دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [Fourth edition.] نویسندگان: Alan Darbyshire, Charles Gibson سری: ISBN (شابک) : 9781000607123, 1000607143 ناشر: سال نشر: 2022 تعداد صفحات: [519] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 42 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Mechanical engineering به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مهندسی مکانیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
اکنون در ویرایش چهارم، مهندسی مکانیک به منظور مطابقت با شرایط فنی استانداردهای جدید کارآموزی مهندسی در سطح 3، بازنگری شده است. علاوه بر این، چهار فصل جدید شامل سیستمهای مهندسی استاتیک و دینامیک، سیستمهای سیالات و ساخت مواد افزودنی میشود. . این متن هشت واحد از صلاحیت دانش فنی توسعه مهندسی ساخت پیشرفته BTEC L3 و همچنین برخی از مطالب در برنامه درسی ملی مهندسی BTEC و مدارک تخصصی مهندسی هوافضا و هوانوردی BTEC L3 را پوشش میدهد. همچنین برخی از محتواهای صلاحیت دانش فنی توسعه مهندسی ساخت پیشرفته EAL L3 را پوشش میدهد. برای تقویت یادگیری، نظریه ریاضی با مثالهای متعددی پشتیبان میشود. همچنین فعالیتهایی برای دانشآموزان وجود دارد که خارج از کلاس درس را تکمیل کنند که به قرار دادن نظریه در متن کمک میکند. آزمونهای دانش خود را در سراسر متن امتحان کنید، دانشآموزان را قادر میسازد تا درک خود را آزمایش کنند، در حالی که سؤالات بررسی پایان واحد برای بازبینی امتحان و کار درسی مفید هستند. این کتاب برای دانشجویانی که دوره های مهندسی سطح 3 را می گذرانند ایده آل است، اگرچه دانشجویانی که دوره های مهندسی سطح 4 را می گذرانند نیز محتوای کتاب را برای مطالعات خود مفید می یابند. آلن داربیشایر یک مدرس آموزش تکمیلی بازنشسته و نویسنده کتاب درسی با تجربه برای GNVQ و AVCE است. او چندین واحد مهندسی مکانیک را برای مشخصات ملی BTEC تهیه کرد. چارلز گیبسون یک دوره کارآموزی مهندسی مکانیک هوانوردی را به پایان رساند و سپس 16 سال را در نیروی دریایی سلطنتی با نگهداری از هلیکوپترهای نظامی گذراند و سپس در سال 2008 از ارتش بازنشسته شد. او همچنین در چندین برنامه از جمله BTECs در مهندسی هوانوردی و مدرک پایه تدریس کرد. در سال 2013، او به کالج Yeovil منتقل شد و در آنجا به تدریس در برنامه های مهندسی از سطح 2 تا سطح 5 ادامه می دهد. او همچنین در نوشتن مدارک دانش فنی مهندسی برای چندین استاندارد کارآموزی مهندسی مشارکت داشته است.
Now in its fourth edition, Mechanical Engineering has been revised to be in line with the technical qualifications of the new engineering apprenticeship standards at Level 3. In addition, four new chapters are included that cover static and dynamic engineering systems, fluid systems and additive manufacturing. The text covers eight units of the BTEC L3 Advanced Manufacturing Engineering Development Technical Knowledge qualification, as well as some content in the BTEC National Engineering Syllabus and BTEC L3 Aerospace and Aviation Engineering specialist qualifications. It also covers some of the content in the EAL L3 Advanced Manufacturing Engineering Development Technical Knowledge qualification. To enhance learning, mathematical theory is backed up with numerous examples to work through. There are also activities for students to complete out of the classroom that help put the theory into context. Test your knowledge quizzes throughout the text enable students to test their understanding, while end of unit review questions are helpful for exam revision and course work. This book is ideal for students undertaking Level 3 courses in engineering although students undertaking Level 4 engineering courses will also find the content of the book useful to their studies. Alan Darbyshire is a retired Further Education lecturer and experienced textbook author for Intermediate GNVQ and AVCE. He drafted several of the mechanical engineering units for the BTEC National specifications. Charles Gibson completed an aeronautical mechanical engineering apprenticeship, and then spent 16 years in the Royal Navy maintaining military helicopters before retiring from the military in 2008. Since then, he has worked in Further Education as the Head of Aeronautical Engineering at City of Bristol College where he also taught on several programmes, including BTECs in Aeronautical Engineering and Foundation Degrees. In 2013, he transferred to Yeovil College where he continues to teach on engineering programmes from Level 2 to Level 5. He has also been involved in the writing of engineering technical knowledge qualifications for several engineering apprenticeship standards.
Cover Half Title Title Page Copyright Page Table of Contents Acknowledgements Introduction 1 Mechanical principles of static engineering systems 1.1 Static engineering systems 1.1.1 Loading systems 1.1.2 Sign convention 1.1.3 Resolution of forces 1.1.4 Bow’s notation 1.1.5 Pin-jointed framed structures 1.2 Loaded components 1.2.1 Structural components 1.2.2 Direct stress 1.2.3 Direct strain 1.2.4 Modulus of elasticity (Young’s modulus) 1.2.5 Factor of safety 1.2.6 Thermal loading 1.2.7 Combined direct and thermal loading 1.2.8 Compound members 1.2.9 Fastenings 1.2.10 Shear stress 1.2.11 Shear strain 1.2.12 Shear modulus (or modulus of rigidity) 1.2.13 Fastenings in single shear 1.2.14 Fastenings in double shear 1.3 Beams 1.3.1 Simply supported beams 1.3.2 Uniformly distributed loads 1.3.3 Bending of beams 1.3.3.1 Shear force distribution 1.3.3.2 Bending moment distribution 1.4 Combined loading 1.4.1 Poisson’s ratio 1.4.2 Two-dimensional loading 1.4.3 Three-dimensional loading 1.4.4 Volumetric strain 1.5 Bending in beams 1.5.1 Second moment of area 1.5.2 Neutral layer 1.5.3 Position of neutral layer 1.5.4 Stress due to bending 1.5.5 Stress in terms of curvature 1.5.6 Stress in terms of bending moment 1.5.7 Experiment to determine the modulus of elasticity of a beam material 1.5.7.1 Apparatus 1.5.7.2 Procedure 1.5.7.3 Theory 1.6 Review questions Answers 2 Mechanical principles of dynamic engineering systems 2.1 Newton’s laws of motion 2.2 Linear systems with uniform acceleration 2.2.1 Displacement and distance 2.3 Velocity and speed 2.4 Uniform linear acceleration 2.5 Inertia and inertial force 2.6 Momentum 2.7 Conservation of momentum 2.8 Elastic collisions 2.9 Inelastic collisions 2.10 Impulse 2.11 Friction 2.12 Tractive resistance and tractive effort 2.13 Energy, mechanical work and power in linear systems 2.13.1 Potential energy 2.13.2 Kinetic energy 2.13.3 Mechanical energy 2.13.4 Mechanical work done 2.13.5 Power 2.13.6 Rotating systems with uniform angular acceleration 2.13.7 Work done and power developed for angular motion 2.14 Moment of inertia 2.14.1 Rotational kinetic energy 2.14.2 Experiments to determine moment of inertia and radius of gyration 2.14.2.1 Method 1 2.14.2.2 Method 2 2.15 Centripetal acceleration and centripetal force 2.15.1 Vector change of velocity 2.15.2 Centripetal acceleration and force 2.15.3 Centrifugal clutches 2.15.4 Stability of vehicles 2.16 Torsion in power transmission shafts 2.16.1 Polar second moment of area 2.16.2 Shear stress due to torsion 2.16.3 Shear stress in terms of angle of twist and shear modulus 2.16.4 Shear stress in terms of applied torque and polar second moment of area 2.16.5 Power transmitted 2.16.6 Experiment to find the shear modulus of a shaft material 2.16.6.1 Apparatus 2.16.6.2 Sketch 2.16.6.3 Procedure 2.17 Resultant and relative velocity 2.17.1 Resultant velocity 2.17.2 Relative velocity 2.18 Plane linkage mechanisms 2.18.1 Links which have translational motion 2.18.2 Links with rotational motion 2.18.3 Links which have a combined translational and rotational motion 2.19 Natural vibrations 2.19.1 Simple Harmonic Motion (SHM) 2.19.2 Mass-spring systems 2.19.3 Simple pendulum 2.19.4 Experiment to verify that a mass-spring system describes SHM 2.19.4.1 Apparatus 2.19.4.2 Procedure 2.19.4.3 Theory 2.19.5 Experiment to verify that a simple pendulum describes SHM 2.19.5.1 Apparatus 2.19.5.2 Procedure 2.19.5.3 Theory 2.20 Simple machines 2.20.1 Velocity ratio formulae 2.20.2 Law of a machine 2.20.3 Limiting efficiency and mechanical advantage 2.20.4 Overhauling 2.21 Review questions Answers 3 Mechanical principles of fluid and thermodynamic systems 3.1 Fluid systems 3.1.1 Fluids at rest 3.2 Density 3.3 Pressure 3.4 Pressure in fluids 3.5 Measurement of pressure 3.6 Barometers 3.7 Manometers 3.8 Pressure transducers 3.9 Archimedes principle 3.10 Fluids in motion in a tapering pipe 3.11 Thermodynamic systems 3.11.1 Heat transfer 3.12 Temperature conversion 3.13 Heat transfer methods 3.14 Thermal expansion of solids 3.15 Gases and the gas laws 3.16 Properties of gases 3.17 Gases and pressure 3.18 First law of thermodynamics 3.19 Second law of thermodynamics 3.20 Specific heat capacity 3.21 Review questions Answers 4 Applications of mechanical systems and technology 4.1 Engineering components 4.1.1 Seals and packing 4.1.2 Bearings 4.1.3 Fastenings 4.2 Mechanical power transmission systems Cams 4.2.1 Linkage mechanisms 4.2.1.1 Slider-crank mechanisms 4.2.1.2 Four-bar linkage mechanisms 4.2.1.3 Watt’s parallel motion 4.2.1.4 Quick-return mechanisms 4.2.2 Shafts, clutches and brakes 4.2.2.1 Joints and couplings 4.2.2.2 Clutches and brakes 4.2.3 Belt and chain drives 4.2.4 Gear trains 4.3 Plant equipment and systems 4.3.1 Hydraulic and pneumatic systems 4.3.2 Steam plant for power generation and process operations 4.3.2.1 Boilers and superheaters 4.3.2.2 Turbines 4.3.2.3 Condensers and feed water heaters 4.3.3 Refrigeration systems 4.3.4 Air-conditioning 4.3.5 Mechanical handling and positioning equipment 4.4 Lubricants and lubrication systems 4.4.1 Lubricant purposes and types 4.4.2 Lubricant types and applications 4.4.2.1 Mineral oils 4.4.2.2 Additives and synthetic oils 4.4.2.3 Vegetable oils 4.4.2.4 Greases 4.4.2.5 Solid lubricants 4.4.2.6 Compressed gases 4.4.3 Lubrication systems and maintenance 4.5 Review questions Answers 5 Properties and applications of engineering materials 5.1 Atomic structure of materials 5.1.1 Structure of metals 5.1.1.1 Phase-equilibrium diagrams 5.1.1.2 Ferrous metals 5.1.1.3 Non-ferrous metals 5.1.2 Polymers 5.1.2.1 Thermoplastics 5.1.2.2 Thermosetting plastics 5.1.2.3 Rubbers 5.1.3 Ceramics 5.1.3.1 Amorphous ceramics 5.1.3.2 Crystalline ceramics 5.1.3.3 Bonded clay ceramics 5.1.3.4 Cements 5.1.4 Wood 5.1.4.1 Hardwoods 5.1.4.2 Softwoods 5.1.5 Composites 5.1.5.1 Laminates 5.1.5.2 Particulate composites 5.1.5.3 Fibrous composites 5.1.6 Smart materials 5.1.6.1 Piezoelectric materials 5.1.6.2 Shape memory alloys 5.1.6.3 Magneto-rheostatic fluids 5.1.6.4 Electro-rheostatic fluids 5.2 Material properties 5.2.1 Mechanical properties 5.2.1.1 Density 5.2.1.2 Tensile strength 5.2.1.3 Ductility 5.2.1.4 Brittleness 5.2.1.5 Elasticity 5.2.1.6 Malleability 5.2.1.7 Hardness 5.2.1.8 Toughness 5.2.2 Thermal properties 5.2.2.1 Expansivity 5.2.2.2 Thermal conductivity 5.2.3 Electrical and magnetic properties 5.2.3.1 Resistivity 5.2.3.2 Temperature coefficient of resistance 5.2.3.3 Permeability 5.2.3.4 Permittivity 5.2.4 Durability 5.2.4.1 Corrosion resistance 5.2.5 Solvent resistance 5.2.5.1 Radiation resistance 5.4 Material processing and the effects on material properties 5.4.1 Processing metals 5.4.1.1 Annealing 5.4.1.2 Normalising 5.4.1.3 Quench hardening 5.4.1.4 Tempering 5.4.1.5 Case hardening 5.4.1.6 Precipitation hardening 5.4.2 Processing polymers 5.4.3 Processing ceramics 5.4.4 Processing composites 5.5 Selection of engineering materials 5.5.1 Design considerations 5.5.2 Costs 5.5.3 Availability of supply 5.5.4 Information sources 5.5.5 Failure of materials 5.5.6 Creep 5.5.7 Fatigue 5.5.8 Degradation 5.5.9 Solvent attack 5.5.10 Radiation damage and ageing 5.5.11 Deterioration of ceramics 5.6 Review questions Answers 6 Engineering design 6.1 The design process 6.1.1 Marketplace pull and technology push 6.1.2 The design process 6.1.3 Computer technology in design and manufacture 6.1.4 Customer/client relationship 6.1.5 Customer requirements 6.1.6 Product design specification 6.2 Product design from a Product Design Specification (PDS) 6.2.1 Requirements of a Product Design Specification (PDS) 6.2.1.1 Performance 6.2.1.2 Environment 6.2.1.3 Maintenance 6.2.1.4 Costs 6.2.1.5 Quantity 6.2.1.6 Aesthetics/ergonomics 6.2.1.7 Size and weight 6.2.1.8 Safety 6.2.2 Preparing a Product Design Specification 6.2.2.1 Performance 6.2.2.2 Ergonomics (or human factors) 6.2.2.3 Environment 6.2.2.4 Maintenance 6.2.2.5 Costs 6.2.2.6 Transportation 6.2.2.7 Manufacture 6.2.2.8 Aesthetics 6.2.2.9 Legal implications 6.2.2.10 Safety 6.2.2.11 Quality 6.2.3 Preparing design proposals 6.2.3.1 Brainstorming 6.2.3.2 Systematic search method 6.2.4 Design reference material 6.3 Legislation, standards, environmental and manufacturing constraints 6.3.1 Legislation and standards 6.3.2 Energy efficiency 6.3.3 Environmental and sustainable constraints 6.3.4 Availability of labour 6.3.5 Availability of material 6.3.6 Influence of material properties 6.3.7 Availability of plant and equipment 6.3.8 Cost-effective manufacture 6.3.9 Health and safety 6.4 Presenting design solutions 6.4.1 The evaluation matrix 6.4.2 Costing 6.4.3 Standard costing sheets 6.4.4 Presenting the final design solution 6.4.4.1 Title page 6.4.4.2 Acknowledgements 6.4.4.3 Summary 6.4.4.4 List of contents 6.4.4.5 Introduction 6.4.4.6 Specification 6.4.4.7 Design parameters 6.4.4.8 Description of design 6.4.4.9 Design evaluation 6.4.4.10 References 6.4.4.11 Appendices 6.4.5 Engineering drawings 6.4.5.1 Block diagrams 6.4.5.2 Flow diagrams 6.4.5.3 Circuit diagrams 6.4.5.4 General arrangement drawings 6.4.5.5 Detail drawings 6.5 Design problems Answers 7 Electro, pneumatic and hydraulic systems and devices 7.1 Fluid power principles 7.1.1 Temperature and pressure 7.1.2 Pascal’s laws 7.1.3 Gas laws 7.1.3.1 Free air 7.1.3.2 Air receiver sizing 7.1.4 Moisture in air 7.1.5 Flow through pipes 7.1.6 Bernoulli effect 7.1.7 Hydraulic pump power 7.1.8 Linear actuators 7.2 Fluid power devices 7.2.1 Production and distribution of fluid power 7.2.2 Pneumatic plant 7.2.3 Hydraulic plant 7.2.4 Control valves 7.2.4.1 Directional control valves 7.2.4.2 Pressure control valves 7.2.4.3 Flow control valves 7.2.5 Actuators 7.2.5.1 Linear single-acting cylinder 7.2.5.2 Linear double-acting cylinder 7.2.5.3 Rotary motion 7.2.6 Sensors 7.2.7 Programmable Logic Controllers (PLCs) 7.3 Industrial applications 7.4 Legislation, regulations and safety precautions 7.4.1 Health and safety at work 7.4.2 Regulations 7.4.3 Safety precautions 7.4.4 Risk assessment 7.5 Maintenance of fluid power systems 7.5.1 Inspection and testing 7.5.2 Fault-finding 7.6 Review questions Answers 8 Additive manufacturing processes 8.1 Additive manufacturing compared to traditional processes 8.2 Additive manufacturing processes 8.3 Material extrusion 8.4 Advantages and disadvantages of Fused Deposition Modelling (FDM) 8.5 Vat polymerisation 8.6 Advantages and disadvantages of Stereolithography / Digital Light Processing (SLA/DLP) 8.7 Powder bed fusion 8.8 Advantages and disadvantages of Powder Bed Fusion (PBF) 8.9 Material jetting 8.10 Advantages and disadvantages of material jetting 8.11 Binder jetting 8.12 Advantages and disadvantages of binder jetting 8.13 Sheet lamination 8.14 Advantages and disadvantages of sheet lamination 8.15 Directed energy deposition 8.16 Advantages and disadvantages of directed energy deposition 8.17 Single-step, multi-step processes and material bonding 8.18 Capacity and sustainability of additive manufacturing 8.19 Typical materials used in additive manufacturing processes 8.20 Design considerations for additive manufacturing 8.21 Warping, curling, shrinkage, material selection and temperature 8.22 Oversintering 8.23 Powder removal 8.24 Support structures 8.25 Surface finish 8.26 Post-processing requirements 8.27 Review questions Answers Index