دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1st ed. 2022
نویسندگان: Giacomo Bellani (editor)
سری:
ISBN (شابک) : 3030934004, 9783030934002
ناشر: Springer
سال نشر: 2022
تعداد صفحات: 422
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 12 مگابایت
در صورت تبدیل فایل کتاب Mechanical Ventilation from Pathophysiology to Clinical Evidence به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تهویه مکانیکی از پاتوفیزیولوژی تا شواهد بالینی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تهویه مکانیکی سنگ بنای این روش است. درمان بیماران بدحال، همانطور که به طور چشمگیری در همه گیری اخیر COVID-19 بر آن تاکید شده است. این موضوع ساده نیست، زیرا نیاز به ادغام چندین داده دارد که به نوبه خود از تعاملات پیچیده بین وضعیت بیمار و تنظیمات تهویه ناشی می شود. در حالی که توسعه فناوری نظارت پیشرفته و پشتیبانی تصمیمگیری را تقویت میکند، اینها همچنین بار دادهها را بر عهده پزشکان افزایش میدهد.
علاوه بر این، با توجه به اینکه گاهی تهویه مکانیکی تحت دو رویکرد ظاهراً متضاد، «فیزیولوژی در مقابل پروتکلها» دیده میشود، این کتاب قصد دارد این دو جنبه را با هم تطبیق دهد. و این توسط هر نویسنده با پیروی از مسیر فوق در فصل های خود انجام شده است.
بررسی موضوع از "پاتوفیزیولوژی" (یعنی "فیزیولوژی بیماری") شروع می شود تا خواننده بتواند مفهوم و منطق را بهتر درک کند. از هر رویکرد داده شده در عین حال، هر دلیل یا فرضیه ای (به اندازه ای که توسط فیزیولوژی پشتیبانی می شود) باید در اثبات تحقیقات بالینی و شواهد، که در هر فصل خلاصه می شود، باشد.<//. p>
Mechanical ventilation is a cornerstone of the treatment of critically ill patients, as also dramatically underlined by the recent COVID-19 pandemic. The topic is not simple to approach, since it requires integration of multiple data which, in turn, result from complex interplays between patient’s condition and ventilatory settings. While technological development empowered advanced monitoring and decision support, these also increase the burden of data on the practitioners.
Furthermore, considering that sometimes mechanical ventilation is seen under two, apparently opposite, approaches, “physiology vs. protocols”, the book aims to reconcile these two aspects. And this has been done by each author following the above trajectory in their chapters.
The exposure of the topic begins from the “pathophysiology” (i.e. the “physiology of the disease”) so that the reader can better understand the concept and rationale of any given approach. At the same time, any rationale or hypothesis (for as much as supported by physiology) must hold at the proof of clinical research and evidence, which is summarized in each chapter.Foreword Preface Contents Part I: Techniques 1: Basic Physiology of Respiratory System: Gas Exchange and Respiratory Mechanics 1.1 Gas Exchange 1.2 Respiratory Mechanics References 2: A Short History of Mechanical Ventilation 2.1 Respiration, Circulation, and Their Interaction 2.2 Oxygen, Combustion, Metabolism, Homeostasis 2.3 The Dawn of Mechanical Ventilation 2.4 Lessons Learned References 3: Airway Management in the Critically Ill 3.1 Introduction 3.2 Indications for Tracheal Intubation in ICU 3.3 Planning and Preparation for Tracheal Intubation 3.3.1 Clinical History and General Examination 3.3.2 Airway Assessment 3.3.3 Airway Cart and Checklists 3.3.4 Team Preparation 3.4 The Tracheal Intubation Procedure 3.4.1 Patient Positioning 3.4.2 Preoxygenation and Apnoeic Oxygenation 3.4.3 Induction of Anaesthesia 3.4.3.1 Propofol 3.4.3.2 Etomidate 3.4.3.3 Ketamine 3.4.4 Controversies in Rapid Sequence Intubation 3.4.4.1 Use of Neuromuscular Blockade or Spontaneous Ventilation 3.4.4.2 Use of Cricoid Pressure 3.4.4.3 Mask Ventilation During RSI 3.4.5 Haemodynamic Support During Tracheal Intubation 3.4.6 Device Selection for Tracheal Intubation 3.4.6.1 Use of a Videolaryngoscope 3.4.6.2 Use of a Bougie 3.4.6.3 Use of a Stylet 3.4.7 Confirmation of Tracheal Tube Position 3.5 Rescue Oxygenation 3.6 Care and Maintenance of the Tracheal Tube 3.7 Human Factors in Airway Management 3.8 Future Research 3.9 Conclusion References 4: Controlled Mechanical Ventilation: Modes and Monitoring 4.1 Pressure-Controlled Ventilation 4.2 Volume-Controlled Ventilation 4.3 Pressure-Regulated Volume-Guaranteed Ventilation 4.4 Physiological Features of Fully Controlled Modes 4.4.1 Lung Protection 4.4.2 Alveolar Ventilation 4.5 Modes Particularities During Inspiratory Effort 4.6 Monitoring During Controlled Ventilation 4.6.1 Static Measurements of Inspiratory Resistance and Respiratory Compliance 4.6.2 Low-Flow Pressure-Volume (P−V) Curves 4.6.3 Stress Index 4.7 Conclusion References 5: Assisted Ventilation: Pressure Support and Bilevel Ventilation Modes 5.1 Introduction 5.2 Pressure Support Ventilation 5.2.1 Epidemiology, Potential Advantages and Disadvantages 5.2.2 Principles of Operation and Physiological Consequences of PSV 5.2.2.1 Trigger Sensitivity, Inspiratory Rise Time, Pressure Support Level, and Cycling-Off Criteria 5.2.2.2 Determinants of Ventilation and Impact on Breathing Pattern 5.2.3 Potentially Injurious Patient–Ventilator Interactions During Pressure Support Ventilation 5.2.3.1 Over-Assistance with Ineffective Efforts and Apnea Events 5.2.3.2 Under-Assistance Leading to Flow Starvation and Double Triggering 5.2.4 How to Set the Level of Support to Prevent Over and Under-Assistance 5.3 Bilevel Ventilation Modes 5.3.1 Bilevel Vs. Other Pressure-Controlled Modes 5.3.2 Physiologic Effects of Differences in Inspiratory Synchronization 5.3.3 Setting Bilevel Ventilation During Assisted Mechanical Ventilation 5.3.4 Clinical Evidence of Bilevel Vs. Conventional Modes During Assisted Mechanical Ventilation 5.4 Conclusion References 6: Monitoring the Patient During Assisted Ventilation 6.1 Inspiratory Effort 6.1.1 Esophageal Pressure Derived Measurements 6.1.2 Tidal Volume and Respiratory Rate 6.1.3 p0.1 6.1.4 Occlusion Pressure 6.1.5 Pressure Muscle Index 6.1.6 Diaphragm Electrical Activity 6.2 Total Pressure Distending the Respiratory System 6.3 Asynchronies 6.4 Distribution of Ventilation and Pendelluft 6.5 Evaluation of Respiratory Muscles Activity by Ultrasound 6.6 Conclusion References 7: Neurally Adjusted Ventilatory Assist 7.1 Working Principles 7.1.1 EAdi Signal 7.1.2 NAVA Mode 7.1.2.1 Trigger Under NAVA 7.1.2.2 The Level of Assist 7.2 How to Set Ventilatory Assistance During NAVA 7.2.1 Airway Pressure Targets 7.2.2 Tidal Volume Response to NAVAlevel Titration 7.2.3 EAdi Response to NAVAlevel Titration 7.2.4 Neuro-Ventilatory Efficiency (NVE) 7.2.5 EAdi Derived Indices with NAVA 7.3 How to Set PEEP Under NAVA 7.4 How to Wean NAVA 7.5 Clinical Effects of NAVA 7.5.1 Effect on VT 7.5.2 Effects on Asynchrony 7.5.3 NAVA During Non-Invasive Ventilation or Tracheostomy 7.6 Limitation of NAVA 7.7 Conclusion References 8: Proportional Assist Ventilation 8.1 Introduction 8.2 Operation Principles 8.3 Advantages of PAV+ 8.3.1 Protection from Over- or Under-Assistance 8.3.2 Breathing Pattern and Patient–Ventilator Interaction 8.3.3 Clinical Outcomes 8.4 Limitations in PAV/PAV+ Use 8.5 Titration of Assistance in PAV+ 8.6 Conclusion References 9: Non-Invasive Ventilation: Indications and Caveats 9.1 Introduction 9.2 NIV Interfaces 9.3 Mode of Ventilation 9.4 Physiological Effects of NIV 9.5 Indications for NIV 9.5.1 Hydrostatic Pulmonary Edema 9.5.2 Hypercapnic Respiratory Failure: Acute Exacerbation of COPD 9.5.3 De-Novo Acute Hypoxemic Respiratory Failure 9.5.3.1 Facemask NIV 9.5.3.2 Helmet NIV 9.5.4 Immunocompromised Patients 9.5.5 Pre-Oxygenation 9.5.6 After Invasive Mechanical Ventilation 9.5.6.1 Early Liberation 9.5.6.2 Pre-Emptive Strategy 9.5.6.3 Post-Extubation Acute Respiratory Failure Rescue 9.5.7 Insufficient Data 9.6 The Importance of Monitoring of Patient with NIV 9.6.1 Monitoring the Patient with NIV 9.6.1.1 Predicting NIV Failure in the Setting of De-Novo AHRF 9.6.1.2 Predicting NIV Failure in the Setting of Hypercapnic ARF 9.7 Conclusions References 10: High Flow Nasal Oxygen: From Physiology to Clinical Practice 10.1 Introduction 10.2 Dead Space, Air Entrainment, and Washout 10.2.1 The Way Forward 10.3 Generation of PEEP (or Not) 10.3.1 The Way Forward 10.4 Work of Breathing (WOB) 10.4.1 Work of Breathing in Normal Adults and in Hypoxemic Respiratory Failure 10.4.2 Work of Breathing in Patients with Decompensated Chronic Obstructive Pulmonary Disease (COPD) 10.4.3 The Way Forward 10.5 Some Words of Caution 10.6 Conclusion References 11: Nursing of Mechanically Ventilated and ECMO Patient 11.1 Mechanical Ventilation 11.2 Prone Position 11.3 ECMO 11.4 Conclusions References 12: Closed-Loop Ventilation Modes 12.1 Introduction 12.2 Mandatory Minute Ventilation 12.3 Smartcare/PS 12.3.1 Principle of Operation 12.3.2 Monitoring 12.3.3 Evidence 12.4 Adaptive Support Ventilation 12.4.1 Principle of Operation 12.4.2 Settings and Monitoring 12.4.3 Weaning 12.4.4 Evidence 12.5 INTELLiVENT-ASV 12.5.1 Principle of Operation 12.5.2 Settings and Monitoring 12.5.3 Weaning 12.5.4 Evidence 12.6 Conclusion References 13: Airway Pressure Release Ventilation 13.1 Introduction 13.2 Physiology 13.3 Indications 13.4 Settings 13.4.1 PHigh 13.4.2 THigh 13.4.3 PLow 13.4.4 TLow 13.5 Spontaneous Breathing 13.6 Weaning 13.7 Conclusion References Part II: Clinical Scenarios 14: Acute Hypoxaemic Respiratory Failure and Acute Respiratory Distress Syndrome 14.1 AHRF and ARDS: A Definition Problem 14.2 Epidemiology: Knowns and Unknowns 14.3 Pathophysiology: Insights and Gaps 14.4 Support of Gas Exchange 14.5 Invasive Mechanical Ventilation: From ‘Protective’ to ‘Personalized’ 14.6 Adjuncts to Ventilation 14.7 Specific Therapies for ARDS and AHRF 14.8 Outcomes 14.9 AHRF: Changing the Paradigm 14.10 Conclusions References 15: Ventilator-Induced Lung Injury and Lung Protective Ventilation 15.1 Mechanosensitivity of the Respiratory System 15.2 Pathophysiology of Ventilator-Induced Lung Injury 15.3 Bedside Assessment of VILI 15.4 Designing Lung Protective Strategies 15.5 Clinical Evidence on Protective Ventilation 15.6 Conclusion References 16: Mechanical Ventilation in the Healthy Lung: OR and ICU 16.1 Introduction 16.2 Tidal Volume 16.3 Tidal Volume in the Operating Room 16.3.1 Benefit of a Lower VT 16.3.2 Challenges of a Lower VT 16.3.3 Temporal Changes in the Size of VT 16.3.4 Current Recommendations 16.4 Tidal Volume the Intensive Care Unit 16.4.1 Benefit of a Lower VT 16.4.2 Challenges of a Lower VT 16.4.3 Temporal Changes in the Size of VT 16.4.4 Current Recommendations 16.5 Positive End-Expiratory Pressure 16.6 PEEP in the Operating Room 16.6.1 Benefit of Higher PEEP 16.6.2 Challenges of Higher PEEP 16.6.3 Temporal Changes in PEEP 16.6.4 Current Recommendations 16.7 PEEP in the Intensive Care Unit 16.7.1 Benefit of Higher PEEP 16.7.2 Challenges of Higher PEEP 16.7.3 Temporal Changes in PEEP 16.7.4 Current Recommendations 16.8 Conclusions References 17: PEEP Setting in ARDS 17.1 Introduction 17.2 Pathophysiology: Beneficial Effects of PEEP 17.3 Pathophysiology: Harmful Effects of PEEP 17.4 Recommendations of PEEP Setting in ARDS 17.5 Strategies Aimed at Titrating PEEP at Bedside 17.5.1 NIH PEEP/FiO2 Combination Tables 17.5.2 Respiratory Mechanics: Compliance and Driving Pressure of the Respiratory System (Cpl,rs) 17.5.3 Pressure–Volume (PV) Curve and Lung Volume Measurements 17.5.4 Stress Index (SI) 17.5.5 Transpulmonary Pressure 17.5.6 Lung Imaging 17.5.7 PEEP: The Role of ARDS Phenotypes 17.6 Conclusion References 18: Mechanical Ventilation in Brain Injured Patients 18.1 Introduction 18.2 Indications for Invasive Mechanical Ventilation in Brain Injured Patients 18.3 Ventilatory Strategies and Targets 18.3.1 Ventilator Settings 18.3.2 Oxygenation and Carbon Dioxide Targets 18.4 Rescue Interventions for Refractory Respiratory Failure 18.5 Weaning and Tracheostomy 18.6 Ventilation in Neuromuscular Disease 18.7 Conclusions References 19: Invasive and Non-invasive Ventilation in Patient with Cardiac Failure 19.1 Introduction 19.2 Pathophysiology of Respiratory Failure During Acute Cardiac Failure 19.2.1 Acute Cardiogenic Pulmonary Edema 19.2.2 Cardiogenic Shock 19.3 Rationale for Positive Airway Pressure in Patients with Cardiac Failure 19.3.1 Right Ventricle 19.3.2 Left Ventricle 19.4 Non-invasive Positive Pressure Ventilation for Cardiogenic Pulmonary Edema: Clinical Evidence 19.5 Non-invasive and Invasive Positive Pressure Ventilation for Cardiogenic Shock 19.6 Ventilation in the Post Cardiac Arrest Period References 20: COPD and Severe Asthma 20.1 Pathophysiology 20.2 Respiratory Support Strategies in General 20.3 Controlled Invasive Ventilation of the Obstructive Patient: Goals, Monitoring of Dynamic Airtrapping and Settings Strategies 20.4 Assisted Invasive Ventilation of the Obstructive Patient and Weaning Strategy References 21: Ventilation in the Obese Patient 21.1 Introduction 21.2 Input Ventilatory Parameters to Be Adjusted During Mechanical Ventilation in Obese Patients 21.2.1 Tidal Volume 21.2.2 Positive End-Expiratory Pressure 21.2.3 Recruitment Maneuvers 21.3 Output Ventilatory Parameters to Be Monitored During Mechanical Ventilation in Obese Patients 21.3.1 Driving Pressure 21.3.2 Plateau Pressure 21.3.3 Energy and Mechanical Power 21.4 Conclusion References 22: Weaning the Simple and Complex Patients 22.1 Introduction 22.2 Weaning Definitions and Steps 22.2.1 What Is Weaning, When Does Is Start? (and When Does It End???) 22.2.2 Are There Simple and Complex Patients? 22.2.3 During the Acute Phase 22.2.4 After the Illness Acute Phase 22.3 The Separation Attempt Process 22.3.1 Challenges and Pitfalls 22.3.2 Which Spontaneous Breathing Trial? 22.3.3 Pathophysiology of Spontaneous Breathing Trial Failure 22.4 Preventing Extubation Failure 22.4.1 Complications Following Extubation: Epidemiology and Definitions 22.4.2 Risk Factors of Extubation Failure 22.4.3 Strategies Aiming at Preventing Extubation Failure 22.4.4 Summary of the Evidence Regarding the Efficacy of Strategies Aiming at Preventing Extubation Failure in the ICU 22.4.5 Treatment of Post-Extubation Respiratory Failure 22.5 Conclusion References 23: Non-invasive Oxygenation Strategies for COVID-19 Related Respiratory Failure 23.1 Introduction 23.2 Non-invasive Oxygen Strategies: Devices, Physiology and Non-COVID-19 Evidence 23.2.1 Devices and Physiology 23.2.1.1 High-flow Nasal Oxygen Cannula 23.2.1.2 Non-invasive Ventilation 23.2.1.3 Evidence of Non-invasive Oxygen Strategies for De Novo Acute Respiratory Failure 23.3 Considerations for Non-invasive Oxygenation Strategies in the COVID-19 Pandemic 23.3.1 Caring for Critically-Ill Patients Outside of the Intensive Care Unit 23.3.2 The Risk of Aerosolization 23.3.3 Interhospital Transport 23.3.4 Evidence for Non-invasive Oxygenation Supports in COVID-19 23.3.5 Patient Positioning 23.4 Conclusion References 24: Invasive Ventilation in COVID-19 24.1 Introduction 24.2 Endotracheal Intubation and Timing 24.3 Mechanical Ventilation Setting 24.4 Rescue Therapies 24.5 Tracheostomy 24.6 Conclusions References 25: Mechanical Ventilation in Different Surgical Settings 25.1 Introduction 25.1.1 Postoperative Pulmonary Complications 25.1.2 Protective Mechanical Ventilation: Basic Concepts 25.1.3 Personalized PEEP: The Open Lung Approach (OLA) 25.2 Laparoscopic Surgery 25.2.1 Current Evidence 25.3 Obese Patients 25.3.1 Current Evidence 25.4 Thoracic Surgery 25.4.1 Current Evidence 25.5 Cardiac Surgery 25.5.1 Current Evidence 25.6 Neurosurgery 25.6.1 Current Evidence 25.7 Conclusions References 26: Following Up the Patients at Long Term 26.1 Introduction 26.1.1 A Logistic and Cultural Framework to Assist ICU Survivors 26.2 The Follow-Up Clinic and the PICS Framework 26.2.1 Physical Impairment 26.2.2 Cognitive Impairment 26.2.3 Mental Health Impairment 26.3 Conclusions References 27: Mechanical Ventilation in Limited Resource Settings 27.1 Introduction 27.2 Facilities for Mechanical Ventilation in Limited Resource Settings 27.3 Indications of Mechanical Ventilation in Resource Variable Settings 27.4 Modes of Mechanical Ventilation in Limited Resource Settings 27.5 Complications of Mechanical Ventilation in Limited Resource Settings 27.6 The Practice of Tracheostomy in Patients with Prolonged Mechanical Ventilation 27.7 Conclusion References 28: Mechanical Ventilation During Patient’s Transferral 28.1 Overview 28.2 How Transport Changes Physiology 28.3 Setting the Ventilator for Transport 28.4 Pulmonary and Airway Complications 28.5 Cardiovascular Complications 28.6 Equipment Malfunction, Considerations, and Human Error 28.7 Importance of Checklists 28.8 Conclusion References Part III: Adjuncts to Mechanical Ventilation 29: Prone Position 29.1 Rationale 29.1.1 Effects on Oxygenation 29.1.2 VILI Prevention 29.1.3 Hemodynamics Effects 29.2 Timing of Proning Application 29.2.1 PaO2/FIO2 Threshold to Initiate Proning in ARDS 29.2.2 When to Start Proning 29.2.3 When to Stop Proning 29.2.4 Duration of Proning Sessions 29.3 Practical Issues 29.3.1 Patient Installation 29.3.2 Support of Abdomen 29.3.3 Sedation and Neuromuscular Blockade During Prone Position 29.3.4 Setting the Ventilator in Prone Position 29.3.5 Contraindications 29.4 Clinical Evidence 29.4.1 Effects of Survival in Intubated Patients with Classic ARDS 29.4.2 Findings in the COVID-19 29.5 Conclusions References 30: Veno-Venous ECMO and ECCO2R 30.1 Pathophysiology of Severe Respiratory Failure: Pulmonary Shunt and Alveolar Dead Space 30.2 Why Extracorporeal Gas Exchange? 30.3 “Full” V-V ECMO Versus Low-Flow ECCO2R 30.4 Evidence for Extracorporeal Gas Exchange in ARDS Patients 30.5 Outcome of ARDS Patients Treated with V-V ECMO 30.6 Should the Number of ECMO Centers Be Increased? 30.7 Conclusions References 31: Mechanical Ventilation Setting During ECMO 31.1 Introduction 31.1.1 Mechanical Ventilation Strategy in ARDS 31.1.2 Mechanical Ventilation Strategy in Severe ARDS Receiving ECMO 31.1.3 Effects of ECMO on Gas Exchange and Interactions with Native Lung Function 31.1.4 Interaction Between the Native and the Artificial Lung 31.1.5 Mechanical Ventilation on ECMO: General Principles 31.1.6 Mechanical Ventilation Setting on ECMO 31.1.6.1 Tidal Volume 31.1.6.2 Respiratory Rate 31.1.6.3 PEEP 31.1.7 Additional Considerations 31.1.7.1 Prone Position 31.1.7.2 Respiratory Effort 31.2 Conclusion References Part IV: Monitoring of Mechanical Ventilation 32: Ultrasound Assessment of the Respiratory System 32.1 Introduction 32.2 The Lungs 32.2.1 Introduction 32.2.1.1 Pleura 32.2.1.2 A-Lines 32.2.1.3 B-Lines 32.2.1.4 Consolidation 32.2.1.5 Pleural Effusion 32.2.2 Application in Clinical Practice 32.2.2.1 Diagnosis of Acute Respiratory Failure 32.2.2.2 Monitoring Lung Aeration 32.2.2.3 Lung Ultrasound-Guided Mechanical Ventilation 32.2.2.4 Detection and Draining Pleural Effusion 32.3 Diaphragm 32.3.1 Introduction 32.3.1.1 Excursion 32.3.1.2 Thickness and Thickening 32.3.2 Application in Clinical Practice 32.3.2.1 Diaphragm Protective Ventilation 32.3.2.2 Patient Ventilator Asynchrony 32.3.2.3 Weaning 32.3.2.4 Predicting Extubation Outcome 32.4 Accessory Respiratory Muscles 32.5 Limitations 32.6 Conclusion References 33: Electrical Impedance Tomography 33.1 Introduction 33.2 EIT Basics 33.3 Patient Examination Using EIT 33.4 Assessment of Regional Lung Ventilation and Aeration Changes by EIT 33.5 Assessment of Regional Lung Perfusion by EIT 33.6 Summary References 34: Esophageal Pressure Monitoring 34.1 Technique 34.2 Measurements of Pes-derived Variables 34.2.1 Transpulmonary Pressures 34.2.2 Indices of Inspiratory Effort and Dynamic Hyperinflation 34.3 Monitoring Esophageal Pressure to Guide Mechanical Ventilation 34.3.1 Monitoring PL,end-exp for PEEP Titration to Prevent Alveolar Collapse 34.3.2 Monitoring PL,end-insp and ΔPL for Tidal Volume/Inspiratory Pressure Titration to Prevent Overdistention 34.3.3 Monitoring Spontaneous Effort to Prevent Over- and Under-Assist and Optimize Patient-Ventilator Interaction 34.4 Conclusion References 35: Lung Volumes and Volumetric Capnography 35.1 Introduction 35.2 Lung Volumes 35.2.1 Why Is Measuring Absolute Lung Volume Clinically Relevant? 35.2.2 How Are Absolute Lung Volumes Measured? 35.2.3 How Are the Changes in Lung Volume Measured? 35.2.4 How Is Recruitment Measured Using Computed Tomography? 35.2.5 How Is Recruitment Measured Using Pressure–Volume Curves? 35.2.6 How Is the Recruitment-to-Inflation Ratio Measured? 35.3 Volumetric Capnography 35.3.1 What Is Dead Space? 35.3.2 How Is Dead Space Calculated? 35.3.3 What Is Capnography? 35.3.4 What Is a Capnometer? 35.3.5 How Is Dead Space Measured Using Volumetric Capnography? 35.3.6 What Are the Clinical Implications? References 36: Radiological Monitoring 36.1 Introduction 36.2 What Could We Expect from Chest X Ray in ICU? 36.2.1 Assessing Lung Oedema 36.2.2 Positioning of Monitor and/or Therapeutics Devices 36.2.3 Pleural Effusions 36.2.4 Pneumonia 36.3 When is CT Scan Indicated in Ventilated Patients? 36.4 Conclusions References Part V: Educational Material 37: Teaching Mechanical Ventilation: Online Resources and Simulation 37.1 Introduction 37.2 Online Resources and Applications 37.2.1 Standardized Education for Ventilatory Assistance (SEVA) 37.2.2 iVentilate App 37.2.3 The Toronto Centre of Excellence in Mechanical Ventilation (CoEMV Blog) 37.3 Mechanical Ventilation Simulation 37.3.1 Software Simulation Options 37.3.1.1 Simulation Interface for Ventilation Analysis (SIVA) 37.3.1.2 VentSim 37.3.1.3 XLung 37.3.2 Hardware Simulation Options 37.3.2.1 Test Lungs and Breathing Simulators 37.3.3 Setting Up a Successful Simulation Teaching Event 37.4 Summary 38: Vignettes: Controlled Mechanical Ventilation 38.1 Introduction 38.2 Clinical Vignettes References 39: Vignettes: Assisted Mechanical Ventilation 39.1 Introduction References