Soft Threshold Network 1 Introduction 2 Methodology 2.1 GISTA-Net Architecture 2.2 Implementation of Graph Convolution Network 3 Experiments 3.1 Ectopic Pacing Experiment 3.2 Myocardial Infarction Experiment 3.3 Cardiac Activation Sequence Reconstruction 4 Discussion 5 Conclusion References AtrialGeneral: Domain Generalization for Left Atrial Segmentation of Multi-center LGE MRIs 1 Introduction 2 Methodology 2.1 Image Segmentation Models 2.2 Domain Generalization Models 3 Materials 3.1 Data Acquisition and Pre-processing 3.2 Gold Standard and Evaluation 3.3 Implementation 4 Experiment 4.1 Comparisons of Different Semantic Segmentation Networks 4.2 Comparisons of Post- and Pre-ablation LGE MRI 4.3 Comparisons of Different Generalization Models 5 Conclusion References TVnet: Automated Time-Resolved Tracking of the Tricuspid Valve Plane in MRI Long-Axis Cine Images with a Dual-Stage Deep Learning Pipeline 1 Introduction 2 Methods 2.1 Imaging Data and Manual Annotation 2.2 Dual-Stage Residual Neural Network 2.3 Evaluation and Statistical Analysis 3 Experiments and Results 3.1 Implementation 3.2 Annotation Accuracy 4 Discussion and Conclusion References Clinical Applications - Vascular Deep Open Snake Tracker for Vessel Tracing 1 Introduction 2 Methods 2.1 Deep Open Curve Snake 2.2 Curve Proposal from Centerline Segmentation 2.3 Deep Snake Tracing 2.4 Global Tree Construction 3 Experimental Settings and Results 3.1 Datasets 3.2 Evaluation Metrics 3.3 Evaluation on BRAVE 3.4 Ablation Study 3.5 Adaptability of DOST on Other Datasets 4 Discussions and Conclusion References MASC-Units:Training Oriented Filters for Segmenting Curvilinear Structures 1 Introduction 2 Related Works 3 Methods 3.1 Rotatable MAC Unit and Response Shaping 3.2 Filter Re-use 3.3 Initialization Strategy 3.4 Multi-scale Processing with Pyramids 4 Experiments 5 Conclusion References Vessel Width Estimation via Convolutional Regression 1 Introduction 2 Method 2.1 Vessel Width Label Generation Method 2.2 Vessel Width Estimation Network 3 Dataset 3.1 Retinal Vessel Dataset for Width Estimation 3.2 Coronary Artery Dataset for Width Estimation 4 Experiment 4.1 Retinal Vessel Width Estimation 4.2 Coronary Artery Width Estimation 5 Conclusion References Renal Cell Carcinoma Classification from Vascular Morphology 1 Introduction 2 Related Works 2.1 Histopathological Images Dataset 2.2 Histopathological Images Classification 2.3 Hand-Crafted Features 3 Dataset 3.1 Dataset Building 3.2 VRCC200 4 Vascular Network Feature 4.1 Hand-Crafted Features 4.2 Deep Learning Feature 5 Experiments 5.1 Skeleton Features and Lattice Features Analysis 5.2 Vascular-Based RCC Classification Benchmark 6 Conclusion References Author Index