دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: D. Banerjoa, Manoj Kumar Bharty سری: ISBN (شابک) : 9781839161865 ناشر: The Royal Society of Chemistry سال نشر: 2023 تعداد صفحات: 537 [538] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 7 Mb
در صورت تبدیل فایل کتاب Mechanisms of Reactions of Metal Complexes in Solution به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مکانیسم های واکنش مجتمع های فلزی در محلول نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
ایده آل برای تازه واردان و محققین تاسیس شده در زمینه مکانیسم های واکنش مجتمع های فلزی در محلول، درمان کامل منطقه ای است که موضوعات پیشرفته مرتبط با کاربردهای زیست پزشکی، متالورژی استخراج، شیمی مواد غذایی و انبوهی از فرآیندهای صنعتی و حوزه های تحقیقاتی دیگر را پوشش می دهد.
Ideal for newcomers and established researchers in the field Reaction Mechanisms of Metal Complexes in Solution is a complete treatment of the area covering advanced topics with relevance to biomedical applications, extraction metallurgy, food chemistry and a wealth of other industrial processes and research areas.
Cover Half Title Mechanisms of Reactions of Metal Complexes in Solution Copyright Preface Contents 1. Reactions of Metal Complexes 1.1 Introduction 1.2 Molecularity and Order of a Reaction 1.3 General Mechanism of Ligand Replacement Reactions 1.4 Experimental Evidence for Mechanisms 1.5 Methods for the Characterization of Reactive Intermediates 1.6 Order of Reaction and Reaction Mechanisms 1.7 Lability of Complexes 1.7.1 Ligand Field Theory46 References 2. Techniques for Following Reactions and Factors that Affect Rates 2.1 Techniques for Evaluating Rates of Reactions 2.1.1 Direct Chemical Analysis 2.1.2 Spectrophotometric Methods 2.1.3 Electrometric Methods 2.1.4 Polarimetric Methods 2.1.5 Use of Isotropic Tracers 2.2 Special Techniques for Studying Fast Reactions 2.2.1 Flow Methods43 2.2.2 Electrochemical Methods 2.2.3 Relaxation Methods52 2.2.4 Flash Photolysis55 2.2.5 Nuclear Magnetic Resonance (NMR) and Electron Paramagnetic Resonance (EPR) Methods56 2.2.6 Studies of Exchange Rates by NMR Spectroscopy57 2.2.7 Electron Paramagnetic Resonance (EPR) Spectroscopy 2.2.8 Application of Ultrasonic Absorption and Pulse Radiolysis 2.3 Rate Constants in Some Complex Systems69 2.4 Factors that Affect Rates of Reactions 2.4.1 Effect of Temperature 2.4.2 Effect of External Pressure86 2.4.3 Effect of Ionic Strength102 2.4.4 Influence of Solvent103 2.5 Nucleophilicity and Rate 2.6 Relative Nucleophilicities 2.7 Hammett Relationship115 2.8 Taft Relationship 2.9 Linear Free Energy Relationship (LFER)120 2.10 Isotope Effects References 3. Ligand Replacement Reactions of Metal Complexes of Coordination Number Four and Higher 3.1 Square-planar Complexes1 3.1.1 Complexes of Platinum(ii) 3.1.2 trans Effect Theories10,12 3.1.3 π-Bonding Theory of the trans Effect 3.1.4 Mechanism of Reaction 3.1.5 Energy Profile for Reactions of Square-planar Complexes 3.2 trans Effect in Platinum(iv) Complexes 3.3 Other Square-planar Metal Complexes 3.3.1 Palladium(ii) Complexes 3.3.2 Gold(iii) Complexes 3.4 Further Comments on trans-and cis Effects162 3.4.1 trans Effect in Terms of Discrimination 3.4.2 cis-Labilizing Effect 3.4.3 cis Effect in Terms of Discrimination 3.5 Square-planar Complexes of Nickel(ii) and Copper(ii) 3.6 Reactions of Tetrahedral Complexes 3.7 Complexes of Coordination Number Five 3.8 Complexes of Higher Coordination Number References 4. Ligand Replacement Reactions of Octahedral Complexes 4.1 Aquation/Solvolysis, Anation/Formation and Ligand Exchange Reactions 4.1.1 Effect of Leaving Ligand 4.1.2 Effect of Charge on Reaction Rate 4.1.3 Steric and Structural Effects of Spectator Ligands 4.1.4 Electronic Effects of Spectator (Non-leaving) Ligands 4.1.5 Stereochemical Change Accompanying a Ligand Replacement Process 4.1.6 Other Evidence 4.1.7 Activation Parameters and Reaction Mechanism80 4.1.8 Solvent Effect 4.1.9 Comparison of the Rate of Replacement of a Metal-bound Aqua Ligand in a Metal Complex With the Rate of Exchange of the Bou... 4.1.10 Stoichiometric Mechanisms 4.2 Base Hydrolysis137 4.3 Ligand Replacement Reactions of [M(CO)6] 4.4 Reactions of s- and p-Block Metals References 5. Catalysed Reactions and Formation Reactions 5.1 Electrophilic and Nucleophilic Catalysis 5.1.1 Acid Catalysis 5.1.2 Electrophilic Catalysis by Metal Ions 5.1.3 Nucleophilic Catalysis 5.1.4 Electron Transfer Mechanism of Reactions of Metal Complexes 5.2 Formation Reactions References 6. Isomerization, Optical Inversion and Racemization Reactions 6.1 Linkage Isomerization 6.2 Geometrical Isomerization 6.2.1 Square-planar Complexes 6.2.2 Octahedral Complexes 6.3 Other Types of Structural Isomerization 6.4 Optical Inversion 6.5 Optical Isomerization (Racemization) 6.5.1 Intermolecular Mechanism 6.5.2 Intramolecular Mechanism 6.5.3 Isomerization and Racemization of Tris Chelates of Unsymmetrical Chelating Ligands28 6.6 Structural Changes in Complexes of Terdentate Ligands of the Type M(L′)(L″) 6.7 Structural Changes in Four-coordinate Complexes 6.8 Optical Isomerism in Tetrahedral Complexes 6.9 Configurational Changes in Some Planar Complexes References 7. Electron Transfer Reactions 7.1 Introduction 7.2 Outer-sphere Mechanism 7.3 The Marcus Equation: Marcus Cross-relation and Its Applications7,8 7.4 Inner-sphere Mechanism 7.4.1 Atom (or Group) Transfer Processes 7.5 Comproportionation 7.6 Mixed Outer- and Inner-sphere Reactions 7.7 Estimation of Redox Rate Constants for Inner-sphere Reactions 7.8 Electron Transfer Reactions in Heterogeneous Systems 7.9 Solvated Electrons82 7.10 Oxidative Addition Reactions95 7.10.1 Mechanisms of Oxidative Addition95d 7.10.1.1 Concerted Pathway 7.10.1.2 Bimolecular Associative (SN2) Pathway 7.10.1.3 Ionic Mechanism 7.10.1.4 Radical Mechanism 7.10.2 Five-coordinate Eighteen-electron Substrates 7.10.3 Four-coordinate Sixteen-electron Substrates 7.10.4 Four-coordinate Eighteen-electron Substrates 7.11 Reductive Elimination95d References 8. Activation of Molecules by Coordination and Reactivity of Coordinated Ligands 8.1 Introduction 8.2 Activation of Some Diatomic Molecules 8.2.1 Activation of Dihydrogen by Coordination 8.2.2 Activation of Dioxygen by Coordination 8.2.3 Activation of Dinitrogen by Coordination35 8.3 Reactivity of Coordinated Ligands 8.3.1 Reaction of Metal-bound CO Ligand 8.3.2 Reactions of Coordinated CO2 and SO2 8.3.3 Reactions of Coordinated NO in Nitrosyl Complexes 8.3.3.1 Nucleophilic Addition 8.3.3.2 Electrophilic Addition 8.3.3.3 Oxygenation/Oxidation 8.3.3.4 Reduction 8.3.3.5 Reaction with Alkenes 8.3.5 Catalysed Oxidation of Coordinated Ligands 8.3.6 Amino Acid Ester Hydrolysis90 8.3.7 Decarboxylation of β-Keto Acids 8.3.8 Wacker Process115 8.4 Insertion Reactions117 8.4.1 Insertion of CO 8.4.2 Insertion of Sulfur Dioxide 8.4.3 Insertion of Carbon Dioxide 8.4.4 Insertion of Carbon Disulfide 8.4.5 Insertion of Olefins (Alkenes) 8.4.6 Olefin (Alkene) Polymerization144 8.4.7 Acetylene (Alkyne) Polymerization 8.4.8 Asymmetric Synthesis Catalysed by Coordination Compounds167 References 9. Photochemical Reactions of Metal Complexes 9.1 Introduction 9.2 Experimental Results References Subject Index