ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Medical Image Computing and Computer Assisted Intervention – MICCAI 2018: 21st International Conference, Granada, Spain, September 16-20, 2018, Proceedings, Part II

دانلود کتاب محاسبات تصویر پزشکی و مداخله به کمک رایانه – MICCAI 2018: بیست و یکمین کنفرانس بین المللی، گرانادا، اسپانیا، 16-20 سپتامبر 2018، مجموعه مقالات، قسمت دوم

Medical Image Computing and Computer Assisted Intervention – MICCAI 2018: 21st International Conference, Granada, Spain, September 16-20, 2018, Proceedings, Part II

مشخصات کتاب

Medical Image Computing and Computer Assisted Intervention – MICCAI 2018: 21st International Conference, Granada, Spain, September 16-20, 2018, Proceedings, Part II

ویرایش: [1st ed.] 
نویسندگان: , , , ,   
سری: Lecture Notes in Computer Science 11071 
ISBN (شابک) : 9783030009335 
ناشر: Springer International Publishing 
سال نشر: 2018 
تعداد صفحات: XXXII, 964
[981] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 178 Mb 

قیمت کتاب (تومان) : 51,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 9


در صورت تبدیل فایل کتاب Medical Image Computing and Computer Assisted Intervention – MICCAI 2018: 21st International Conference, Granada, Spain, September 16-20, 2018, Proceedings, Part II به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب محاسبات تصویر پزشکی و مداخله به کمک رایانه – MICCAI 2018: بیست و یکمین کنفرانس بین المللی، گرانادا، اسپانیا، 16-20 سپتامبر 2018، مجموعه مقالات، قسمت دوم نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب محاسبات تصویر پزشکی و مداخله به کمک رایانه – MICCAI 2018: بیست و یکمین کنفرانس بین المللی، گرانادا، اسپانیا، 16-20 سپتامبر 2018، مجموعه مقالات، قسمت دوم



مجموعه چهار جلدی LNCS 11070، 11071، 11072، و 11073 مجموعه مقالات داوری بیست و یکمین کنفرانس بین المللی محاسبات تصویر پزشکی و مداخله به کمک رایانه، MICCAI 2018، در سپتامبر، اسپانیا برگزار می شود. 2018.

373 مقاله کامل اصلاح شده ارائه شده با دقت بررسی و از بین 1068 مورد ارسالی در یک فرآیند بررسی دوسوکور انتخاب شدند. مقالات در بخش های موضوعی زیر سازماندهی شده اند:
بخش اول: کیفیت تصویر و مصنوعات. روش های بازسازی تصویر؛ یادگیری ماشینی در تصویربرداری پزشکی؛ تجزیه و تحلیل آماری برای تصویربرداری پزشکی; روش های ثبت تصویر
بخش دوم: کاربردهای اپتیکال و بافت شناسی: کاربردهای تصویربرداری نوری. کاربردهای بافت شناسی; کاربردهای میکروسکوپی; توموگرافی انسجام نوری و سایر کاربردهای تصویربرداری نوری. کاربردهای قلب، قفسه سینه و شکم: کاربردهای تصویربرداری قلب: کاربردهای تصویربرداری کولورکتال، کلیه و کبد. برنامه های تصویربرداری ریه; برنامه های کاربردی تصویربرداری سینه; سایر برنامه های کاربردی شکم
بخش سوم: تصویربرداری تانسور انتشار و MRI عملکردی: تصویربرداری تانسور انتشار. تصویربرداری با وزن انتشار؛ MRI عملکردی؛ ارتباط انسانی. روشهای تصویربرداری عصبی و تقسیم بندی مغز: تصویربرداری عصبی. روش‌های تقسیم‌بندی مغز.
بخش چهارم: مداخله به کمک رایانه: مداخلات و جراحی با هدایت تصویر. برنامه ریزی جراحی، شبیه سازی و تجزیه و تحلیل جریان کار. تجسم و واقعیت افزوده روش‌های تقسیم‌بندی تصویر: روش‌ها، اقدامات و کاربردهای کلی تقسیم‌بندی تصویر. تقسیم بندی چند اندامی؛ روش های تقسیم بندی شکم; روش های تقسیم بندی قلب قفسه سینه، ریه و ستون فقرات. سایر کاربردهای تقسیم بندی


توضیحاتی درمورد کتاب به خارجی

The four-volume set LNCS 11070, 11071, 11072, and 11073 constitutes the refereed proceedings of the 21st International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2018, held in Granada, Spain, in September 2018.

The 373 revised full papers presented were carefully reviewed and selected from 1068 submissions in a double-blind review process. The papers have been organized in the following topical sections:
Part I: Image Quality and Artefacts; Image Reconstruction Methods; Machine Learning in Medical Imaging; Statistical Analysis for Medical Imaging; Image Registration Methods.
Part II: Optical and Histology Applications: Optical Imaging Applications; Histology Applications; Microscopy Applications; Optical Coherence Tomography and Other Optical Imaging Applications. Cardiac, Chest and Abdominal Applications: Cardiac Imaging Applications: Colorectal, Kidney and Liver Imaging Applications; Lung Imaging Applications; Breast Imaging Applications; Other Abdominal Applications.
Part III: Diffusion Tensor Imaging and Functional MRI: Diffusion Tensor Imaging; Diffusion Weighted Imaging; Functional MRI; Human Connectome. Neuroimaging and Brain Segmentation Methods: Neuroimaging; Brain Segmentation Methods.
Part IV: Computer Assisted Intervention: Image Guided Interventions and Surgery; Surgical Planning, Simulation and Work Flow Analysis; Visualization and Augmented Reality. Image Segmentation Methods: General Image Segmentation Methods, Measures and Applications; Multi-Organ Segmentation; Abdominal Segmentation Methods; Cardiac Segmentation Methods; Chest, Lung and Spine Segmentation; Other Segmentation Applications.



فهرست مطالب

Front Matter ....Pages I-XXXII
Front Matter ....Pages 1-1
Instance Segmentation and Tracking with Cosine Embeddings and Recurrent Hourglass Networks (Christian Payer, Darko Štern, Thomas Neff, Horst Bischof, Martin Urschler)....Pages 3-11
Skin Lesion Classification in Dermoscopy Images Using Synergic Deep Learning (Jianpeng Zhang, Yutong Xie, Qi Wu, Yong Xia)....Pages 12-20
SLSDeep: Skin Lesion Segmentation Based on Dilated Residual and Pyramid Pooling Networks (Md. Mostafa Kamal Sarker, Hatem A. Rashwan, Farhan Akram, Syeda Furruka Banu, Adel Saleh, Vivek Kumar Singh et al.)....Pages 21-29
\(\beta \)-Hemolysis Detection on Cultured Blood Agar Plates by Convolutional Neural Networks (Mattia Savardi, Sergio Benini, Alberto Signoroni)....Pages 30-38
A Pixel-Wise Distance Regression Approach for Joint Retinal Optical Disc and Fovea Detection (Maria Ines Meyer, Adrian Galdran, Ana Maria Mendonça, Aurélio Campilho)....Pages 39-47
Deep Random Walk for Drusen Segmentation from Fundus Images (Fang Yan, Jia Cui, Yu Wang, Hong Liu, Hui Liu, Benzheng Wei et al.)....Pages 48-55
Retinal Artery and Vein Classification via Dominant Sets Clustering-Based Vascular Topology Estimation (Yitian Zhao, Jianyang Xie, Pan Su, Yalin Zheng, Yonghuai Liu, Jun Cheng et al.)....Pages 56-64
Towards a Glaucoma Risk Index Based on Simulated Hemodynamics from Fundus Images (José Ignacio Orlando, João Barbosa Breda, Karel van Keer, Matthew B. Blaschko, Pablo J. Blanco, Carlos A. Bulant)....Pages 65-73
A Framework for Identifying Diabetic Retinopathy Based on Anti-noise Detection and Attention-Based Fusion (Zhiwen Lin, Ruoqian Guo, Yanjie Wang, Bian Wu, Tingting Chen, Wenzhe Wang et al.)....Pages 74-82
Deep Supervision with Additional Labels for Retinal Vessel Segmentation Task (Yishuo Zhang, Albert C. S. Chung)....Pages 83-91
A Multi-task Network to Detect Junctions in Retinal Vasculature (Fatmatülzehra Uslu, Anil Anthony Bharath)....Pages 92-100
A Multitask Learning Architecture for Simultaneous Segmentation of Bright and Red Lesions in Fundus Images (Clément Playout, Renaud Duval, Farida Cheriet)....Pages 101-108
Uniqueness-Driven Saliency Analysis for Automated Lesion Detection with Applications to Retinal Diseases (Yitian Zhao, Yalin Zheng, Yifan Zhao, Yonghuai Liu, Zhili Chen, Peng Liu et al.)....Pages 109-118
Multiscale Network Followed Network Model for Retinal Vessel Segmentation (Yicheng Wu, Yong Xia, Yang Song, Yanning Zhang, Weidong Cai)....Pages 119-126
Front Matter ....Pages 127-127
Predicting Cancer with a Recurrent Visual Attention Model for Histopathology Images (Aïcha BenTaieb, Ghassan Hamarneh)....Pages 129-137
A Deep Model with Shape-Preserving Loss for Gland Instance Segmentation (Zengqiang Yan, Xin Yang, Kwang-Ting Tim Cheng)....Pages 138-146
Model-Based Refinement of Nonlinear Registrations in 3D Histology Reconstruction (Juan Eugenio Iglesias, Marco Lorenzi, Sebastiano Ferraris, Loïc Peter, Marc Modat, Allison Stevens et al.)....Pages 147-155
Invasive Cancer Detection Utilizing Compressed Convolutional Neural Network and Transfer Learning (Bin Kong, Shanhui Sun, Xin Wang, Qi Song, Shaoting Zhang)....Pages 156-164
Which Way Round? A Study on the Performance of Stain-Translation for Segmenting Arbitrarily Dyed Histological Images (Michael Gadermayr, Vitus Appel, Barbara M. Klinkhammer, Peter Boor, Dorit Merhof)....Pages 165-173
Graph CNN for Survival Analysis on Whole Slide Pathological Images (Ruoyu Li, Jiawen Yao, Xinliang Zhu, Yeqing Li, Junzhou Huang)....Pages 174-182
Fully Automated Blind Color Deconvolution of Histopathological Images (Natalia Hidalgo-Gavira, Javier Mateos, Miguel Vega, Rafael Molina, Aggelos K. Katsaggelos)....Pages 183-191
Improving Whole Slide Segmentation Through Visual Context - A Systematic Study (Korsuk Sirinukunwattana, Nasullah Khalid Alham, Clare Verrill, Jens Rittscher)....Pages 192-200
Adversarial Domain Adaptation for Classification of Prostate Histopathology Whole-Slide Images (Jian Ren, Ilker Hacihaliloglu, Eric A. Singer, David J. Foran, Xin Qi)....Pages 201-209
Rotation Equivariant CNNs for Digital Pathology (Bastiaan S. Veeling, Jasper Linmans, Jim Winkens, Taco Cohen, Max Welling)....Pages 210-218
A Probabilistic Model Combining Deep Learning and Multi-atlas Segmentation for Semi-automated Labelling of Histology (Alessia Atzeni, Marnix Jansen, Sébastien Ourselin, Juan Eugenio Iglesias)....Pages 219-227
BESNet: Boundary-Enhanced Segmentation of Cells in Histopathological Images (Hirohisa Oda, Holger R. Roth, Kosuke Chiba, Jure Sokolić, Takayuki Kitasaka, Masahiro Oda et al.)....Pages 228-236
Panoptic Segmentation with an End-to-End Cell R-CNN for Pathology Image Analysis (Donghao Zhang, Yang Song, Dongnan Liu, Haozhe Jia, Siqi Liu, Yong Xia et al.)....Pages 237-244
Integration of Spatial Distribution in Imaging-Genetics (Vaishnavi Subramanian, Weizhao Tang, Benjamin Chidester, Jian Ma, Minh N. Do)....Pages 245-253
Multiple Instance Learning for Heterogeneous Images: Training a CNN for Histopathology (Heather D. Couture, J. S. Marron, Charles M. Perou, Melissa A. Troester, Marc Niethammer)....Pages 254-262
Front Matter ....Pages 263-263
Cell Detection with Star-Convex Polygons (Uwe Schmidt, Martin Weigert, Coleman Broaddus, Gene Myers)....Pages 265-273
Deep Convolutional Gaussian Mixture Model for Stain-Color Normalization of Histopathological Images (Farhad Ghazvinian Zanjani, Svitlana Zinger, Peter H. N. de With)....Pages 274-282
Learning to Segment 3D Linear Structures Using Only 2D Annotations (Mateusz Koziński, Agata Mosinska, Mathieu Salzmann, Pascal Fua)....Pages 283-291
A Multiresolution Convolutional Neural Network with Partial Label Training for Annotating Reflectance Confocal Microscopy Images of Skin (Alican Bozkurt, Kivanc Kose, Christi Alessi-Fox, Melissa Gill, Jennifer Dy, Dana Brooks et al.)....Pages 292-299
Weakly-Supervised Learning-Based Feature Localization for Confocal Laser Endomicroscopy Glioma Images (Mohammadhassan Izadyyazdanabadi, Evgenii Belykh, Claudio Cavallo, Xiaochun Zhao, Sirin Gandhi, Leandro Borba Moreira et al.)....Pages 300-308
Synaptic Partner Prediction from Point Annotations in Insect Brains (Julia Buhmann, Renate Krause, Rodrigo Ceballos Lentini, Nils Eckstein, Matthew Cook, Srinivas Turaga et al.)....Pages 309-316
Synaptic Cleft Segmentation in Non-isotropic Volume Electron Microscopy of the Complete Drosophila Brain (Larissa Heinrich, Jan Funke, Constantin Pape, Juan Nunez-Iglesias, Stephan Saalfeld)....Pages 317-325
Weakly Supervised Representation Learning for Endomicroscopy Image Analysis (Yun Gu, Khushi Vyas, Jie Yang, Guang-Zhong Yang)....Pages 326-334
DeepHCS: Bright-Field to Fluorescence Microscopy Image Conversion Using Deep Learning for Label-Free High-Content Screening (Gyuhyun Lee, Jeong-Woo Oh, Mi-Sun Kang, Nam-Gu Her, Myoung-Hee Kim, Won-Ki Jeong)....Pages 335-343
Front Matter ....Pages 345-345
A Cascaded Refinement GAN for Phase Contrast Microscopy Image Super Resolution (Liang Han, Zhaozheng Yin)....Pages 347-355
Multi-context Deep Network for Angle-Closure Glaucoma Screening in Anterior Segment OCT (Huazhu Fu, Yanwu Xu, Stephen Lin, Damon Wing Kee Wong, Baskaran Mani, Meenakshi Mahesh et al.)....Pages 356-363
Analysis of Morphological Changes of Lamina Cribrosa Under Acute Intraocular Pressure Change (Mathilde Ravier, Sungmin Hong, Charly Girot, Hiroshi Ishikawa, Jenna Tauber, Gadi Wollstein et al.)....Pages 364-371
Beyond Retinal Layers: A Large Blob Detection for Subretinal Fluid Segmentation in SD-OCT Images (Zexuan Ji, Qiang Chen, Menglin Wu, Sijie Niu, Wen Fan, Songtao Yuan et al.)....Pages 372-380
Automated Choroidal Neovascularization Detection for Time Series SD-OCT Images (Yuchun Li, Sijie Niu, Zexuan Ji, Wen Fan, Songtao Yuan, Qiang Chen)....Pages 381-388
CapsDeMM: Capsule Network for Detection of Munro’s Microabscess in Skin Biopsy Images (Anabik Pal, Akshay Chaturvedi, Utpal Garain, Aditi Chandra, Raghunath Chatterjee, Swapan Senapati)....Pages 389-397
Webly Supervised Learning for Skin Lesion Classification (Fernando Navarro, Sailesh Conjeti, Federico Tombari, Nassir Navab)....Pages 398-406
Feature Driven Local Cell Graph (FeDeG): Predicting Overall Survival in Early Stage Lung Cancer (Cheng Lu, Xiangxue Wang, Prateek Prasanna, German Corredor, Geoffrey Sedor, Kaustav Bera et al.)....Pages 407-416
Front Matter ....Pages 417-417
Towards Accurate and Complete Registration of Coronary Arteries in CTA Images (Shaowen Zeng, Jianjiang Feng, Yunqiang An, Bin Lu, Jiwen Lu, Jie Zhou)....Pages 419-427
Quantifying Tensor Field Similarity with Global Distributions and Optimal Transport (Arnold D. Gomez, Maureen L. Stone, Philip V. Bayly, Jerry L. Prince)....Pages 428-436
Cardiac Motion Scoring with Segment- and Subject-Level Non-local Modeling (Wufeng Xue, Gary Brahm, Stephanie Leung, Ogla Shmuilovich, Shuo Li)....Pages 437-445
Computational Heart Modeling for Evaluating Efficacy of MRI Techniques in Predicting Appropriate ICD Therapy (Eranga Ukwatta, Plamen Nikolov, Natalia Trayanova, Graham Wright)....Pages 446-454
Multiview Two-Task Recursive Attention Model for Left Atrium and Atrial Scars Segmentation (Jun Chen, Guang Yang, Zhifan Gao, Hao Ni, Elsa Angelini, Raad Mohiaddin et al.)....Pages 455-463
Learning Interpretable Anatomical Features Through Deep Generative Models: Application to Cardiac Remodeling (Carlo Biffi, Ozan Oktay, Giacomo Tarroni, Wenjia Bai, Antonio De Marvao, Georgia Doumou et al.)....Pages 464-471
Joint Learning of Motion Estimation and Segmentation for Cardiac MR Image Sequences (Chen Qin, Wenjia Bai, Jo Schlemper, Steffen E. Petersen, Stefan K. Piechnik, Stefan Neubauer et al.)....Pages 472-480
Multi-Input and Dataset-Invariant Adversarial Learning (MDAL) for Left and Right-Ventricular Coverage Estimation in Cardiac MRI (Le Zhang, Marco Pereañez, Stefan K. Piechnik, Stefan Neubauer, Steffen E. Petersen, Alejandro F. Frangi)....Pages 481-489
Factorised Spatial Representation Learning: Application in Semi-supervised Myocardial Segmentation (Agisilaos Chartsias, Thomas Joyce, Giorgos Papanastasiou, Scott Semple, Michelle Williams, David Newby et al.)....Pages 490-498
High-Dimensional Bayesian Optimization of Personalized Cardiac Model Parameters via an Embedded Generative Model (Jwala Dhamala, Sandesh Ghimire, John L. Sapp, B. Milan Horáček, Linwei Wang)....Pages 499-507
Generative Modeling and Inverse Imaging of Cardiac Transmembrane Potential (Sandesh Ghimire, Jwala Dhamala, Prashnna Kumar Gyawali, John L. Sapp, Milan Horacek, Linwei Wang)....Pages 508-516
Pulmonary Vessel Tree Matching for Quantifying Changes in Vascular Morphology (Zhiwei Zhai, Marius Staring, Hideki Ota, Berend C. Stoel)....Pages 517-524
MuTGAN: Simultaneous Segmentation and Quantification of Myocardial Infarction Without Contrast Agents via Joint Adversarial Learning (Chenchu Xu, Lei Xu, Gary Brahm, Heye Zhang, Shuo Li)....Pages 525-534
More Knowledge Is Better: Cross-Modality Volume Completion and 3D+2D Segmentation for Intracardiac Echocardiography Contouring (Haofu Liao, Yucheng Tang, Gareth Funka-Lea, Jiebo Luo, Shaohua Kevin Zhou)....Pages 535-543
Unsupervised Domain Adaptation for Automatic Estimation of Cardiothoracic Ratio (Nanqing Dong, Michael Kampffmeyer, Xiaodan Liang, Zeya Wang, Wei Dai, Eric Xing)....Pages 544-552
TextRay: Mining Clinical Reports to Gain a Broad Understanding of Chest X-Rays (Jonathan Laserson, Christine Dan Lantsman, Michal Cohen-Sfady, Itamar Tamir, Eli Goz, Chen Brestel et al.)....Pages 553-561
Localization and Labeling of Posterior Ribs in Chest Radiographs Using a CRF-regularized FCN with Local Refinement (Alexander Oliver Mader, Jens von Berg, Alexander Fabritz, Cristian Lorenz, Carsten Meyer)....Pages 562-570
Evaluation of Collimation Prediction Based on Depth Images and Automated Landmark Detection for Routine Clinical Chest X-Ray Exams (Julien Sénégas, Axel Saalbach, Martin Bergtholdt, Sascha Jockel, Detlef Mentrup, Roman Fischbach)....Pages 571-579
Efficient Active Learning for Image Classification and Segmentation Using a Sample Selection and Conditional Generative Adversarial Network (Dwarikanath Mahapatra, Behzad Bozorgtabar, Jean-Philippe Thiran, Mauricio Reyes)....Pages 580-588
Iterative Attention Mining for Weakly Supervised Thoracic Disease Pattern Localization in Chest X-Rays (Jinzheng Cai, Le Lu, Adam P. Harrison, Xiaoshuang Shi, Pingjun Chen, Lin Yang)....Pages 589-598
Task Driven Generative Modeling for Unsupervised Domain Adaptation: Application to X-ray Image Segmentation (Yue Zhang, Shun Miao, Tommaso Mansi, Rui Liao)....Pages 599-607
Front Matter ....Pages 609-609
Towards Automated Colonoscopy Diagnosis: Binary Polyp Size Estimation via Unsupervised Depth Learning (Hayato Itoh, Holger R. Roth, Le Lu, Masahiro Oda, Masashi Misawa, Yuichi Mori et al.)....Pages 611-619
RIIS-DenseNet: Rotation-Invariant and Image Similarity Constrained Densely Connected Convolutional Network for Polyp Detection (Yixuan Yuan, Wenjian Qin, Bulat Ibragimov, Bin Han, Lei Xing)....Pages 620-628
Interaction Techniques for Immersive CT Colonography: A Professional Assessment (Daniel Simões Lopes, Daniel Medeiros, Soraia Figueiredo Paulo, Pedro Brasil Borges, Vitor Nunes, Vasco Mascarenhas et al.)....Pages 629-637
Quasi-automatic Colon Segmentation on T2-MRI Images with Low User Effort (B. Orellana, E. Monclús, P. Brunet, I. Navazo, Á. Bendezú, F. Azpiroz)....Pages 638-647
Ordinal Multi-modal Feature Selection for Survival Analysis of Early-Stage Renal Cancer (Wei Shao, Jun Cheng, Liang Sun, Zhi Han, Qianjin Feng, Daoqiang Zhang et al.)....Pages 648-656
Noninvasive Determination of Gene Mutations in Clear Cell Renal Cell Carcinoma Using Multiple Instance Decisions Aggregated CNN (Mohammad Arafat Hussain, Ghassan Hamarneh, Rafeef Garbi)....Pages 657-665
Combining Convolutional and Recurrent Neural Networks for Classification of Focal Liver Lesions in Multi-phase CT Images (Dong Liang, Lanfen Lin, Hongjie Hu, Qiaowei Zhang, Qingqing Chen, Yutaro lwamoto et al.)....Pages 666-675
Construction of a Spatiotemporal Statistical Shape Model of Pediatric Liver from Cross-Sectional Data (Atsushi Saito, Koyo Nakayama, Antonio R. Porras, Awais Mansoor, Elijah Biggs, Marius George Linguraru et al.)....Pages 676-683
Deep 3D Dose Analysis for Prediction of Outcomes After Liver Stereotactic Body Radiation Therapy (Bulat Ibragimov, Diego A. S. Toesca, Yixuan Yuan, Albert C. Koong, Daniel T. Chang, Lei Xing)....Pages 684-692
Liver Lesion Detection from Weakly-Labeled Multi-phase CT Volumes with a Grouped Single Shot MultiBox Detector (Sang-gil Lee, Jae Seok Bae, Hyunjae Kim, Jung Hoon Kim, Sungroh Yoon)....Pages 693-701
A Diagnostic Report Generator from CT Volumes on Liver Tumor with Semi-supervised Attention Mechanism (Jiang Tian, Cong Li, Zhongchao Shi, Feiyu Xu)....Pages 702-710
Less is More: Simultaneous View Classification and Landmark Detection for Abdominal Ultrasound Images (Zhoubing Xu, Yuankai Huo, JinHyeong Park, Bennett Landman, Andy Milkowski, Sasa Grbic et al.)....Pages 711-719
Front Matter ....Pages 721-721
Deep Active Self-paced Learning for Accurate Pulmonary Nodule Segmentation (Wenzhe Wang, Yifei Lu, Bian Wu, Tingting Chen, Danny Z. Chen, Jian Wu)....Pages 723-731
CT-Realistic Lung Nodule Simulation from 3D Conditional Generative Adversarial Networks for Robust Lung Segmentation (Dakai Jin, Ziyue Xu, Youbao Tang, Adam P. Harrison, Daniel J. Mollura)....Pages 732-740
Fast CapsNet for Lung Cancer Screening (Aryan Mobiny, Hien Van Nguyen)....Pages 741-749
Mean Field Network Based Graph Refinement with Application to Airway Tree Extraction (Raghavendra Selvan, Max Welling, Jesper H. Pedersen, Jens Petersen, Marleen de Bruijne)....Pages 750-758
Automated Pulmonary Nodule Detection: High Sensitivity with Few Candidates (Bin Wang, Guojun Qi, Sheng Tang, Liheng Zhang, Lixi Deng, Yongdong Zhang)....Pages 759-767
Deep Learning from Label Proportions for Emphysema Quantification (Gerda Bortsova, Florian Dubost, Silas Ørting, Ioannis Katramados, Laurens Hogeweg, Laura Thomsen et al.)....Pages 768-776
Tumor-Aware, Adversarial Domain Adaptation from CT to MRI for Lung Cancer Segmentation (Jue Jiang, Yu-Chi Hu, Neelam Tyagi, Pengpeng Zhang, Andreas Rimner, Gig S. Mageras et al.)....Pages 777-785
From Local to Global: A Holistic Lung Graph Model (Yashin Dicente Cid, Oscar Jiménez-del-Toro, Alexandra Platon, Henning Müller, Pierre-Alexandre Poletti)....Pages 786-793
S4ND: Single-Shot Single-Scale Lung Nodule Detection (Naji Khosravan, Ulas Bagci)....Pages 794-802
Vascular Network Organization via Hough Transform (VaNgOGH): A Novel Radiomic Biomarker for Diagnosis and Treatment Response (Nathaniel Braman, Prateek Prasanna, Mehdi Alilou, Niha Beig, Anant Madabhushi)....Pages 803-811
DeepEM: Deep 3D ConvNets with EM for Weakly Supervised Pulmonary Nodule Detection (Wentao Zhu, Yeeleng S. Vang, Yufang Huang, Xiaohui Xie)....Pages 812-820
Statistical Framework for the Definition of Emphysema in CT Scans: Beyond Density Mask (Gonzalo Vegas-Sánchez-Ferrero, Raúl San José Estépar)....Pages 821-829
Front Matter ....Pages 831-831
Conditional Generative Adversarial and Convolutional Networks for X-ray Breast Mass Segmentation and Shape Classification (Vivek Kumar Singh, Santiago Romani, Hatem A. Rashwan, Farhan Akram, Nidhi Pandey, Md. Mostafa Kamal Sarker et al.)....Pages 833-840
A Robust and Effective Approach Towards Accurate Metastasis Detection and pN-stage Classification in Breast Cancer (Byungjae Lee, Kyunghyun Paeng)....Pages 841-850
3D Anisotropic Hybrid Network: Transferring Convolutional Features from 2D Images to 3D Anisotropic Volumes (Siqi Liu, Daguang Xu, S. Kevin Zhou, Olivier Pauly, Sasa Grbic, Thomas Mertelmeier et al.)....Pages 851-858
Deep Generative Breast Cancer Screening and Diagnosis (Shayan Shams, Richard Platania, Jian Zhang, Joohyun Kim, Kisung Lee, Seung-Jong Park)....Pages 859-867
Integrate Domain Knowledge in Training CNN for Ultrasonography Breast Cancer Diagnosis (Jiali Liu, Wanyu Li, Ningbo Zhao, Kunlin Cao, Youbing Yin, Qi Song et al.)....Pages 868-875
Small Lesion Classification in Dynamic Contrast Enhancement MRI for Breast Cancer Early Detection (Hao Zheng, Yun Gu, Yulei Qin, Xiaolin Huang, Jie Yang, Guang-Zhong Yang)....Pages 876-884
Thermographic Computational Analyses of a 3D Model of a Scanned Breast (Alisson Augusto Azevedo Figueiredo, Gabriela Lima Menegaz, Henrique Coelho Fernandes, Gilmar Guimaraes)....Pages 885-892
Y-Net: Joint Segmentation and Classification for Diagnosis of Breast Biopsy Images (Sachin Mehta, Ezgi Mercan, Jamen Bartlett, Donald Weaver, Joann G. Elmore, Linda Shapiro)....Pages 893-901
Front Matter ....Pages 903-903
AutoDVT: Joint Real-Time Classification for Vein Compressibility Analysis in Deep Vein Thrombosis Ultrasound Diagnostics (Ryutaro Tanno, Antonios Makropoulos, Salim Arslan, Ozan Oktay, Sven Mischkewitz, Fouad Al-Noor et al.)....Pages 905-912
MRI Measurement of Placental Perfusion and Fetal Blood Oxygen Saturation in Normal Pregnancy and Placental Insufficiency (Rosalind Aughwane, Magdalena Sokolska, Alan Bainbridge, David Atkinson, Giles Kendall, Jan Deprest et al.)....Pages 913-920
Automatic Lacunae Localization in Placental Ultrasound Images via Layer Aggregation (Huan Qi, Sally Collins, J. Alison Noble)....Pages 921-929
A Decomposable Model for the Detection of Prostate Cancer in Multi-parametric MRI (Nathan Lay, Yohannes Tsehay, Yohan Sumathipala, Ruida Cheng, Sonia Gaur, Clayton Smith et al.)....Pages 930-939
Direct Automated Quantitative Measurement of Spine via Cascade Amplifier Regression Network (Shumao Pang, Stephanie Leung, Ilanit Ben Nachum, Qianjin Feng, Shuo Li)....Pages 940-948
Estimating Achilles Tendon Healing Progress with Convolutional Neural Networks (Norbert Kapinski, Jakub Zielinski, Bartosz A. Borucki, Tomasz Trzcinski, Beata Ciszkowska-Lyson, Krzysztof S. Nowinski)....Pages 949-957
Correction to: Towards a Glaucoma Risk Index Based on Simulated Hemodynamics from Fundus Images (José Ignacio Orlando, João Barbosa Breda, Karel van Keer, Matthew B. Blaschko, Pablo J. Blanco, Carlos A. Bulant)....Pages E1-E1
Back Matter ....Pages 959-964




نظرات کاربران