دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: مکانیک ویرایش: نویسندگان: Igor Andrianov, Simon Gluzman, Vladimir Mityushev سری: ISBN (شابک) : 0323905439, 9780323905435 ناشر: Academic Press سال نشر: 2022 تعداد صفحات: 528 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 13 مگابایت
در صورت تبدیل فایل کتاب Mechanics and Physics of Structured Media: Asymptotic and Integral Equations Methods of Leonid Filshtinsky. به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مکانیک و فیزیک رسانه های ساخت یافته: روش های معادلات مجانبی و انتگرال لئونید فیلشتینسکی. نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Front Cover Mechanics and Physics of Structured Media Copyright Contents List of contributors Acknowledgements 1 L.A. Filshtinsky\'s contribution to Applied Mathematics and Mechanics of Solids 1.1 Introduction 1.1.1 Personality and career 1.1.2 Lessons of collaboration (V. Mityushev) 1.1.3 Filshtinsky\'s contribution to the theory of integral equations 1.2 Double periodic array of circular inclusions. Founders 1.2.1 Preliminaries 1.2.2 Contribution by Eisenstein 1.2.3 Contribution by Rayleigh 1.2.4 Contribution by Natanzon 1.2.5 Contribution by Filshtinsky 1.3 Synthesis. Retrospective view from the year 2021 1.4 Filshtinsky\'s contribution to the theory of magneto-electro-elasticity 1.5 Filshtinsky\'s contribution to the homogenization theory 1.6 Filshtinsky\'s contribution to the theory of shells 1.7 Decent and creative endeavor Acknowledgment References 2 Cracks in two-dimensional magneto-electro-elastic medium 2.1 Introduction 2.2 Boundary-value problems for an unbounded domain 2.3 Integral equations for an unbounded domain 2.4 Asymptotic solution at the ends of cracks 2.5 Stress intensity factors A crack in MME plane 2.6 Numerical example 2.7 Conclusion References 3 Two-dimensional equations of magneto-electro-elasticity 3.1 Introduction 3.2 2D equations of magneto-electro-elasticity 3.2.1 Linear equations of magneto-electro-elasticity and potentials 3.2.2 Complex representation of field values 3.3 Boundary value problem 3.4 Dielectrics 3.5 Circular hole Numerical example 3.6 MEE equations and homogenization 3.7 Homogenization of 2D composites by decomposition of coupled fields 3.7.1 Straley-Milgrom decomposition 3.7.2 Rylko decomposition 3.7.3 Example 3.8 Conclusion References 4 Hashin-Shtrikman assemblage of inhomogeneous spheres 4.1 Introduction 4.2 The classic Hashin-Shtrikman assemblage 4.3 HSA-type structure 4.4 Conclusion Acknowledgments References 5 Inverse conductivity problem for spherical particles 5.1 Introduction 5.2 Modified Dirichlet problem 5.2.1 Reduction to functional equations 5.2.2 Explicit asymptotic formulas 5.3 Inverse boundary value problem 5.4 Discussion and conclusion Acknowledgments References 6 Compatibility conditions: number of independent equations and boundary conditions 6.1 Introduction 6.2 Governing relations and Southwell\'s paradox 6.3 System of ninth order 6.4 Counterexamples proposed by Pobedrya and Georgievskii 6.5 Various formulations of the linear theory of elasticity problems in stresses 6.6 Other approximations 6.7 Generalization 6.8 Concluding remarks Conflict of interest Acknowledgments References 7 Critical index for conductivity, elasticity, superconductivity. Results and methods 7.1 Introduction 7.2 Critical index in 2D percolation. Root approximants 7.2.1 Minimal difference condition according to original 7.2.2 Iterated roots. Conditions imposed on thresholds 7.2.3 Conditions imposed on the critical index 7.2.4 Conditions imposed on amplitudes 7.2.5 Minimal derivative (sensitivity) condition 7.3 3D Conductivity and elasticity 7.3.1 3D elasticity, or high-frequency viscosity 7.4 Compressibility factor of hard-disks fluids 7.5 Sedimentation coefficient of rigid spheres 7.6 Susceptibility of 2D Ising model 7.7 Susceptibility of three-dimensional Ising model. Root approximants of higher orders 7.7.1 Comment on unbiased estimates. Iterated roots 7.8 3D Superconductivity critical index of random composite 7.9 Effective conductivity of graphene-type composites 7.10 Expansion factor of three-dimensional polymer chain 7.11 Concluding remarks 7.A Failure of the DLog Padé method 7.B Polynomials for the effective conductivity of graphene-type composites with vacancies References 8 Double periodic bianalytic functions 8.1 Introduction 8.2 Weierstrass and Natanzon-Filshtinsky functions 8.3 Properties of the generalized Natanzon-Filshtinsky functions 8.4 The function p1,2 8.5 Relation between the generalized Natanzon-Filshtinsky and Eisenstein functions 8.6 Double periodic bianalytic functions via the Eisenstein series 8.7 Conclusion References 9 The slowdown of group velocity in periodic waveguides 9.1 Introduction 9.2 Acoustic waves 9.2.1 Equal impedances 9.2.2 Small scatterers 9.2.3 Highly mismatched impedances 9.3 Electromagnetic waves 9.4 Elastic waves 9.5 Discussion Acknowledgments References 10 Some aspects of wave propagation in a fluid-loaded membrane 10.1 Introduction 10.2 Statement of the problem 10.3 Dispersion relation 10.4 Moving load problem 10.5 Subsonic regime 10.6 Supersonic regime 10.7 Concluding remarks Acknowledgment References 11 Parametric vibrations of axially compressed functionally graded sandwich plates with a complex plan form 11.1 Introduction 11.2 Mathematical problem 11.3 Method of solution 11.4 Numerical results 11.5 Conclusions Conflict of interest References 12 Application of volume integral equations for numerical calculation of local fields and effective properties of elastic composites 12.1 Introduction 12.2 Integral equations for elastic fields in heterogeneous media 12.2.1 Heterogeneous inclusions in a homogeneous host medium 12.2.2 Cracks in homogeneous elastic media 12.2.3 Medium with cracks and inclusions 12.3 The effective field method 12.3.1 The effective external field acting on a representative volume element 12.3.2 The effective compliance tensor of heterogeneous media 12.4 Numerical solution of the integral equations for the RVE 12.5 Numerical examples and optimal choice of the RVE 12.5.1 Periodic system of penny-shaped cracks of the same orientation 12.5.2 Periodic system of rigid spherical inclusions 12.6 Conclusions References 13 A slipping zone model for a conducting interface crack in a piezoelectric bimaterial 13.1 Introduction 13.2 Formulation of the problem 13.3 An interface crack with slipping zones at the crack tips 13.4 Slipping zone length 13.5 The crack faces free from electrodes 13.6 Numerical results and discussion 13.7 Conclusion References 14 Dependence of effective properties upon regular perturbations 14.1 Introduction 14.2 The geometric setting 14.3 The average longitudinal flow along a periodic array of cylinders 14.4 The effective conductivity of a two-phase periodic composite with ideal contact condition 14.5 The effective conductivity of a two-phase periodic composite with nonideal contact condition 14.6 Proof of Theorem 14.5.2 14.6.1 Preliminaries 14.6.2 An integral equation formulation of problem (14.7) 14.6.3 Analyticity of the solution of the integral equation 14.6.4 Analyticity of the effective conductivity 14.7 Conclusions Acknowledgments References 15 Riemann-Hilbert problems with coefficients in compact Lie groups 15.1 Introduction 15.2 Recollections on classical Riemann-Hilbert problems 15.3 Generalized Riemann-Hilbert transmission problem 15.4 Lie groups and principal bundles 15.5 Riemann-Hilbert monodromy problem for a compact Lie group References 16 When risks and uncertainties collide: quantum mechanical formulation of mathematical finance for arbitrage markets 16.1 Introduction 16.2 Geometric arbitrage theory background 16.2.1 The classical market model 16.2.2 Geometric reformulation of the market model: primitives 16.2.3 Geometric reformulation of the market model: portfolios 16.2.4 Arbitrage theory in a differential geometric framework 16.2.4.1 Market model as principal fiber bundle 16.2.4.2 Stochastic parallel transport 16.2.4.3 Nelson D weak differentiable market model 16.2.4.4 Arbitrage as curvature 16.3 Asset and market portfolio dynamics as a constrained Lagrangian system 16.4 Asset and market portfolio dynamics as solution of the Schrödinger equation: the quantization of the deterministic constrained Hamiltonian system 16.5 The (numerical) solution of the Schrödinger equation via Feynman integrals 16.5.1 From the stochastic Euler-Lagrangian equations to Schrödinger\'s equation: Nelson\'s method 16.5.2 Solution to Schrödinger\'s equation via Feynman\'s path integral 16.5.3 Application to geometric arbitrage theory 16.6 Conclusion 16.A Generalized derivatives of stochastic processes References 17 Thermodynamics and stability of metallic nano-ensembles 17.1 Introduction 17.1.1 Nano-substance: inception 17.1.2 Nano-substance: thermodynamics basics 17.1.3 Nano-substance: kinetics basics 17.2 Vacancy-related reduction of the metallic nano-ensemble\'s TPs 17.2.1 Solution in quadrature of the problem of vacancy-related reduction of TPs 17.2.2 Particle distributions on their radii 17.2.3 Derivation of equations for TPs reduction 17.2.3.1 Even distribution of particles on their radii 17.2.3.2 Linear distributions 17.2.3.3 Exponential distribution 17.2.3.4 The normal (truncated) distribution 17.2.4 Reduction of TPs: results 17.3 Increase of the metallic nano-ensemble\'s TPs due to surface tension 17.3.1 Solution in quadrature of the problem of the TP increase due to surface tension 17.3.2 Derivation of equations for TPs increase 17.3.2.1 Even distribution of particles on their radii 17.3.2.2 Linear distribution 17.3.2.3 Exponential distribution 17.3.2.4 The normal distribution 17.3.3 Increase of TPs: results 17.4 Balance of the vacancy-related and surface-tension effects 17.5 Conclusions References 18 Comparative analysis of local stresses in unidirectional and cross-reinforced composites 18.1 Introduction 18.2 Homogenization method as applied to composite reinforced with systems of fibers 18.3 Numerical analysis of the microscopic stress-strain state of the composite material 18.3.1 Macroscopic strain ε11 (tension-compression along the Ox-axis) 18.3.2 Macroscopic strain ε33 (tension-compression along the Oz-axis) 18.3.3 Macroscopic deformations ε22 (tension-compression along the Oy-axis) 18.3.4 Macroscopic deformations ε13 (shift in the Oxz-plane) 18.3.5 Macroscopic strain ε12 (shift in the Oxy-plane) 18.3.6 Macroscopic strain ε23 (shift in the Oyz-plane) 18.4 The ``anisotropic layers\'\' approach 18.4.1 Axial overall elastic moduli A1111 and A3333 18.4.2 Axial overall elastic modulus A2222 18.4.3 Shift elastic moduli A1212 and A2323 18.4.4 Shift elastic modulus A1313 18.4.5 The local stresses 18.5 The ``multicomponent\'\' approach by Panasenko 18.6 Solution to the periodicity cell problem for laminated composite 18.7 The homogenized strength criterion of composite laminae 18.8 Conclusions References 19 Statistical theory of structures with extended defects 19.1 Introduction 19.2 Spatial separation of phases 19.3 Statistical operator of mixture 19.4 Quasiequilibrium snapshot picture 19.5 Averaging over phase configurations 19.6 Geometric phase probabilities 19.7 Classical heterophase systems 19.8 Quasiaverages in classical statistics 19.9 Surface free energy 19.10 Crystal with regions of disorder 19.11 System existence and stability 19.12 Conclusion References 20 Effective conductivity of 2D composites and circle packing approximations 20.1 Introduction 20.2 General polydispersed structure of disks 20.3 Approximation of hexagonal array of disks 20.4 Checkerboard 20.5 Regular array of triangles 20.6 Discussion and conclusions References 21 Asymptotic homogenization approach applied to Cosserat heterogeneous media 21.1 Introduction 21.2 Basic equations for micropolar media. Statement of the problem 21.2.1 Two-scale asymptotic expansions 21.3 Example. Effective properties of heterogeneous periodic Cosserat laminate media 21.4 Numerical results 21.4.1 Cosserat laminated composite with cubic constituents 21.5 Conclusions Acknowledgments References A Finite clusters in composites Index Back Cover