دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Mircea Rades
سری:
ناشر: Printech
سال نشر: 2006
تعداد صفحات: 354
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 3 مگابایت
در صورت تبدیل فایل کتاب Mechanical Vibrations II به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ارتعاشات مکانیکی II نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
7. Modal analysis 1 7.1 Modes of vibration 1 7.2 Real undamped natural modes 2 7.2.1 Undamped non-gyroscopic systems 3 7.2.1.1 Normalization of real modal vectors 5 7.2.1.2 Orthogonality of real modal vectors 5 7.2.1.3 Modal matrix 6 7.2.1.4 Free vibration solution 6 7.2.1.5 Undamped forced vibration 8 7.2.1.6 Excitation modal vectors 9 7.2.2 Systems with proportional damping 10 7.2.2.1 Viscous damping 10 7.2.2.2 Structural damping 12 7.3 Complex damped natural modes 14 7.3.1 Viscous damping 14 7.3.2 Structural damping 23 7.4 Forced monophase damped modes 26 7.4.1 Analysis based on the dynamic stiffness matrix 26 7.4.2 Analysis based on the dynamic flexibility matrix 37 7.4.3 Proportional damping 43 7.5 Rigid-body modes 47 7.5.1 Flexibility method 47 7.5.2 Stiffness method 53 7.6 Modal participation factors 57 References 59 8. Eigenvalue solvers 61 8.1 Structural dynamics eigenproblem 61 8.2 Transformation to standard form 62 8.2.1 Cholesky factorization of the mass matrix 62 8.2.2 Shift-and-invert spectral transformation 63 8.3 Determinant search method 64 8.4 Matrix transformation methods 65 8.4.1 The eigenvalue decomposition 66 8.4.2 Householder reflections 67 8.4.3 Sturm sequence and bisection 68 8.4.4 Partial Schur decomposition 69 8.5 Iteration methods 71 8.5.1 Single vector iterations 71 8.5.1.1 The power method 72 8.5.1.2 Wielandt deflation 74 8.5.1.3 Inverse iteration 74 8.5.2 The QR method 76 8.5.3 Simultaneous iteration 78 8.5.4 The QZ method 79 8.6 Subspace iteration methods 80 8.6.1 The Rayleigh-Ritz approximation 80 8.6.2 Krylov subspaces 82 8.6.3 The Arnoldi method 82 8.6.3.1 Arnoldi’s algorithm 83 8.6.3.2 Generation of Arnoldi vectors 83 8.6.3.3 The Arnoldi factorization 85 8.6.3.4 Eigenpair approximation 88 8.6.3.5 Implementation details 90 8.6.4 The Lanczos method 91 8.7 Software 95 References 96 9. Frequency response non-parametric analysis 99 9.1 Frequency response function matrices 99 9.1.1 Frequency response functions 100 9.1.2 2D FRF matrices 101 9.1.3 3D FRF matrices 102 9.2 Principal response analysis of CFRF matrices 102 9.2.1 The singular value decomposition 102 9.2.2 Principal response functions 104 9.2.3 The reduced-rank AFRF matrix 109 9.2.4 SVD plots 111 9.2.5 PRF plots 112 9.2.6 Mode indicator functions 114 9.2.6.1 The UMIF 114 9.2.6.2 The CoMIF 114 9.2.6.3 The AMIF 116 9.2.7 Numerical simulations 119 9.2.8 Test data example 1 127 9.3 Analysis of the 3D FRF matrices 131 9.3.1 The CMIF 131 9.3.2 Eigenvalue-based MIFs 133 9.3.2.1 The MMIF 133 9.3.2.2 The MRMIF 135 9.3.2.3 The ImMIF 137 9.3.2.4 The RMIF 137 9.3.3 Single curve MIFs 140 9.3.4 Numerical simulations 142 9.3.5 Test data example 1 146 9.4 QR decomposition of the CFRF matrices 147 9.4.1 Pivoted QR factorization of the CFRF matrix 148 9.4.2 Pivoted QLP decomposition of the CFRF matrix 150 9.4.3 The QCoMIF 152 9.4.4 The QRMIF 153 9.4.5 Test data example 2 154 References 161 10. Structural parameter identification 165 10.1 Models of a vibrating structure 165 10.2 Single-mode parameter extraction methods 167 10.2.1 Analysis of receptance data 167 10.2.1.1 Peak amplitude method 167 10.2.1.2 Circle fit method 169 10.2.1.3 Co-quad components methods 181 10.2.1.4 Phase angle method 182 10.2.2 Analysis of mobility data 183 10.2.2.1 Skeleton method 183 10.2.2.2 SDOF mobility data 187 10.2.2.3 Peak amplitude method 188 10.2.2.4 Circle-fit method 189 10.2.3 Base excited systems 190 10.3 Multiple-mode parameter extraction methods 194 10.3.1 Phase separation method 194 10.3.2 Residues 197 10.3.3 Modal separation by least squares curve fit 199 10.3.4 Elimination of the modal matrix 200 10.3.5 Multipoint excitation methods 203 10.3.6 Appropriated excitation techniques 204 10.3.7 Real frequency-dependent characteristics 208 10.3.7.1 Characteristic phase-lag modes 208 10.3.7.2 Best monophase modal vectors 216 10.3.7.3 Eigenvectors of the coincident FRF matrix 217 10.4 Time domain methods 227 10.4.1 Ibrahim time-domain method 227 10.4.2 Random decrement technique 230 References 232 11. Dynamic model reduction 237 11.1 Reduced dynamic models 237 11.1.1 Model reduction philosophy 238 11.1.2 Model reduction methods 240 11.2 Physical coordinate reduction methods 242 11.2.1 Irons-Guyan reduction 242 11.2.1.1 Static condensation of dynamic models 242 11.2.1.2 Practical implementation of the GR method 245 11.2.1.3 Selection of active DOFs 247 11.2.2 Improved Reduced System (IRS) method 249 11.2.3 Iterative IRS method 252 11.2.4 Dynamic condensation 258 11.2.5 Iterative dynamic condensation 259 11.3 Modal coordinate reduction methods 261 11.3.1 Definitions 261 11.3.2 Modal TAM and SEREP 262 11.3.3 Improved Modal TAM 265 11.3.4 Hybrid TAM 269 11.3.5 Modal TAMs vs. non-modal TAMs 269 11.3.6 Iterative Modal Dynamic Condensation 271 11.4 Hybrid reduction methods 275 11.4.1 The reduced model eigensystem 275 11.4.2 Exact reduced system 276 11.4.3 Craig-Bampton reduction 278 11.4.4 General Dynamic Reduction 279 11.4.5 Extended Guyan Reduction 280 11.4.6 MacNeal’s reduction 282 11.5 FRF reduction 283 References 284 12. Test-analysis correlation 287 12.1 Dynamic structural modeling 287 12.1.1 Test-analysis requirements 288 12.1.2 Sources of uncertainty 290 12.1.3 FRF based testing 291 12.2 Test-analysis models 293 12.3 Comparison of modal properties 299 12.3.1 Direct comparison of modal parameters 299 12.3.2 Orthogonality criteria 300 12.3.2.1 Test Orthogonality Matrix 301 12.3.2.2 Cross Orthogonality Matrix 301 12.3.3 Modal vector correlation coefficients 302 12.3.3.1 Modal Scale Factor 302 12.3.3.2 The Modal Assurance Criterion 302 12.3.3.3 Normalized Cross Orthogonality 306 12.3.3.4 The AutoMAC 306 12.3.3.5 The FMAC 306 12.3.4 Degree of freedom correlation 311 12.3.4.1 Coordinate Modal Assurance Criterion 311 12.3.4.2 Enhanced CoMAC 312 12.3.4.3 Normalized Cross Orthogonality Location 312 12.3.4.4 Modulus Difference 313 12.3.4.5 Coordinate Orthogonality Check 314 12.3.5 Modal kinetic energy 314 12.4 Comparison of FRFs 314 12.4.1 Comparison of individual FRFs 315 12.4.2 Comparison of sets of FRFs 316 12.4.2.1 Frequency Response Assurance Criterion 317 12.4.2.2 Response Vector Assurance Criterion 318 12.4.2.3 Frequency Domain Assurance Criterion 319 12.5 Sensor-actuator placement 320 12.5.1 Selection of active DOFs / Sensor placement 320 12.5.1.1 Small stiffness / large inertia criterion 320 12.5.1.2 Effective independence method (EfI) 321 12.5.1.3 Sensor location with Arnoldi and Schur vectors 326 12.5.1.4 Selection of the candidate set of sensors 333 12.5.2 Exciter placement 334 12.5.2.1 Preselection by EfI method 334 12.5.2.2 Use of synthesized FRF data 334 12.5.2.3 Final selection using MMIF 335 12.5.3 Input/output test matrix 337 References 340 Index 343