ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Mechanical Ventilation from Pathophysiology to Clinical Evidence

دانلود کتاب تهویه مکانیکی از پاتوفیزیولوژی تا شواهد بالینی

Mechanical Ventilation from Pathophysiology to Clinical Evidence

مشخصات کتاب

Mechanical Ventilation from Pathophysiology to Clinical Evidence

ویرایش: 1st ed. 2022 
نویسندگان:   
سری:  
ISBN (شابک) : 3030934004, 9783030934002 
ناشر: Springer 
سال نشر: 2022 
تعداد صفحات: 422 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 12 مگابایت 

قیمت کتاب (تومان) : 49,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 4


در صورت تبدیل فایل کتاب Mechanical Ventilation from Pathophysiology to Clinical Evidence به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب تهویه مکانیکی از پاتوفیزیولوژی تا شواهد بالینی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب تهویه مکانیکی از پاتوفیزیولوژی تا شواهد بالینی

 هدف این کتاب ارائه یک مرور کلی از چالش‌ها و راه‌حل‌های فعلی برای متخصصان مراقبت‌های بهداشتی است که نیاز به استفاده از تهویه مکانیکی برای درمان بیماران خود دارند.

تهویه مکانیکی سنگ بنای این روش است. درمان بیماران بدحال، همانطور که به طور چشمگیری در همه گیری اخیر COVID-19 بر آن تاکید شده است. این موضوع ساده نیست، زیرا نیاز به ادغام چندین داده دارد که به نوبه خود از تعاملات پیچیده بین وضعیت بیمار و تنظیمات تهویه ناشی می شود. در حالی که توسعه فناوری نظارت پیشرفته و پشتیبانی تصمیم‌گیری را تقویت می‌کند، اینها همچنین بار داده‌ها را بر عهده پزشکان افزایش می‌دهد.

علاوه بر این، با توجه به اینکه گاهی تهویه مکانیکی تحت دو رویکرد ظاهراً متضاد، «فیزیولوژی در مقابل پروتکل‌ها» دیده می‌شود، این کتاب قصد دارد این دو جنبه را با هم تطبیق دهد. و این توسط هر نویسنده با پیروی از مسیر فوق در فصل های خود انجام شده است.

بررسی موضوع از "پاتوفیزیولوژی" (یعنی "فیزیولوژی بیماری") شروع می شود تا خواننده بتواند مفهوم و منطق را بهتر درک کند. از هر رویکرد داده شده در عین حال، هر دلیل یا فرضیه ای (به اندازه ای که توسط فیزیولوژی پشتیبانی می شود) باید در اثبات تحقیقات بالینی و شواهد، که در هر فصل خلاصه می شود، باشد.
به طور خلاصه، هدف این است که خوانندگان متوجه نشوند تنها بهترین روش بالینی برای اتخاذ کدام است، بلکه چرا و بر چه مکانیسم هایی استوار است و چگونه به یک مسئله جدید که ممکن است با آن برخورد کنند نزدیک شود. این کتاب - خطاب به پزشکان، پرستاران و درمانگرهای تنفسی - دارای فصل‌هایی درباره موضوعات «جدید» یا «داغ» مانند، بدیهی است، COVID-19، ECMO، و همچنین MV در شرایط کم منابع است.

<//. p>


توضیحاتی درمورد کتاب به خارجی

This book aims to give a comprehensive overview of the current challenges and solution posed to the health care professionals who need to use mechanical ventilation to treat their patients.

Mechanical ventilation is a cornerstone of the treatment of critically ill patients, as also dramatically underlined by the recent COVID-19 pandemic. The topic is not simple to approach, since it requires integration of multiple data which, in turn, result from complex interplays between patient’s condition and ventilatory settings. While technological development empowered advanced monitoring and decision support, these also increase the burden of data on the practitioners.

Furthermore, considering that sometimes mechanical ventilation is seen under two, apparently opposite, approaches, “physiology vs. protocols”, the book aims to reconcile these two aspects. And this has been done by each author following the above trajectory in their chapters.

The exposure of the topic begins from the “pathophysiology” (i.e. the “physiology of the disease”) so that the reader can better understand the concept and rationale of any given approach. At the same time, any rationale or hypothesis (for as much as supported by physiology) must hold at the proof of clinical research and evidence, which is summarized in each chapter.
In summary, the purposes is that the readers understand not only which is the best clinical practice to adopt but also why and which mechanisms this is based upon and how to approach a novel issue they might encounter. The book – addressed to physicians, nurses and respiratory therapist – features chapters on “novel” or “hot” topics like, obviously, COVID-19, ECMO, but also MV in low resource setting.


فهرست مطالب

Foreword
Preface
Contents
Part I: Techniques
	1: Basic Physiology of Respiratory System: Gas Exchange and Respiratory Mechanics
		1.1	 Gas Exchange
		1.2	 Respiratory Mechanics
		References
	2: A Short History of Mechanical Ventilation
		2.1	 Respiration, Circulation, and Their Interaction
		2.2	 Oxygen, Combustion, Metabolism, Homeostasis
		2.3	 The Dawn of Mechanical Ventilation
		2.4	 Lessons Learned
		References
	3: Airway Management in the Critically Ill
		3.1	 Introduction
		3.2	 Indications for Tracheal Intubation in ICU
		3.3	 Planning and Preparation for Tracheal Intubation
			3.3.1	 Clinical History and General Examination
			3.3.2	 Airway Assessment
			3.3.3	 Airway Cart and Checklists
			3.3.4	 Team Preparation
		3.4	 The Tracheal Intubation Procedure
			3.4.1	 Patient Positioning
			3.4.2	 Preoxygenation and Apnoeic Oxygenation
			3.4.3	 Induction of Anaesthesia
				3.4.3.1	 Propofol
				3.4.3.2	 Etomidate
				3.4.3.3	 Ketamine
			3.4.4	 Controversies in Rapid Sequence Intubation
				3.4.4.1	 Use of Neuromuscular Blockade or Spontaneous Ventilation
				3.4.4.2	 Use of Cricoid Pressure
				3.4.4.3	 Mask Ventilation During RSI
			3.4.5	 Haemodynamic Support During Tracheal Intubation
			3.4.6	 Device Selection for Tracheal Intubation
				3.4.6.1	 Use of a Videolaryngoscope
				3.4.6.2	 Use of a Bougie
				3.4.6.3	 Use of a Stylet
			3.4.7	 Confirmation of Tracheal Tube Position
		3.5	 Rescue Oxygenation
		3.6	 Care and Maintenance of the Tracheal Tube
		3.7	 Human Factors in Airway Management
		3.8	 Future Research
		3.9	 Conclusion
		References
	4: Controlled Mechanical Ventilation: Modes and Monitoring
		4.1	 Pressure-Controlled Ventilation
		4.2	 Volume-Controlled Ventilation
		4.3	 Pressure-Regulated Volume-Guaranteed Ventilation
		4.4	 Physiological Features of Fully Controlled Modes
			4.4.1	 Lung Protection
			4.4.2	 Alveolar Ventilation
		4.5	 Modes Particularities During Inspiratory Effort
		4.6	 Monitoring During Controlled Ventilation
			4.6.1	 Static Measurements of Inspiratory Resistance and Respiratory Compliance
			4.6.2	 Low-Flow Pressure-Volume (P−V) Curves
			4.6.3	 Stress Index
		4.7	 Conclusion
		References
	5: Assisted Ventilation: Pressure Support and Bilevel Ventilation Modes
		5.1	 Introduction
		5.2	 Pressure Support Ventilation
			5.2.1	 Epidemiology, Potential Advantages and Disadvantages
			5.2.2	 Principles of Operation and Physiological Consequences of PSV
				5.2.2.1	 Trigger Sensitivity, Inspiratory Rise Time, Pressure Support Level, and Cycling-Off Criteria
				5.2.2.2	 Determinants of Ventilation and Impact on Breathing Pattern
			5.2.3	 Potentially Injurious Patient–Ventilator Interactions During Pressure Support Ventilation
				5.2.3.1	 Over-Assistance with Ineffective Efforts and Apnea Events
				5.2.3.2	 Under-Assistance Leading to Flow Starvation and Double Triggering
			5.2.4	 How to Set the Level of Support to Prevent Over and Under-Assistance
		5.3	 Bilevel Ventilation Modes
			5.3.1	 Bilevel Vs. Other Pressure-Controlled Modes
			5.3.2	 Physiologic Effects of Differences in Inspiratory Synchronization
			5.3.3	 Setting Bilevel Ventilation During Assisted Mechanical Ventilation
			5.3.4	 Clinical Evidence of Bilevel Vs. Conventional Modes During Assisted Mechanical Ventilation
		5.4	 Conclusion
		References
	6: Monitoring the Patient During Assisted Ventilation
		6.1	 Inspiratory Effort
			6.1.1	 Esophageal Pressure Derived Measurements
			6.1.2	 Tidal Volume and Respiratory Rate
			6.1.3	 p0.1
			6.1.4	 Occlusion Pressure
			6.1.5	 Pressure Muscle Index
			6.1.6	 Diaphragm Electrical Activity
		6.2	 Total Pressure Distending the Respiratory System
		6.3	 Asynchronies
		6.4	 Distribution of Ventilation and Pendelluft
		6.5	 Evaluation of Respiratory Muscles Activity by Ultrasound
		6.6	 Conclusion
		References
	7: Neurally Adjusted Ventilatory Assist
		7.1	 Working Principles
			7.1.1	 EAdi Signal
			7.1.2	 NAVA Mode
				7.1.2.1	 Trigger Under NAVA
				7.1.2.2	 The Level of Assist
		7.2	 How to Set Ventilatory Assistance During NAVA
			7.2.1	 Airway Pressure Targets
			7.2.2	 Tidal Volume Response to NAVAlevel Titration
			7.2.3	 EAdi Response to NAVAlevel Titration
			7.2.4	 Neuro-Ventilatory Efficiency (NVE)
			7.2.5	 EAdi Derived Indices with NAVA
		7.3	 How to Set PEEP Under NAVA
		7.4	 How to Wean NAVA
		7.5	 Clinical Effects of NAVA
			7.5.1	 Effect on VT
			7.5.2	 Effects on Asynchrony
			7.5.3	 NAVA During Non-Invasive Ventilation or Tracheostomy
		7.6	 Limitation of NAVA
		7.7	 Conclusion
		References
	8: Proportional Assist Ventilation
		8.1	 Introduction
		8.2	 Operation Principles
		8.3	 Advantages of PAV+
			8.3.1	 Protection from Over- or Under-Assistance
			8.3.2	 Breathing Pattern and Patient–Ventilator Interaction
			8.3.3	 Clinical Outcomes
		8.4	 Limitations in PAV/PAV+ Use
		8.5	 Titration of Assistance in PAV+
		8.6	 Conclusion
		References
	9: Non-Invasive Ventilation: Indications and Caveats
		9.1	 Introduction
		9.2	 NIV Interfaces
		9.3	 Mode of Ventilation
		9.4	 Physiological Effects of NIV
		9.5	 Indications for NIV
			9.5.1	 Hydrostatic Pulmonary Edema
			9.5.2	 Hypercapnic Respiratory Failure: Acute Exacerbation of COPD
			9.5.3	 De-Novo Acute Hypoxemic Respiratory Failure
				9.5.3.1	 Facemask NIV
				9.5.3.2	 Helmet NIV
			9.5.4	 Immunocompromised Patients
			9.5.5	 Pre-Oxygenation
			9.5.6	 After Invasive Mechanical Ventilation
				9.5.6.1	 Early Liberation
				9.5.6.2	 Pre-Emptive Strategy
				9.5.6.3	 Post-Extubation Acute Respiratory Failure Rescue
			9.5.7	 Insufficient Data
		9.6	 The Importance of Monitoring of Patient with NIV
			9.6.1	 Monitoring the Patient with NIV
				9.6.1.1	 Predicting NIV Failure in the Setting of De-Novo AHRF
				9.6.1.2	 Predicting NIV Failure in the Setting of Hypercapnic ARF
		9.7	 Conclusions
		References
	10: High Flow Nasal Oxygen: From Physiology to Clinical Practice
		10.1	 Introduction
		10.2	 Dead Space, Air Entrainment, and Washout
			10.2.1	 The Way Forward
		10.3	 Generation of PEEP (or Not)
			10.3.1	 The Way Forward
		10.4	 Work of Breathing (WOB)
			10.4.1	 Work of Breathing in Normal Adults and in Hypoxemic Respiratory Failure
			10.4.2	 Work of Breathing in Patients with Decompensated Chronic Obstructive Pulmonary Disease (COPD)
			10.4.3	 The Way Forward
		10.5	 Some Words of Caution
		10.6	 Conclusion
		References
	11: Nursing of Mechanically Ventilated and ECMO Patient
		11.1	 Mechanical Ventilation
		11.2	 Prone Position
		11.3	 ECMO
		11.4	 Conclusions
		References
	12: Closed-Loop Ventilation Modes
		12.1	 Introduction
		12.2	 Mandatory Minute Ventilation
		12.3	 Smartcare/PS
			12.3.1	 Principle of Operation
			12.3.2	 Monitoring
			12.3.3	 Evidence
		12.4	 Adaptive Support Ventilation
			12.4.1	 Principle of Operation
			12.4.2	 Settings and Monitoring
			12.4.3	 Weaning
			12.4.4	 Evidence
		12.5	 INTELLiVENT-ASV
			12.5.1	 Principle of Operation
			12.5.2	 Settings and Monitoring
			12.5.3	 Weaning
			12.5.4	 Evidence
		12.6	 Conclusion
		References
	13: Airway Pressure Release Ventilation
		13.1	 Introduction
		13.2	 Physiology
		13.3	 Indications
		13.4	 Settings
			13.4.1	 PHigh
			13.4.2	 THigh
			13.4.3	 PLow
			13.4.4	 TLow
		13.5	 Spontaneous Breathing
		13.6	 Weaning
		13.7	 Conclusion
		References
Part II: Clinical Scenarios
	14: Acute Hypoxaemic Respiratory Failure and Acute Respiratory Distress Syndrome
		14.1	 AHRF and ARDS: A Definition Problem
		14.2	 Epidemiology: Knowns and Unknowns
		14.3	 Pathophysiology: Insights and Gaps
		14.4	 Support of Gas Exchange
		14.5	 Invasive Mechanical Ventilation: From ‘Protective’ to ‘Personalized’
		14.6	 Adjuncts to Ventilation
		14.7	 Specific Therapies for ARDS and AHRF
		14.8	 Outcomes
		14.9	 AHRF: Changing the Paradigm
		14.10	 Conclusions
		References
	15: Ventilator-Induced Lung Injury and Lung Protective Ventilation
		15.1	 Mechanosensitivity of the Respiratory System
		15.2	 Pathophysiology of Ventilator-Induced Lung Injury
		15.3	 Bedside Assessment of VILI
		15.4	 Designing Lung Protective Strategies
		15.5	 Clinical Evidence on Protective Ventilation
		15.6	 Conclusion
		References
	16: Mechanical Ventilation in the Healthy Lung: OR and ICU
		16.1	 Introduction
		16.2	 Tidal Volume
		16.3	 Tidal Volume in the Operating Room
			16.3.1	 Benefit of a Lower VT
			16.3.2	 Challenges of a Lower VT
			16.3.3	 Temporal Changes in the Size of VT
			16.3.4	 Current Recommendations
		16.4	 Tidal Volume the Intensive Care Unit
			16.4.1	 Benefit of a Lower VT
			16.4.2	 Challenges of a Lower VT
			16.4.3	 Temporal Changes in the Size of VT
			16.4.4	 Current Recommendations
		16.5	 Positive End-Expiratory Pressure
		16.6	 PEEP in the Operating Room
			16.6.1	 Benefit of Higher PEEP
			16.6.2	 Challenges of Higher PEEP
			16.6.3	 Temporal Changes in PEEP
			16.6.4	 Current Recommendations
		16.7	 PEEP in the Intensive Care Unit
			16.7.1	 Benefit of Higher PEEP
			16.7.2	 Challenges of Higher PEEP
			16.7.3	 Temporal Changes in PEEP
			16.7.4	 Current Recommendations
		16.8	 Conclusions
		References
	17: PEEP Setting in ARDS
		17.1	 Introduction
		17.2	 Pathophysiology: Beneficial Effects of PEEP
		17.3	 Pathophysiology: Harmful Effects of PEEP
		17.4	 Recommendations of PEEP Setting in ARDS
		17.5	 Strategies Aimed at Titrating PEEP at Bedside
			17.5.1	 NIH PEEP/FiO2 Combination Tables
			17.5.2	 Respiratory Mechanics: Compliance and Driving Pressure of the Respiratory System (Cpl,rs)
			17.5.3	 Pressure–Volume (PV) Curve and Lung Volume Measurements
			17.5.4	 Stress Index (SI)
			17.5.5	 Transpulmonary Pressure
			17.5.6	 Lung Imaging
			17.5.7	 PEEP: The Role of ARDS Phenotypes
		17.6	 Conclusion
		References
	18: Mechanical Ventilation in Brain Injured Patients
		18.1	 Introduction
		18.2	 Indications for Invasive Mechanical Ventilation in Brain Injured Patients
		18.3	 Ventilatory Strategies and Targets
			18.3.1	 Ventilator Settings
			18.3.2	 Oxygenation and Carbon Dioxide Targets
		18.4	 Rescue Interventions for Refractory Respiratory Failure
		18.5	 Weaning and Tracheostomy
		18.6	 Ventilation in Neuromuscular Disease
		18.7	 Conclusions
		References
	19: Invasive and Non-invasive Ventilation in Patient with Cardiac Failure
		19.1	 Introduction
		19.2	 Pathophysiology of Respiratory Failure During Acute Cardiac Failure
			19.2.1	 Acute Cardiogenic Pulmonary Edema
			19.2.2	 Cardiogenic Shock
		19.3	 Rationale for Positive Airway Pressure in Patients with Cardiac Failure
			19.3.1	 Right Ventricle
			19.3.2	 Left Ventricle
		19.4	 Non-invasive Positive Pressure Ventilation for Cardiogenic Pulmonary Edema: Clinical Evidence
		19.5	 Non-invasive and Invasive Positive Pressure Ventilation for Cardiogenic Shock
		19.6	 Ventilation in the Post Cardiac Arrest Period
		References
	20: COPD and Severe Asthma
		20.1	 Pathophysiology
		20.2	 Respiratory Support Strategies in General
		20.3	 Controlled Invasive Ventilation of the Obstructive Patient: Goals, Monitoring of Dynamic Airtrapping and Settings Strategies
		20.4	 Assisted Invasive Ventilation of the Obstructive Patient and Weaning Strategy
		References
	21: Ventilation in the Obese Patient
		21.1	 Introduction
		21.2	 Input Ventilatory Parameters to Be Adjusted During Mechanical Ventilation in Obese Patients
			21.2.1	 Tidal Volume
			21.2.2	 Positive End-Expiratory Pressure
			21.2.3	 Recruitment Maneuvers
		21.3	 Output Ventilatory Parameters to Be Monitored During Mechanical Ventilation in Obese Patients
			21.3.1	 Driving Pressure
			21.3.2	 Plateau Pressure
			21.3.3	 Energy and Mechanical Power
		21.4	 Conclusion
		References
	22: Weaning the Simple and Complex Patients
		22.1	 Introduction
		22.2	 Weaning Definitions and Steps
			22.2.1	 What Is Weaning, When Does Is Start? (and When Does It End???)
			22.2.2	 Are There Simple and Complex Patients?
			22.2.3	 During the Acute Phase
			22.2.4	 After the Illness Acute Phase
		22.3	 The Separation Attempt Process
			22.3.1	 Challenges and Pitfalls
			22.3.2	 Which Spontaneous Breathing Trial?
			22.3.3	 Pathophysiology of Spontaneous Breathing Trial Failure
		22.4	 Preventing Extubation Failure
			22.4.1	 Complications Following Extubation: Epidemiology and Definitions
			22.4.2	 Risk Factors of Extubation Failure
			22.4.3	 Strategies Aiming at Preventing Extubation Failure
			22.4.4	 Summary of the Evidence Regarding the Efficacy of Strategies Aiming at Preventing Extubation Failure in the ICU
			22.4.5	 Treatment of Post-Extubation Respiratory Failure
		22.5	 Conclusion
		References
	23: Non-invasive Oxygenation Strategies for COVID-19 Related Respiratory Failure
		23.1	 Introduction
		23.2	 Non-invasive Oxygen Strategies: Devices, Physiology and Non-COVID-19 Evidence
			23.2.1	 Devices and Physiology
				23.2.1.1	 High-flow Nasal Oxygen Cannula
				23.2.1.2	 Non-invasive Ventilation
				23.2.1.3	 Evidence of Non-invasive Oxygen Strategies for De Novo Acute Respiratory Failure
		23.3	 Considerations for Non-invasive Oxygenation Strategies in the COVID-19 Pandemic
			23.3.1	 Caring for Critically-Ill Patients Outside of the Intensive Care Unit
			23.3.2	 The Risk of Aerosolization
			23.3.3	 Interhospital Transport
			23.3.4	 Evidence for Non-invasive Oxygenation Supports in COVID-19
			23.3.5	 Patient Positioning
		23.4	 Conclusion
		References
	24: Invasive Ventilation in COVID-19
		24.1	 Introduction
		24.2	 Endotracheal Intubation and Timing
		24.3	 Mechanical Ventilation Setting
		24.4	 Rescue Therapies
		24.5	 Tracheostomy
		24.6	 Conclusions
		References
	25: Mechanical Ventilation in Different Surgical Settings
		25.1	 Introduction
			25.1.1	 Postoperative Pulmonary Complications
			25.1.2	 Protective Mechanical Ventilation: Basic Concepts
			25.1.3	 Personalized PEEP: The Open Lung Approach (OLA)
		25.2	 Laparoscopic Surgery
			25.2.1	 Current Evidence
		25.3	 Obese Patients
			25.3.1	 Current Evidence
		25.4	 Thoracic Surgery
			25.4.1	 Current Evidence
		25.5	 Cardiac Surgery
			25.5.1	 Current Evidence
		25.6	 Neurosurgery
			25.6.1	 Current Evidence
		25.7	 Conclusions
		References
	26: Following Up the Patients at Long Term
		26.1	 Introduction
			26.1.1	 A Logistic and Cultural Framework to Assist ICU Survivors
		26.2	 The Follow-Up Clinic and the PICS Framework
			26.2.1	 Physical Impairment
			26.2.2	 Cognitive Impairment
			26.2.3	 Mental Health Impairment
		26.3	 Conclusions
		References
	27: Mechanical Ventilation in Limited Resource Settings
		27.1	 Introduction
		27.2	 Facilities for Mechanical Ventilation in Limited Resource Settings
		27.3	 Indications of Mechanical Ventilation in Resource Variable Settings
		27.4	 Modes of Mechanical Ventilation in Limited Resource Settings
		27.5	 Complications of Mechanical Ventilation in Limited Resource Settings
		27.6	 The Practice of Tracheostomy in Patients with Prolonged Mechanical Ventilation
		27.7	 Conclusion
		References
	28: Mechanical Ventilation During Patient’s Transferral
		28.1	 Overview
		28.2	 How Transport Changes Physiology
		28.3	 Setting the Ventilator for Transport
		28.4	 Pulmonary and Airway Complications
		28.5	 Cardiovascular Complications
		28.6	 Equipment Malfunction, Considerations, and Human Error
		28.7	 Importance of Checklists
		28.8	 Conclusion
		References
Part III: Adjuncts to Mechanical Ventilation
	29: Prone Position
		29.1	 Rationale
			29.1.1	 Effects on Oxygenation
			29.1.2	 VILI Prevention
			29.1.3	 Hemodynamics Effects
		29.2	 Timing of Proning Application
			29.2.1	 PaO2/FIO2 Threshold to Initiate Proning in ARDS
			29.2.2	 When to Start Proning
			29.2.3	 When to Stop Proning
			29.2.4	 Duration of Proning Sessions
		29.3	 Practical Issues
			29.3.1	 Patient Installation
			29.3.2	 Support of Abdomen
			29.3.3	 Sedation and Neuromuscular Blockade During Prone Position
			29.3.4	 Setting the Ventilator in Prone Position
			29.3.5	 Contraindications
		29.4	 Clinical Evidence
			29.4.1	 Effects of Survival in Intubated Patients with Classic ARDS
			29.4.2	 Findings in the COVID-19
		29.5	 Conclusions
		References
	30: Veno-Venous ECMO and ECCO2R
		30.1	 Pathophysiology of Severe Respiratory Failure: Pulmonary Shunt and Alveolar Dead Space
		30.2	 Why Extracorporeal Gas Exchange?
		30.3	 “Full” V-V ECMO Versus Low-Flow ECCO2R
		30.4	 Evidence for Extracorporeal Gas Exchange in ARDS Patients
		30.5	 Outcome of ARDS Patients Treated with V-V ECMO
		30.6	 Should the Number of ECMO Centers Be Increased?
		30.7	 Conclusions
		References
	31: Mechanical Ventilation Setting During ECMO
		31.1	 Introduction
			31.1.1	 Mechanical Ventilation Strategy in ARDS
			31.1.2	 Mechanical Ventilation Strategy in Severe ARDS Receiving ECMO
			31.1.3	 Effects of ECMO on Gas Exchange and Interactions with Native Lung Function
			31.1.4	 Interaction Between the Native and the Artificial Lung
			31.1.5	 Mechanical Ventilation on ECMO: General Principles
			31.1.6	 Mechanical Ventilation Setting on ECMO
				31.1.6.1	 Tidal Volume
				31.1.6.2	 Respiratory Rate
				31.1.6.3	 PEEP
			31.1.7	 Additional Considerations
				31.1.7.1	 Prone Position
				31.1.7.2	 Respiratory Effort
		31.2	 Conclusion
		References
Part IV: Monitoring of Mechanical Ventilation
	32: Ultrasound Assessment of the Respiratory System
		32.1	 Introduction
		32.2	 The Lungs
			32.2.1	 Introduction
				32.2.1.1	 Pleura
				32.2.1.2	 A-Lines
				32.2.1.3	 B-Lines
				32.2.1.4	 Consolidation
				32.2.1.5	 Pleural Effusion
			32.2.2	 Application in Clinical Practice
				32.2.2.1	 Diagnosis of Acute Respiratory Failure
				32.2.2.2	 Monitoring Lung Aeration
				32.2.2.3	 Lung Ultrasound-Guided Mechanical Ventilation
				32.2.2.4	 Detection and Draining Pleural Effusion
		32.3	 Diaphragm
			32.3.1	 Introduction
				32.3.1.1	 Excursion
				32.3.1.2	 Thickness and Thickening
			32.3.2	 Application in Clinical Practice
				32.3.2.1	 Diaphragm Protective Ventilation
				32.3.2.2	 Patient Ventilator Asynchrony
				32.3.2.3	 Weaning
				32.3.2.4	 Predicting Extubation Outcome
		32.4	 Accessory Respiratory Muscles
		32.5	 Limitations
		32.6	 Conclusion
		References
	33: Electrical Impedance Tomography
		33.1	 Introduction
		33.2	 EIT Basics
		33.3	 Patient Examination Using EIT
		33.4	 Assessment of Regional Lung Ventilation and Aeration Changes by EIT
		33.5	 Assessment of Regional Lung Perfusion by EIT
		33.6	 Summary
		References
	34: Esophageal Pressure Monitoring
		34.1	 Technique
		34.2	 Measurements of Pes-derived Variables
			34.2.1	 Transpulmonary Pressures
			34.2.2	 Indices of Inspiratory Effort and Dynamic Hyperinflation
		34.3	 Monitoring Esophageal Pressure to Guide Mechanical Ventilation
			34.3.1	 Monitoring PL,end-exp for PEEP Titration to Prevent Alveolar Collapse
			34.3.2	 Monitoring PL,end-insp and ΔPL for Tidal Volume/Inspiratory Pressure Titration to Prevent Overdistention
			34.3.3	 Monitoring Spontaneous Effort to Prevent Over- and Under-Assist and Optimize Patient-Ventilator Interaction
		34.4	 Conclusion
		References
	35: Lung Volumes and Volumetric Capnography
		35.1	 Introduction
		35.2	 Lung Volumes
			35.2.1	 Why Is Measuring Absolute Lung Volume Clinically Relevant?
			35.2.2	 How Are Absolute Lung Volumes Measured?
			35.2.3	 How Are the Changes in Lung Volume Measured?
			35.2.4	 How Is Recruitment Measured Using Computed Tomography?
			35.2.5	 How Is Recruitment Measured Using Pressure–Volume Curves?
			35.2.6	 How Is the Recruitment-to-Inflation Ratio Measured?
		35.3	 Volumetric Capnography
			35.3.1	 What Is Dead Space?
			35.3.2	 How Is Dead Space Calculated?
			35.3.3	 What Is Capnography?
			35.3.4	 What Is a Capnometer?
			35.3.5	 How Is Dead Space Measured Using Volumetric Capnography?
			35.3.6	 What Are the Clinical Implications?
		References
	36: Radiological Monitoring
		36.1	 Introduction
		36.2	 What Could We Expect from Chest X Ray in ICU?
			36.2.1	 Assessing Lung Oedema
			36.2.2	 Positioning of Monitor and/or Therapeutics Devices
			36.2.3	 Pleural Effusions
			36.2.4	 Pneumonia
		36.3	 When is CT Scan Indicated in Ventilated Patients?
		36.4	 Conclusions
		References
Part V: Educational Material
	37: Teaching Mechanical Ventilation: Online Resources and Simulation
		37.1	 Introduction
		37.2	 Online Resources and Applications
			37.2.1	 Standardized Education for Ventilatory Assistance (SEVA)
			37.2.2	 iVentilate App
			37.2.3	 The Toronto Centre of Excellence in Mechanical Ventilation (CoEMV Blog)
		37.3	 Mechanical Ventilation Simulation
			37.3.1	 Software Simulation Options
				37.3.1.1	 Simulation Interface for Ventilation Analysis (SIVA)
				37.3.1.2	 VentSim
				37.3.1.3	 XLung
			37.3.2	 Hardware Simulation Options
				37.3.2.1	 Test Lungs and Breathing Simulators
			37.3.3	 Setting Up a Successful Simulation Teaching Event
		37.4	 Summary
	38: Vignettes: Controlled Mechanical Ventilation
		38.1	 Introduction
		38.2	 Clinical Vignettes
		References
	39: Vignettes: Assisted Mechanical Ventilation
		39.1	 Introduction
		References




نظرات کاربران