ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Medical Image Computing and Computer Assisted Intervention – MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, ... Part VI

دانلود کتاب محاسبات تصویر پزشکی و مداخله به کمک کامپیوتر – MICCAI 2021: بیست و چهارمین کنفرانس بین المللی، استراسبورگ، فرانسه، 27 سپتامبر تا 1 اکتبر، ... قسمت ششم

Medical Image Computing and Computer Assisted Intervention – MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, ... Part VI

مشخصات کتاب

Medical Image Computing and Computer Assisted Intervention – MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, ... Part VI

ویرایش: 1 
نویسندگان: , , , , , ,   
سری: Lecture Notes in Computer Science 
ISBN (شابک) : 3030872300, 9783030872304 
ناشر: Springer 
سال نشر: 2021 
تعداد صفحات: 657 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 166 مگابایت 

قیمت کتاب (تومان) : 31,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 12


در صورت تبدیل فایل کتاب Medical Image Computing and Computer Assisted Intervention – MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, ... Part VI به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب محاسبات تصویر پزشکی و مداخله به کمک کامپیوتر – MICCAI 2021: بیست و چهارمین کنفرانس بین المللی، استراسبورگ، فرانسه، 27 سپتامبر تا 1 اکتبر، ... قسمت ششم نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب محاسبات تصویر پزشکی و مداخله به کمک کامپیوتر – MICCAI 2021: بیست و چهارمین کنفرانس بین المللی، استراسبورگ، فرانسه، 27 سپتامبر تا 1 اکتبر، ... قسمت ششم

مجموعه هشت جلدی LNCS 12901، 12902، 12903، 12904، 12905، 12906، 12907، و 12908، مجموعه مقالات داوری بیست و چهارمین کنفرانس بین المللی رایانش تصویر پزشکی و InterCCAI-A20، Strategy International Conference on Medical Image Computing and InterCCAI-A20 را تشکیل می دهد. در سپتامبر/اکتبر 2021.*

531 مقاله کامل اصلاح شده ارائه شده با دقت بررسی و از بین 1630 مورد ارسالی در یک فرآیند بررسی دوسوکور انتخاب شدند. مقالات در بخش‌های موضوعی زیر سازمان‌دهی شده‌اند:

بخش اول: تقسیم‌بندی تصویر

بخش دوم: یادگیری ماشینی - یادگیری خود نظارتی. یادگیری ماشین - یادگیری نیمه نظارتی؛ و یادگیری ماشین - یادگیری با نظارت ضعیف

بخش سوم: یادگیری ماشین - پیشرفت در نظریه یادگیری ماشین. یادگیری ماشین - مدل های توجه؛ یادگیری ماشین - تطبیق دامنه؛ یادگیری ماشینی - یادگیری فدرال؛ یادگیری ماشین - تفسیرپذیری / توضیح پذیری؛ و یادگیری ماشین - عدم قطعیت

بخش چهارم: ثبت تصویر. مداخلات و جراحی با هدایت تصویر؛ علم داده های جراحی؛ برنامه ریزی و شبیه سازی جراحی؛ تجزیه و تحلیل مهارت های جراحی و جریان کار؛ و تجسم جراحی و واقعیت ترکیبی، افزوده و مجازی

بخش پنجم: تشخیص به کمک کامپیوتر. ادغام تصویربرداری با نشانگرهای زیستی غیر تصویربرداری؛ و پیش بینی نتیجه/بیماری

بخش ششم: بازسازی تصویر. کاربردهای بالینی - قلبی؛ و کاربردهای بالینی - عروقی

بخش هفتم: کاربردهای بالینی - شکم. کاربردهای بالینی - پستان. کاربردهای بالینی - پوست؛ کاربردهای بالینی - تصویربرداری از جنین. کاربردهای بالینی - ریه؛ کاربردهای بالینی - تصویربرداری عصبی - رشد مغز. کاربردهای بالینی - تصویربرداری عصبی - DWI و tractography. کاربردهای بالینی - تصویربرداری عصبی - شبکه های عملکردی مغز. کاربردهای بالینی - تصویربرداری عصبی - سایرین. و کاربردهای بالینی - انکولوژی

بخش هشتم: کاربردهای بالینی - چشم پزشکی. آسیب شناسی محاسباتی (تلفیقی)؛ روش ها - میکروسکوپ. روش ها - هیستوپاتولوژی؛ و روش ها - سونوگرافی

*کنفرانس به صورت مجازی برگزار شد.


توضیحاتی درمورد کتاب به خارجی

The eight-volume set LNCS 12901, 12902, 12903, 12904, 12905, 12906, 12907, and 12908 constitutes the refereed proceedings of the 24th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2021, held in Strasbourg, France, in September/October 2021.*

The 531 revised full papers presented were carefully reviewed and selected from 1630 submissions in a double-blind review process. The papers are organized in the following topical sections:

Part I: image segmentation

Part II: machine learning - self-supervised learning; machine learning - semi-supervised learning; and machine learning - weakly supervised learning

Part III: machine learning - advances in machine learning theory; machine learning - attention models; machine learning - domain adaptation; machine learning - federated learning; machine learning - interpretability / explainability; and machine learning - uncertainty

Part IV: image registration; image-guided interventions and surgery; surgical data science; surgical planning and simulation; surgical skill and work flow analysis; and surgical visualization and mixed, augmented and virtual reality

Part V: computer aided diagnosis; integration of imaging with non-imaging biomarkers; and outcome/disease prediction

Part VI: image reconstruction; clinical applications - cardiac; and clinical applications - vascular

Part VII: clinical applications - abdomen; clinical applications - breast; clinical applications - dermatology; clinical applications - fetal imaging; clinical applications - lung; clinical applications - neuroimaging - brain development; clinical applications - neuroimaging - DWI and tractography; clinical applications - neuroimaging - functional brain networks; clinical applications - neuroimaging – others; and clinical applications - oncology

Part VIII: clinical applications - ophthalmology; computational (integrative) pathology; modalities - microscopy; modalities - histopathology; and modalities - ultrasound

*The conference was held virtually.



فهرست مطالب

Preface
Organization
Contents – Part VI
Image Reconstruction
Two-Stage Self-supervised Cycle-Consistency Network for Reconstruction of Thin-Slice MR Images
	1 Introduction
	2 Method
		2.1 Interpolation Network
		2.2 The First-Stage SSL Based on Synthesized LR-HR Image Pairs
		2.3 The Second-Stage SSL with Cycle-Consistency Constraint
	3 Experiments
		3.1 Dataset
		3.2 Experimental Design
		3.3 Implementation Details
		3.4 Experimental Results
	4 Conclusion
	References
Over-and-Under Complete Convolutional RNN for MRI Reconstruction
	1 Introduction
	2 Methodology
	3 Experiments and Results
	4 Discussion and Conclusion
	References
TarGAN: Target-Aware Generative Adversarial Networks for Multi-modality Medical Image Translation
	1 Introduction
	2 Methods
		2.1 Proposed Framework
		2.2 Training Objectives
	3 Experiments and Results
		3.1 Settings
		3.2 Results and Analyses
	4 Conclusion
	References
Synthesizing Multi-tracer PET Images for Alzheimer's Disease Patients Using a 3D Unified Anatomy-Aware Cyclic Adversarial Network
	1 Introduction
	2 Methods
		2.1 Evaluation with Human Data
	3 Results
	4 Conclusion
	References
Generalised Super Resolution for Quantitative MRI Using Self-supervised Mixture of Experts
	1 Introduction
	2 Method
		2.1 Data Description
		2.2 Backbone Network Architecture
		2.3 Self-supervised Mixture of Experts
	3 Experiments
		3.1 Implementation Details
		3.2 Results
	4 Discussion and Conclusion
	References
TransCT: Dual-Path Transformer for Low Dose Computed Tomography
	1 Introduction
	2 Method
		2.1 TransCT
		2.2 Loss Function
		2.3 Implementation
	3 Experiments
		3.1 Ablation Study
	4 Conclusion
	References
IREM: High-Resolution Magnetic Resonance Image Reconstruction via Implicit Neural Representation
	1 Introduction
	2 Method
		2.1 Image Spatial Normalization
		2.2 Model Optimization
		2.3 HR Image Reconstruction
	3 Experiments
		3.1 Data
		3.2 Implementation Details
		3.3 Results
	4 Conclusion
	References
DA-VSR: Domain Adaptable Volumetric Super-Resolution for Medical Images
	1 Introduction
	2 Domain Adaptable Volumetric Super-Resolution
		2.1 Network Structure
		2.2 Self-supervised Adaptation
	3 Experiments
		3.1 Implementation Details
		3.2 Dataset
		3.3 Ablation Study
		3.4 Quantitative Evaluation
	4 Conclusion
	References
Improving Generalizability in Limited-Angle CT Reconstruction with Sinogram Extrapolation
	1 Introduction and Motivation
	2 Problem Formulation
	3 Proposed Method
		3.1 HQS-CG Algorithm
		3.2 Dual-Domain Reconstruction Pipelines
	4 Experimental Results
		4.1 Datasets and Experimental Settings
		4.2 Ablation Study
		4.3 Quantitative and Qualitative Results Comparison
	5 Conclusion
	References
Fast Magnetic Resonance Imaging on Regions of Interest: From Sensing to Reconstruction
	1 Introduction
	2 Methods
		2.1 Problem Statement
		2.2 Adaptive Sampler
		2.3 Deep Reconstructor
		2.4 Training Strategy
	3 Implementations
	4 Experiments
		4.1 Data
		4.2 Results
	5 Conclusions
	References
InDuDoNet: An Interpretable Dual Domain Network for CT Metal Artifact Reduction
	1 Introduction
	2 Method
		2.1 Optimization Algorithm
		2.2 Overview of InDuDoNet
	3 Experimental Results
		3.1 Ablation Study
		3.2 Performance Evaluation
	4 Conclusion
	References
Depth Estimation for Colonoscopy Images with Self-supervised Learning from Videos
	1 Introduction
	2 Methodology
		2.1 Training Baseline Model with Synthetic Data
		2.2 Self-supervision with Colonoscopy Videos
	3 Experiments
		3.1 Dataset and Implementation Details
		3.2 Quantitative Evaluation
		3.3 Qualitative Evaluation on Real Data
	4 Conclusion
	References
Joint Optimization of Hadamard Sensing and Reconstruction in Compressed Sensing Fluorescence Microscopy
	1 Introduction
	2 Background
		2.1 Fluorescence Microscopy and Hadamard Sensing
		2.2 Sensing and Reconstruction Optimization
	3 Proposed Method
		3.1 End-to-End Sensing and Reconstruction Scheme
		3.2 Loss Function
		3.3 Implementation
	4 Experiments
		4.1 Masks
		4.2 Reconstruction Methods
	5 Conclusion
	References
Multi-contrast MRI Super-Resolution via a Multi-stage Integration Network
	1 Introduction
	2 Methodology
		2.1 Overall Architecture
		2.2 Multi-stage Integration Module
	3 Experiments
	4 Conclusion
	References
Generator Versus Segmentor: Pseudo-healthy Synthesis
	1 Introduction
	2 Methods
		2.1 Basic GVS Flowchart
		2.2 Improved Residual Loss
		2.3 Training a Segmentor with Strong Generalization Ability
	3 Experiments
		3.1 Implementation Details
		3.2 Evaluation Metrics
		3.3 Comparisons with Other Methods
		3.4 Ablation Study
		3.5 Results on LiTS Dataset
	4 Conclusions
	References
Real-Time Mapping of Tissue Properties for Magnetic Resonance Fingerprinting
	1 Introduction
	2 Methods
		2.1 Problem Formulation
		2.2 Proposed Framework
		2.3 Sliding-Window Stacking of Spirals
		2.4 Learned Density Compensation
		2.5 Tissue Mapping via Agglomerated Neighboring Features
	3 Experiments and Results
	4 Conclusion
	References
Estimation of High Framerate Digital Subtraction Angiography Sequences at Low Radiation Dose
	1 Introduction and Related Work
	2 Methods
		2.1 Phase Decomposition Using Independent Component Analysis
		2.2 Training and Optimization
		2.3 Network Details
		2.4 Final Composition
	3 Results
	4 Conclusion
	References
RLP-Net: A Recursive Light Propagation Network for 3-D Virtual Refocusing
	1 Introduction
	2 Proposed Method
		2.1 Recursive Light Propagation Network (RLP-Net)
		2.2 Training RLP-Net
	3 Experiments
		3.1 Fluorescence Microscopy Dataset
		3.2 Training Details
		3.3 Evaluation Results
	4 Conclusion
	References
Noise Mapping and Removal in Complex-Valued Multi-Channel MRI via Optimal Shrinkage of Singular Values
	1 Introduction
	2 Methods
		2.1 Redundancy in MR Data
		2.2 Optimal Shrinkage of Singular Value and Noise Estimation
		2.3 Noise Mapping and Removal
	3 Experiments
		3.1 Numerical Validation
		3.2 In-Vivo High-Resolution Diffusion MRI
		3.3 In-Vivo Human Lung MRI
	4 Conclusion
	References
Self Context and Shape Prior for Sensorless Freehand 3D Ultrasound Reconstruction
	1 Introduction
	2 Methodology
		2.1 Online Self-supervised Learning for Context Consistency
		2.2 Online Adversarial Learning for Shape Constraint
		2.3 Differentiable Reconstruction Approximation
		2.4 Loss Function
	3 Experiments
	4 Conclusion
	References
Universal Undersampled MRI Reconstruction
	1 Introduction
	2 Methods
		2.1 The Overall Framework
		2.2 Anatomy-SPecific Instance Normalization (ASPIN)
		2.3 Model Distillation
		2.4 Network Training Pipeline
	3 Experimental Results
		3.1 Datasets and Network Configuration
		3.2 Algorithm Comparison
		3.3 Ablation Study
		3.4 Model Complexity
	4 Conclusion
	References
A Neural Framework for Multi-variable Lesion Quantification Through B-Mode Style Transfer
	1 Introduction
	2 Method
		2.1 BQI-Net Architecture
		2.2 Training Details
	3 Experiments
		3.1 Numerical Simulation
		3.2 Phantom, and Ex-Vivo Measurements
	4 Conclusion
	References
Temporal Feature Fusion with Sampling Pattern Optimization for Multi-echo Gradient Echo Acquisition and Image Reconstruction
	1 Introduction
	2 Method
		2.1 Deep ADMM as Backbone
		2.2 Temporal Feature Fusion Block
		2.3 Sampling Pattern Optimization Block
	3 Experiments
		3.1 Data Acquisition and Preprocessing
		3.2 Implementation Details and Ablation Study
		3.3 Performance Comparison
	4 Conclusion
	References
Dual-Domain Adaptive-Scaling Non-local Network for CT Metal Artifact Reduction
	1 Introduction
	2 Method
		2.1 Problem Formulation
		2.2 The Proposed DAN-Net
	3 Experiments
		3.1 Dataset
		3.2 Implementation Details
		3.3 Comparison with State-of-the-Art Methods
		3.4 Clinical Study
	4 Ablation Study
	5 Conclusion
	References
Towards Ultrafast MRI via Extreme k-Space Undersampling and Superresolution
	1 Introduction
	2 Related Work
	3 Method
		3.1 Data Description
		3.2 Models
	4 Experiments
	5 User Study
	6 Discussion and Conclusion
	References
Adaptive Squeeze-and-Shrink Image Denoising for Improving Deep Detection of Cerebral Microbleeds
	1 Introduction
	2 Adaptive Squeeze-and-Shrink Denoising
		2.1 Overall Framework
		2.2 Implicit Near-Optimal Sparse Representation
		2.3 The Denoising Procedure
	3 The Deep Detection of Cerebral Microbleeds
	4 Gaussian White Noise Removal
	5 Experiments on Real-World Data
		5.1 Data
		5.2 CMB Detection
	6 Discussion and Conclusions
	References
3D Transformer-GAN for High-Quality PET Reconstruction
	1 Introduction
	2 Methodology
		2.1 Architecture
		2.2 Objective Functions
		2.3 Training Details
	3 Experiments and Results
	4 Conclusion
	References
Learnable Multi-scale Fourier Interpolation for Sparse View CT Image Reconstruction
	1 Introduction
	2 Main Body
	3 Experiments
	4 Conclusion
	References
U-DuDoNet: Unpaired Dual-Domain Network for CT Metal Artifact Reduction
	1 Introduction
	2 Additive Property for Metal Artifacts
	3 Methodology
		3.1 Network Architecture
		3.2 Dual-Domain Cyclic Learning
	4 Experiment
		4.1 Experimental Setup
		4.2 Comparison on Simulated and Real Data
		4.3 Ablation Study
	5 Conclusion
	References
Task Transformer Network for Joint MRI Reconstruction and Super-Resolution
	1 Introduction
	2 Method
		2.1 Task Transformer Network
		2.2 Task Transformer Module
	3 Experiments
	4 Conclusion
	References
Conditional GAN with an Attention-Based Generator and a 3D Discriminator for 3D Medical Image Generation
	1 Introduction
	2 Method
	3 Experimental Results
	4 Conclusion
	References
Multimodal MRI Acceleration via Deep Cascading Networks with Peer-Layer-Wise Dense Connections
	1 Introduction
	2 Problem Formulation
	3 Proposed Method
	4 Experiments
	5 Conclusion
	References
Rician Noise Estimation for 3D Magnetic Resonance Images Based on Benford's Law
	1 Introduction
	2 Methodology
	3 Experimental Setting
	4 Results
	5 Conclusions
	References
Deep J-Sense: Accelerated MRI Reconstruction via Unrolled Alternating Optimization
	1 Introduction
	2 System Model and Related Work
		2.1 Deep Learning for MRI Reconstruction
	3 Deep J-Sense: Unrolled Alternating Optimization
	4 Experimental Results
		4.1 Performance on Matching Test-Time Conditions
		4.2 Robustness to Test-Time Varying Acceleration Factors
		4.3 Robustness to Train-Time Varying ACS Size
	5 Discussion and Conclusions
	References
Label-Free Physics-Informed Image Sequence Reconstruction with Disentangled Spatial-Temporal Modeling
	1 Introduction
	2 Methodology
		2.1 Physics-Informed Loss Function
		2.2 Spatial Modeling via GCNN
		2.3 Temporal Modeling via Neural ODEs
	3 Experiments
		3.1 Synthetic Experiments
		3.2 Clinical Data
	4 Conclusion
	References
High-Resolution Hierarchical Adversarial Learning for OCT Speckle Noise Reduction
	1 Introduction
	2 Method
		2.1 Proposed Model
		2.2 Dataset
		2.3 Evaluation Metrics
	3 Experiments and Results
		3.1 Implementation Details
		3.2 Ablation Study
		3.3 Comparison Study
	4 Discussion
	5 Conclusion
	References
Self-supervised Learning for MRI Reconstruction with a Parallel Network Training Framework
	1 Introduction
	2 Methods
		2.1 Mathematical Model of CS-MRI Reconstruction
		2.2 Brief Recap of ISTA-Net
		2.3 Proposed Self-supervised Learning Method
		2.4 Implementation Details
	3 Experiments and Results
	4 Conclusion
	References
Acceleration by Deep-Learnt Sharing of Superfluous Information in Multi-contrast MRI
	1 Introduction
	2 Method
	3 Results
	4 Discussion
	5 Conclusion
	References
Sequential Lung Nodule Synthesis Using Attribute-Guided Generative Adversarial Networks
	1 Introduction
	2 Proposed Method
		2.1 Model Architecture
		2.2 Loss Functions
	3 Experimental Results
		3.1 Dataset and Implementation
		3.2 Analysis of Lung Nodule Synthesis and Computation Costs
		3.3 Visual Turing Test
		3.4 Ablation Study
	4 Conclusion
	References
A Data-Driven Approach for High Frame Rate Synthetic Transmit Aperture Ultrasound Imaging
	1 Introduction
	2 Methods
		2.1 Theory Basis and Network Architecture
		2.2 Training Configurations
		2.3 Simulations and In-Vivo Experiments
		2.4 Metrics
	3 Results
	4 Conclusion
	References
Interpretable Deep Learning for Multimodal Super-Resolution of Medical Images
	1 Introduction
	2 Sparse Modelling for Image Reconstruction
	3 Deep Unfolding
	4 A Multimodal Convolutional Deep Unfolding Design for Medical Image Super-Resolution
	5 Experiments
	6 Conclusion
	References
MRI Super-Resolution Through Generative Degradation Learning
	1 Introduction
	2 Methods
		2.1 Theory
		2.2 GDN-Based SRR
		2.3 Materials
		2.4 Experimental Design
	3 Results
	4 Discussion
	References
Task-Oriented Low-Dose CT Image Denoising
	1 Introduction
	2 Method
		2.1 WGAN for LDCT Denoising
		2.2 Analysis of Task-Oriented Loss
		2.3 Training Strategy
	3 Experiments
		3.1 Datasets
		3.2 Segmentation Networks
		3.3 Implementation Details
		3.4 Enhancement on Task-Related Regions
		3.5 Boosting Downstream Task Performance
	4 Conclusion
	References
Revisiting Contour-Driven and Knowledge-Based Deformable Models: Application to 2D-3D Proximal Femur Reconstruction from X-ray Images
	1 Introduction and Related Work
	2 Method and Material
	3 Results and Discussion
	4 Conclusion
	References
Memory-Efficient Learning for High-Dimensional MRI Reconstruction
	1 Introduction
	2 Methods
		2.1 Memory-Efficient Learning
		2.2 Memory-Efficient Learning for MoDL
		2.3 Training and Evaluation of Memory-Efficient Learning
	3 Results
	4 Conclusions
	References
SA-GAN: Structure-Aware GAN for Organ-Preserving Synthetic CT Generation
	1 Introduction
	2 Method
		2.1 Global Stream in SA-GAN
		2.2 Segmentation Network in the Local Stream
		2.3 Organ Style Transfer with AdaON
	3 Experiments and Results
	4 Conclusion
	References
Clinical Applications - Cardiac
Distortion Energy for Deep Learning-Based Volumetric Finite Element Mesh Generation for Aortic Valves
	1 Introduction
	2 Methods
		2.1 Template Deformation-Based Mesh Generation
		2.2 Distortion Energy (Larap)
		2.3 Weighted Larap (Lwarap)
	3 Experiments and Results
		3.1 Data Acquisition and Preprocessing
		3.2 Implementation Details
		3.3 Spatial Accuracy and Volumetric Mesh Quality
		3.4 FE Stress Analysis During Valve Closure
		3.5 Limitations and Future Works
	4 Conclusion
	References
Ultrasound Video Transformers for Cardiac Ejection Fraction Estimation
	1 Introduction
	2 Method
	3 Experimentation
	4 Conclusion
	References
EchoCP: An Echocardiography Dataset in Contrast Transthoracic Echocardiography for Patent Foramen Ovale Diagnosis
	1 Introduction
	2 The EchoCP Dataset
		2.1 Data Characteristics
		2.2 PFO Diagnosis and Evaluation Protocol
	3 Experiments of Baseline Method
	4 Results and Analysis
	5 Conclusion
	References
Transformer Network for Significant Stenosis Detection in CCTA of Coronary Arteries
	1 Introduction
	2 Method
		2.1 Semantic Feature Extraction for Local Cubic Volumes
		2.2 Transformer Structure for Global Sequence Analysis
	3 Experiment
		3.1 Dataset
		3.2 Experimental Results
	4 Conclusion
	References
Training Automatic View Planner for Cardiac MR Imaging via Self-supervision by Spatial Relationship Between Views
	1 Introduction
	2 Methods
	3 Experiments
	4 Conclusion
	References
Phase-Independent Latent Representation for Cardiac Shape Analysis
	1 Introduction
	2 Methodology
		2.1 Pre-processing Pipeline
		2.2 Graph Representation of the LA
		2.3 Design of Fusion and Classification Loss Function
	3 Synthetic Experiments
		3.1 Noisy Labels
	4 Application to LAA Graphs
	5 Conclusion
	References
Cardiac Transmembrane Potential Imaging with GCN Based Iterative Soft Threshold Network
	1 Introduction
	2 Methodology
		2.1 GISTA-Net Architecture
		2.2 Implementation of Graph Convolution Network
	3 Experiments
		3.1 Ectopic Pacing Experiment
		3.2 Myocardial Infarction Experiment
		3.3 Cardiac Activation Sequence Reconstruction
	4 Discussion
	5 Conclusion
	References
AtrialGeneral: Domain Generalization for Left Atrial Segmentation of Multi-center LGE MRIs
	1 Introduction
	2 Methodology
		2.1 Image Segmentation Models
		2.2 Domain Generalization Models
	3 Materials
		3.1 Data Acquisition and Pre-processing
		3.2 Gold Standard and Evaluation
		3.3 Implementation
	4 Experiment
		4.1 Comparisons of Different Semantic Segmentation Networks
		4.2 Comparisons of Post- and Pre-ablation LGE MRI
		4.3 Comparisons of Different Generalization Models
	5 Conclusion
	References
TVnet: Automated Time-Resolved Tracking of the Tricuspid Valve Plane in MRI Long-Axis Cine Images with a Dual-Stage Deep Learning Pipeline
	1 Introduction
	2 Methods
		2.1 Imaging Data and Manual Annotation
		2.2 Dual-Stage Residual Neural Network
		2.3 Evaluation and Statistical Analysis
	3 Experiments and Results
		3.1 Implementation
		3.2 Annotation Accuracy
	4 Discussion and Conclusion
	References
Clinical Applications - Vascular
Deep Open Snake Tracker for Vessel Tracing
	1 Introduction
	2 Methods
		2.1 Deep Open Curve Snake
		2.2 Curve Proposal from Centerline Segmentation
		2.3 Deep Snake Tracing
		2.4 Global Tree Construction
	3 Experimental Settings and Results
		3.1 Datasets
		3.2 Evaluation Metrics
		3.3 Evaluation on BRAVE
		3.4 Ablation Study
		3.5 Adaptability of DOST on Other Datasets
	4 Discussions and Conclusion
	References
MASC-Units:Training Oriented Filters for Segmenting Curvilinear Structures
	1 Introduction
	2 Related Works
	3 Methods
		3.1 Rotatable MAC Unit and Response Shaping
		3.2 Filter Re-use
		3.3 Initialization Strategy
		3.4 Multi-scale Processing with Pyramids
	4 Experiments
	5 Conclusion
	References
Vessel Width Estimation via Convolutional Regression
	1 Introduction
	2 Method
		2.1 Vessel Width Label Generation Method
		2.2 Vessel Width Estimation Network
	3 Dataset
		3.1 Retinal Vessel Dataset for Width Estimation
		3.2 Coronary Artery Dataset for Width Estimation
	4 Experiment
		4.1 Retinal Vessel Width Estimation
		4.2 Coronary Artery Width Estimation
	5 Conclusion
	References
Renal Cell Carcinoma Classification from Vascular Morphology
	1 Introduction
	2 Related Works
		2.1 Histopathological Images Dataset
		2.2 Histopathological Images Classification
		2.3 Hand-Crafted Features
	3 Dataset
		3.1 Dataset Building
		3.2 VRCC200
	4 Vascular Network Feature
		4.1 Hand-Crafted Features
		4.2 Deep Learning Feature
	5 Experiments
		5.1 Skeleton Features and Lattice Features Analysis
		5.2 Vascular-Based RCC Classification Benchmark
	6 Conclusion
	References
Author Index




نظرات کاربران