دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2
نویسندگان: WEI TONG
سری:
ISBN (شابک) : 9780367564285, 0367564289
ناشر: CRC PRESS
سال نشر: 2022
تعداد صفحات: 987
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 45 مگابایت
در صورت تبدیل فایل کتاب MECHANICAL DESIGN AND MANUFACTURING OF ELECTRIC MOTORS. به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب طراحی مکانیکی و ساخت موتورهای الکتریکی. نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Title Page Copyright Page Dedication Table of Contents Preface (2[sup(nd)] Edition) Preface (1[sup(st)] Edition) Author List of Abbreviations Chapter 1 Introduction to Electric Motors 1.1 History of Electric Machines 1.2 Motor Design Characteristics 1.2.1 Motor Torque 1.2.1.1 Static and Dynamic Torque 1.2.1.2 Motor Torque in Motor-Load System 1.2.1.3 Continuous Torque 1.2.1.4 Peak Torque 1.2.1.5 RMS Torque 1.2.1.6 Stall Torque 1.2.1.7 Cogging Torque and Reduction Methods 1.2.1.8 Torque Ripple 1.2.2 Motor Speed 1.2.2.1 Continuous Speed 1.2.2.2 Peak Speed 1.2.2.3 Speed Ripple 1.2.3 Torque Density 1.2.4 Motor Power and Power Factor 1.2.5 Torque–Speed Characteristics 1.2.6 Mechanical Resonance and Resonant Frequency 1.2.7 Load-to-Motor Inertia Ratio 1.2.8 Duty Cycle 1.2.9 Motor Efficiency 1.2.9.1 Definition of Motor Efficiency 1.2.9.2 IEC Standards on Efficiency Classes of AC Electric Motors 1.2.10 Motor Insulation 1.2.11 Motor Operation Reliability 1.3 Classifications of Electric Motors 1.3.1 DC and AC Motors 1.3.2 Single-Phase and Three-Phase Motors 1.3.3 Induction and PM Motors 1.3.4 Synchronous and Asynchronous Motors 1.3.5 Servo and Stepper Motors 1.3.6 Gear Drive and Direct Drive Motors 1.3.7 Brush and Brushless Motors 1.3.8 Reluctance Motors 1.3.9 Radial Flux and Axial Flux Motors 1.3.10 Rotary and Linear Motors 1.3.11 Open and Enclosed Motors 1.3.12 Housed and Frameless Motors 1.3.13 Internal Rotor Motor and External Rotor Motor 1.3.14 Specialty Electric Motors 1.3.14.1 Explosion Proof Motor and Flame Proof Motor 1.3.14.2 Submersible Motor 1.3.14.3 Ultrahigh-Speed Motor 1.3.14.4 Motor Operating under Vacuum Environment 1.3.14.5 Motor Operating under Nuclear Radiation Environment 1.3.14.6 Piezoelectric Motor 1.3.15 Motor Classification According to Power Rating 1.4 Motor Design and Operation Parameters 1.4.1 Back EMF Constant, K[sub(e)] 1.4.2 Torque Constant, K[sub(t)] 1.4.3 Velocity Constant, K[sub(v)] 1.4.4 Motor Constant, K[sub(m)] 1.4.5 Mechanical Time Constant, τ[sub(m)] 1.4.6 Electrical Time Constant, τ[sub(e)] 1.4.7 Thermal Time Constant, τ[sub(th)] 1.4.8 Viscous Damping, K[sub(vd)] 1.5 Sizing Equations 1.6 Motor Design Process and Considerations 1.6.1 Design Process 1.6.2 Design Integration 1.6.3 Mechatronics 1.6.4 Temperature Effect on Motor Performance 1.7 Motor Failure Modes 1.8 IP Code References Chapter 2 Rotor Design 2.1 Rotor in Induction Motor 2.1.1 Wound Rotor 2.1.2 Squirrel Cage Rotor 2.1.2.1 Factors Affecting Resistance of Squirrel Cage Rotor 2.1.2.2 Double-Cage Rotor 2.1.2.3 Casting Squirrel Cage Rotor 2.1.2.4 Skin Effect 2.1.3 Induction Motor Design Types and Their Performing Characteristics 2.2 Permanent Magnet Rotor 2.2.1 Discovery of Phenomenon of Magnetism 2.2.2 Permanent Magnet Characteristics 2.2.3 Permanent Magnet Materials 2.2.3.1 Ferrite Permanent Magnets 2.2.3.2 Rare Earth Permanent Magnets 2.2.3.3 New Developments of Alternative PMs and Reductions of Reliance on Rare Earths 2.2.4 Magnetization 2.2.5 Factors Causing Demagnetization 2.2.6 Maximum Operating Temperature 2.2.7 Permanent Magnet Mounting and Retention Methods 2.2.8 Ring Magnets 2.2.9 Corrosion Protection of Permanent Magnets 2.3 Rotor Manufacturing Process 2.3.1 Lamination Materials 2.3.2 Lamination Cutting 2.3.3 Lamination Surface Insulation 2.3.4 Lamination Annealing 2.3.5 Lamination Stacking 2.3.6 Rotor Casting for Squirrel Cage Motor 2.3.7 Heat Treatment of Casted Rotor 2.3.8 Rotor Assembly 2.3.9 Rotor Machining and Runout Measurement 2.3.10 Rotor Balancing 2.3.10.1 Type of Unbalance 2.3.10.2 Rotor Balancing Machine 2.3.10.3 Balancing Operation 2.4 Interference Fit 2.4.1 Press Fit 2.4.2 Shrink Fit 2.4.3 Serration Fit 2.4.4 Fit with Knurling 2.4.5 Fit with Adjustable Ringfeder® Locking Devices 2.4.6 Fit with Tolerance Rings 2.5 Stress Analysis of Rotor 2.6 Rotordynamic Analysis 2.6.1 Rotor Inertia 2.6.2 Motor Critical Speed and Resonance 2.7 Rotor Burst Containment Analysis 2.7.1 Rotor Burst Speed 2.7.2 Energy in Rotating Rotor 2.7.2.1 Kinetic Energy in Rotor 2.7.2.2 Elastic Potential Energy in Rotor 2.7.2.3 Ratio of Potential Energy to Kinetic Energy of Rotor 2.7.3 Rotor Burst Containment Design References Chapter 3 Shaft Design 3.1 Shaft Materials 3.2 Shaft Loads 3.3 Solid and Hollow Shafts 3.4 Shaft Design Methods 3.4.1 Macaulay’s Method 3.4.2 Area–Moment Method 3.4.3 Castigliano’s Method 3.4.4 Graphical Method 3.5 Engineering Calculations 3.5.1 Normal Stress for Shaft Subjected to Axial Force 3.5.2 Bending Stress for Shaft Subjected to Bending Moment 3.5.3 Torsional Shear Stress and Torsional Deflection 3.5.4 Lateral Deflection of Shaft 3.5.4.1 Lateral Deflection due to Bending Moment 3.5.4.2 Lateral Deflection due to Transverse Force 3.5.4.3 Lateral Deflection due to Shear Force 3.6 Shaft Design Issues 3.6.1 Shaft Design Considerations 3.6.2 Shaft Rigidity 3.6.3 Critical Shaft Speed 3.6.3.1 Shaft with Uniform Diameter 3.6.3.2 Stepped Shaft 3.6.4 Dimensional Tolerance 3.6.5 Shaft Runout 3.6.6 Shaft Eccentricity 3.6.7 Heat Treatment and Shaft Hardness 3.6.8 Shaft Surface Finishing 3.6.9 Shaft Lead 3.6.10 Shaft Seal 3.6.10.1 O-Ring Seal 3.6.10.2 Universal Lip Seal 3.6.10.3 V-Shaped Spring Seal 3.6.10.4 Brush Seal 3.6.10.5 PTFE Seal 3.6.10.6 Spring-Energized Seal 3.6.10.7 Noncontact Seal 3.6.11 Diametrical Fit Types 3.7 Stress Concentration 3.8 Torque Transmission through Mechanical Joints 3.8.1 Keyed Shafts 3.8.1.1 Selection of Key Material 3.8.1.2 Stress Analysis of Key and Keyseat 3.8.1.3 Key Fit 3.8.1.4 Stress Concentration Factors of Keyed Shafts 3.8.2 Spline Shafts 3.8.2.1 Advantages of Spline Shafts 3.8.2.2 Type of Spline 3.8.2.3 Stress Concentration Factors of Spline Shafts 3.8.3 Tapered Shafts 3.9 Fatigue Failure under Alternative Loading 3.10 Shaft Manufacturing Methods 3.10.1 Machined Shaft 3.10.2 Forged Shaft 3.10.3 Welded Hollow Shaft 3.10.4 Shaft Measurement 3.11 Shaft Misalignment between Motor and Driven Machine 3.11.1 Type of Misalignment 3.11.2 Correction of Shaft Misalignment 3.12 Shaft Coupling 3.12.1 Rigid and Semirigid Couplings 3.12.2 Flexible Couplings 3.12.3 Non-Contact Couplings 3.12.4 Oil Shear Couplings References Chapter 4 Stator Design 4.1 Stator Lamination 4.1.1 Stator Lamination Material 4.1.2 Stator Lamination Patterns 4.1.2.1 One-Piece Lamination 4.1.2.2 T-Shaped Segmented Lamination 4.1.2.3 Connected Segmented Lamination 4.1.2.4 Two-Section Stator Lamination 4.1.2.5 Stator Lamination Integrated by Individual Teeth and a Yoke Section 4.1.2.6 Slotless Stator Core 4.1.2.7 Slinky Lamination Stator Core 4.2 Magnet Wire 4.2.1 Regular Magnet Wire 4.2.2 Self-Adhesive Magnet Wire 4.2.3 Litz Wire 4.3 Stator Insulation 4.3.1 Injection Molded Plastic Insulation 4.3.2 Slot Liner 4.3.3 Glass Fiber Reinforced Mica Tape 4.3.4 Powder Coating on Stator Core 4.4 Manufacturing Process of a Stator Core 4.4.1 Stator Lamination Cutting 4.4.2 Lamination Fabrication Process 4.4.3 Lamination Annealing 4.4.4 Lamination Stacking 4.4.5 Stator Winding 4.4.5.1 Random Winding by Hand 4.4.5.2 Coil Formation—Distributed Winding 4.4.5.3 Coil Formation—Concentrated Winding 4.4.5.4 Coil Formation—Conductor Bar 4.5 Stator Encapsulation and Impregnation 4.5.1 Encapsulation 4.5.1.1 Encapsulation Materials 4.5.1.2 Encapsulation Process 4.5.2 Varnish Dipping 4.5.3 Trickle Impregnation 4.5.4 Vacuum Pressure Impregnation 4.6 Stator Design Considerations 4.6.1 Cogging Torque 4.6.2 Airgap 4.6.3 Stator Cooling 4.6.4 Robust Design of Stator 4.6.5 Power Density Improvement 4.7 Mechanical Stress of Stator References Chapter 5 Motor Frame Design 5.1 Types of Motor Housing Based on Manufacturing Method 5.1.1 Wrapped Housing 5.1.2 Casted Housing 5.1.2.1 Casting Material 5.1.2.2 Casting Process 5.1.2.3 Pressure Casting 5.1.2.4 Heat Treatment 5.1.3 Machined Housing 5.1.4 Stamped Housing 5.1.5 Extruded Motor Housing 5.1.6 Motor Housing with Composite Materials 5.1.7 Motor Housing Fabricated by 3D Printing and Other Additive Manufacturing Processes 5.1.8 Frameless Motor 5.2 Testing Methods of Casted Motor Housing 5.3 Endbell Manufacturing 5.3.1 Casted Endbell 5.3.2 Stamped Endbell 5.3.3 Iron Casting versus Aluminum Casting 5.3.4 Machined Endbell 5.3.5 Forged Endbell 5.4 Motor Assembly Methods 5.4.1 Tie Bar 5.4.2 Tapping at Housing End Surface 5.4.3 Forged Z-Shaped Fastener 5.4.4 Rotary Fasteners 5.4.4.1 Triangle-Base Rotating Fastener 5.4.4.2 Square-Base Rotating Fastener 5.4.4.3 Butterfly-Base Rotating Fastener 5.4.5 Other Types of Fasteners 5.4.5.1 Cylinder-Base Fastener Locked with Retaining Ring 5.4.5.2 Cylinder-Base Fastener with Self-Locking Aperture 5.4.5.3 Fastener Engaged with Housing from Housing Interior 5.4.5.4 Self-Clinching Fastener 5.5 Fastening System Design 5.5.1 Types of Thread Fasteners 5.5.2 Thread Formation 5.5.3 Fastener Preload 5.5.4 Fastener-Tightening Process 5.5.5 Tightening Torque 5.5.6 Thread Engagement and Load Distribution 5.6 Common Types of Electric Motor Enclosures 5.6.1 Open Drip Proof Enclosure 5.6.2 Totally Enclosed Non-Ventilated Enclosure 5.6.3 Totally Enclosed Fan Cooled Enclosure 5.6.4 Totally Enclosed Air over Enclosure 5.6.5 Totally Enclosed Forced Ventilated Enclosure 5.6.6 Totally Enclosed Washdown Enclosure 5.6.7 Explosion Proof Enclosure 5.7 Anticorrosion of Electric Motor and Components 5.7.1 Surface Treatment Methods 5.7.1.1 Electroplating 5.7.1.2 Electroless Plating 5.7.1.3 Physical Vapor Deposition 5.7.1.4 Inorganic Coating 5.7.1.5 Phosphate Coating 5.7.1.6 Electropolishing 5.7.1.7 Nanocoating 5.7.2 Anticorrosion Treatment of Electric Motor 5.7.3 Hydrogen Embrittlement Issues References Chapter 6 Motor Bearing 6.1 Bearing Classification 6.1.1 Journal Bearing 6.1.2 Rolling Bearing 6.1.2.1 Ball Bearing 6.1.2.2 Roller Bearing 6.1.3 Noncontact Bearing 6.1.4 Sensor Bearing 6.1.5 Slewing Ring Bearing 6.1.6 Crossed Roller Bearing 6.1.7 Ball Screw 6.2 Bearing Design 6.2.1 Bearing Materials 6.2.2 Bearing Internal Clearances 6.2.3 Allowable Bearing Speed 6.2.4 Bearing Fit 6.2.5 Prevention of Bearing Axial Movement 6.2.6 Bearing Load 6.2.6.1 Bearing Preload Arrangement 6.2.6.2 Radial and Axial Bearing Load 6.2.6.3 Load Distribution 6.3 Bearing Fatigue Life 6.3.1 Calculation of Bearing Fatigue Life 6.3.2 Bearing Failure Probability Distribution 6.3.3 Influence of Unbalance on Bearing Fatigue Life 6.3.4 Influence of Wear on Bearing Fatigue Life 6.3.5 Influence of Internal Radial Clearance on Bearing Fatigue Life 6.4 Bearing Failure Mode 6.4.1 Major Causes of Premature Bearing Failure 6.4.2 Lubricant Selection 6.4.3 Improper Bearing Lubrication 6.4.4 Lubricant Contamination 6.4.5 Grease Leakage 6.4.6 Bearing Sealing and Bearing Shielding 6.4.7 Excessive Load 6.4.8 Internal Radial Interference Condition 6.4.9 Bearing Current 6.4.10 Impact of High Temperature on Bearing Failure 6.4.11 Bearing Failure Associated with Motor Vibration and Overloading 6.4.12 Improper Bearing Installation and Bearing Misalignment 6.4.13 Vertically Mounted Motor 6.5 Bearing Noise 6.6 Bearing Selection 6.6.1 Bearing Type Selection Based on Load 6.6.2 Bearing Type Selection Based on Speed 6.6.3 Selection of Bearing Size 6.7 Bearing Performance Improvement References Chapter 7 Motor Brake 7.1 Fundamental Knowledge of Motor Brake 7.1.1 Static and Dynamic Friction 7.1.2 Wear 7.1.3 Kinetic Energy of Rotating Object 7.1.4 Brake Friction Materials 7.1.5 Brake Operation Mode 7.2 Key Design Parameters and Considerations in Brake Design 7.2.1 Braking Torque 7.2.2 Brake Operation Time 7.2.2.1 Definitions of Various Brake Action Time 7.2.2.2 Brake Response Time 7.2.2.3 Actual Braking Time 7.2.2.4 Total Braking Time 7.2.3 Braking Energy for Single Operation and Operation Frequency per Minute 7.2.4 Mean Heat Power 7.2.5 Temperature Rise and Thermal Capacity Rating 7.2.6 Factor of Safety 7.2.7 Brake Backlash 7.2.8 Brake Noise 7.2.9 Maximum Sliding Speed 7.2.10 Reliability and Durability 7.2.11 Brake Operation Cycle 7.2.12 Brake Mounting Arrangement 7.2.13 Brake Size 7.2.14 Brake Integration with Electric Motor 7.2.15 Brake Ingress Protection Rating 7.2.16 Accumulation of Brake Wear Particles 7.3 Classification of Braking System 7.3.1 Electromagnetic Brake 7.3.1.1 Spring-Engaged, Electromagnetically Released Brake 7.3.1.2 Solenoid-Actuated Brake 7.3.1.3 Multiple Disc Friction-Blocking Brake 7.3.1.4 Eddy-Current Brake 7.3.1.5 Magnetic Particle Brake 7.3.1.6 Hysteresis Brake 7.3.1.7 Permanent Magnet Brake 7.3.1.8 Magnetorheological Brake 7.3.1.9 Piezoelectric Brake 7.3.2 Mechanical Brake 7.3.2.1 Compressed Air-Engaged, Spring-Released Brake 7.3.2.2 Spring-Engaged, Hydraulic Pressure Released Brake 7.3.2.3 Pneumatic Brake 7.3.2.4 Hydraulic Brake 7.3.3 Oil Shear Brake 7.3.4 Regenerative Brake 7.4 Brake Failure 7.4.1 Overheating of Mating Friction Surfaces 7.4.2 Excessive Wear on Friction Surfaces 7.4.3 Failure due to Corrosion 7.4.4 Runout of Friction Disc 7.4.5 Thermomechanical Fatigue 7.5 Brake Design and Selection Considerations 7.5.1 Dynamic Stopping Brake or Holding Brake? 7.5.2 AC or DC Brake? 7.5.3 Braking Torque 7.5.4 Overall Inertia of System 7.5.5 Thermal Consideration in Brake Selection 7.5.6 Other Factors Affecting Brake Selection References Chapter 8 Servo Feedback Devices and Motor Sensors 8.1 Encoder 8.1.1 Type of Encoder 8.1.1.1 Optical Encoder 8.1.1.2 Magnetic Encoder 8.1.1.3 Capacitive Encoder 8.1.1.4 Inductive Encoder 8.1.2 Absolute and Incremental Encoders 8.1.2.1 Absolute Encoder 8.1.2.2 Incremental Encoder 8.1.3 Resolution of Encoder 8.1.4 Rotary and Linear Encoder 8.1.5 Encoder Mounting 8.2 Resolver 8.2.1 Type of Resolver 8.2.2 Resolver Operating Parameters 8.2.2.1 Resolver Accuracy 8.2.2.2 Input Excitation Frequency, Voltage, and Current 8.2.2.3 Phase Shift 8.2.2.4 Transformation Ratio 8.2.2.5 Winding Impedance 8.2.2.6 Speed Ripple 8.2.2.7 Null Voltage 8.2.3 Resolver Testing 8.2.3.1 Test Equipment and Instruments 8.2.3.2 Determination of Resolver Position Error 8.2.3.3 Measurement of Transformation Ratio 8.2.3.4 Measurement of Phase Shift 8.2.3.5 Measurement of Velocity Ripple 8.2.3.6 Measurement of Resolver Impedance 8.2.3.7 Effect of Cable Length on Resolver Performance 8.2.3.8 Influence of Motor Brake on Resolver Performance 8.2.3.9 Influence of Mechanical Impacts on Resolver Performance 8.3 Hall Effect Sensor 8.3.1 Linear Sensor 8.3.2 Threshold Sensor 8.4 Proximity Sensor 8.4.1 Inductive Proximity Sensor 8.4.2 Capacitive Proximity Sensor 8.4.3 Ultrasonic Proximity Sensor 8.4.4 Photoelectric Proximity Sensor 8.5 Other Motor Sensors 8.5.1 Force/Torque Sensor 8.5.2 Temperature Sensor 8.5.2.1 Thermocouple 8.5.2.2 Resistance Temperature Detector 8.5.2.3 Thermistor 8.5.2.4 Monolithic Integrated Circuit Temperature Sensor 8.5.2.5 Infrared Thermometer 8.5.3 Vibration Sensor 8.5.4 Current Sensor 8.5.5 Pressure Sensor 8.5.6 Magnetic Field Sensor 8.6 Improving Motor Sensor Performance 8.6.1 Mitigation of Electrical Noise 8.6.2 Suppression of Temperature Rise 8.6.3 Utilization of Dual- Feedback Solution for Improving Motion Control Accuracy and Reliability 8.7 Development of Innovative Sensor 8.7.1 Sensor Miniaturization—Microsensor and Nanosensor 8.7.2 Advanced Wireless Sensor Technology 8.7.3 Smart Sensors 8.7.4 Color-Changing Dye Sensor for Detecting Motor Condition 8.7.5 Sensor with Newly Developed Material 8.8 Selection of Motor Feedback Devices and Sensors 8.9 Cable Technology References Chapter 9 Power Transmission and Gearing Systems 9.1 Characteristics of Gearing Systems 9.1.1 Gearing System Efficiency 9.1.2 Gear Ratio and Torque Ratio 9.1.3 Inertia Matching 9.1.4 Gear Tooth Profile 9.1.5 Backlash 9.1.6 Gearing Stage 9.1.7 Gear Lubrication 9.1.8 Gear Contact Ratio 9.1.9 Temperature Rise and Thermal Effect on Gearing System Performance 9.1.10 Compact Structure 9.1.11 Acoustic Noise 9.1.12 Operation Reliability 9.2 Types of Modern Gearing Systems 9.2.1 Strain Wave Gearing System 9.2.2 Planetary Gearing System 9.2.3 Cycloidal Gearing System 9.2.4 Rotate Vector Gearing System 9.2.5 Magnetic Gearing System 9.2.6 Continuously Variable Strain Wave Transmission 9.2.7 Pulse Drive 9.2.8 Abacus Drive 9.2.9 Circular Wave Drive 9.2.10 Archimedes Drive 9.2.11 Spiral Cam Gearing System 9.2.12 Clutch-Type Stepless Speed Changer 9.3 Conventional Gearing Systems 9.3.1 Spur Gear 9.3.2 Helical Gear 9.3.3 Bevel Gear 9.3.4 Spiroid Gear 9.3.5 Helicon Gear 9.3.6 Worm Gear 9.3.7 Comparison of Conventional Gearing Systems 9.4 Gearhead and Gearmotor 9.4.1 Gearhead 9.4.2 Gearmotor 9.5 Failure of Gearing System 9.6 Selection of Gearing System References Chapter 10 Motor Power Losses 10.1 Power Losses in Windings due to Electric Resistance in Copper Wires 10.2 Eddy-Current and Magnetic Hysteresis Losses 10.2.1 Eddy-Current Loss 10.2.2 Magnetic Hysteresis Loss 10.2.3 Calculations of Eddy-Current and Magnetic Hysteresis Losses 10.2.4 Losses in Stator and Rotor Iron Cores 10.2.5 Losses in PMs 10.2.6 Power Losses in Other Core Components 10.3 Mechanical Friction Losses 10.3.1 Bearing Losses 10.3.2 Sealing Losses 10.3.3 Brush Losses 10.4 Windage Losses 10.4.1 Windage Loss due to Rotating Rotor 10.4.1.1 Taylor Vortex 10.4.1.2 Friction Factor 10.4.1.3 Windage Loss Due to Rotating Rotor 10.4.2 Windage Loss due to Entrance Effect of Axial Airgap Flow 10.4.3 Windage Loss due to Stator Surface Roughness 10.4.4 Energy Loss due to Fluid Viscosity 10.4.5 Fan Losses 10.4.6 Ventilating Path Losses 10.4.7 Methods for Reducing Windage Losses 10.5 Stray Load Losses 10.6 Influence of Power Rating on Motor Power Losses References Chapter 11 Motor Cooling 11.1 Introduction 11.1.1 Passive and Active Cooling Techniques 11.1.2 Heat Transfer Enhancement Techniques 11.2 Conductive Heat Transfer Techniques 11.2.1 Conductive Heat Flux and Energy Equations 11.2.2 Encapsulation and Impregnation of Electric Motor 11.2.3 Enhanced Heat Transfer Using High-Thermal-Conductivity Material 11.2.4 Using Self-Adhesive Magnet Wire for Fabricating Stator Winding 11.3 Natural Convection Cooling with Fins 11.3.1 Cooling Fin 11.3.2 Fin Optimization 11.3.3 Heatsinks Manufactured with Additive Manufacturing Process 11.3.4 Applications of Various Fins in Motor Cooling 11.3.5 Pin Fin Heatsink 11.3.6 Thermal Interface Materials 11.4 Forced Air Cooling Techniques 11.4.1 Thermophysical Properties of Air 11.4.2 Direct Forced Air Cooling Techniques 11.4.2.1 Forced Air Cooling at End-Winding Regions 11.4.2.2 Forced Air Flowing through Internal Cooling Channels across the Motor 11.4.2.3 Forced Air Flowing Over Motor Outer Surfaces 11.4.2.4 Forced Air Flowing through Both Motor Outer and Inner Surfaces 11.4.2.5 Air Jet Impingement Cooling 11.4.2.6 Cooling with Hydrogen Gas 11.4.3 Indirect Forced Air Cooling Techniques 11.4.3.1 Indirect Forced Air Cooling with Heat Exchangers 11.4.3.2 Indirect Forced Air Cooling via Indirect Evaporative Air Cooler 11.4.4 Fan and Blower 11.4.4.1 Fan Types 11.4.4.2 Forward-Curved, Backward-Curved, and Straight Blades of Centrifugal Fans 11.4.4.3 Fan Performance Curve and Operation Point 11.4.4.4 Fan Selection 11.5 Liquid Cooling Techniques 11.5.1 Thermophysical Properties of Coolants 11.5.2 Direct Liquid Cooling Techniques 11.5.2.1 Direct Liquid Cooling of Bundled Magnet Wires 11.5.2.2 Spray Cooling 11.5.2.3 Direct Liquid Cooling through Hollow Winding Coils/Conductors 11.5.2.4 Liquid Jet Impingement Cooling 11.5.3 Liquid Immersion Cooling 11.5.4 Indirect Liquid Cooling Techniques 11.5.4.1 Indirect Liquid Cooling via Cold Plates Attached to Motor Walls 11.5.4.2 Indirect Liquid Cooling via Helical Copper Pipes Casted in Motor Housing 11.5.4.3 Indirect Liquid Cooling with Cooling Channels on Casted Motor Housing 11.5.4.4 Indirect Liquid Cooling via Copper Pipe in Spacer 11.5.4.5 Indirect Liquid Cooling through Stator Winding Slots 11.5.4.6 Indirect Liquid Cooling through Microscale Channels 11.5.4.7 Indirect Liquid Cooling via Heat Transfer Enhancement Device 11.6 Phase-Change Cooling Techniques 11.6.1 Cooling with Heat Pipes 11.6.2 Cooling with Vapor Chambers 11.6.3 Evaporative Cooling 11.6.4 Mist Cooling 11.7 Radiative Heat Transfer 11.8 Other Advanced State-of-the-Art Cooling Methods 11.8.1 Micro Channel Cooling Systems 11.8.2 Metal Foams 11.8.3 Heat Transfer Enhancement with Nanotechnology 11.8.3.1 Nanofluid 11.8.3.2 Carbon Nanotube 11.8.3.3 NanoSpreader™ Vapor Cooler 11.8.3.4 CarbAl™ Heat Transfer Material 11.8.3.5 Ionic Wind Generator References Chapter 12 Motor Vibration and Acoustic Noise 12.1 Vibration and Noise of Electric Motor 12.2 Fundamentals of Vibration 12.2.1 Simple Harmonic Oscillating System 12.2.2 Damped Harmonic Oscillating System 12.2.3 Forced Vibration with Damping 12.2.4 Forced Vibration Due to Mass Unbalance 12.2.5 Vibration Induced by Support Excitation 12.2.6 Directional Vibration 12.3 Electromagnetic Vibrations 12.3.1 Unbalanced Forces/Torques Caused by Electric Supply 12.3.2 Broken Rotor Bar and Cracked End Ring 12.3.3 Unbalanced Magnetic Pull Due to Asymmetric Airgap 12.3.3.1 Electromagnetic Force at Airgap 12.3.3.2 Asymmetric Airgap Due to Nonconcentric Rotor and Stator 12.3.3.3 Asymmetric Airgap Due to Elliptic Stator 12.3.3.4 Asymmetric Airgap Due to Elliptic Rotor 12.3.3.5 Asymmetric Airgap Due to Rotor Misalignment 12.3.3.6 Asymmetric Airgap Resulting from Shaft Deflection 12.3.4 Nonuniform Airgap Due to Stator Slots 12.3.5 Mutual Action Forces between Currents of Stator and Rotor 12.3.6 Vibration Due to Unbalanced Voltage Operation 12.4 Mechanical Vibrations 12.4.1 Misaligned Shaft and Distorted Coupling 12.4.2 Defective Bearing 12.4.3 Self-Excited Vibration 12.4.4 Torsional Vibration 12.5 Vibration Measurements 12.6 Vibration Control 12.6.1 Damping Materials 12.6.2 Vibration Isolation 12.6.3 Magnetorheological Damper and Machine Mount 12.6.4 Tuned Mass Damper 12.6.5 Double Mounting Isolation System 12.6.6 Viscoelastic Bearing Support 12.6.7 Self-Locking Fastener 12.6.7.1 Hard Lock Nut 12.6.7.2 Super Lock Nut and Super Stud Bolt 12.6.7.3 Self-Locking Nut 12.6.7.4 Jam Nut 12.6.7.5 Serrated Face Nut and Bolt 12.6.7.6 Nord-Lock Washer 12.6.8 Active Vibration Isolation and Damping 12.6.9 Measurements of Motor Vibration 12.7 Fundamentals of Acoustic Noise 12.7.1 Tonal Noise and Broadband Noise 12.7.2 Sound Pressure Level and Sound Power Level 12.7.3 Octave Frequency Bands 12.7.4 Three Sound Weighting Scales 12.7.5 Averaged Sound Pressure Level 12.7.6 Type of Noise 12.7.6.1 Structure-Borne Noise 12.7.6.2 Airborne Noise 12.7.6.3 Type of Aerodynamic Noise 12.8 Noise Classification and Measurement in Rotating Electric Machine 12.8.1 Noise Type in Rotating Electric Machine 12.8.1.1 Mechanical Noise 12.8.1.2 Electromagnetic Noise 12.8.1.3 Aerodynamic Noise 12.8.2 Acoustic Anechoic Chamber 12.8.3 Measurement of Motor Noise 12.8.4 Acoustic Noise Field Measurement 12.9 Motor Noise Abatement Techniques 12.9.1 Active Noise Reduction Techniques 12.9.2 Passive Noise Reduction Techniques 12.9.2.1 Blocking Noise Propagation Paths and Isolating Noise Sources 12.9.2.2 Using Noise-Absorbing Material 12.9.2.3 Motor Suspension Mounting 12.9.2.4 Noise-Attenuating Structure 12.9.2.5 Smoothing Ventilation Path 12.9.2.6 Selecting Low Noise Bearing 12.9.3 Innovative Noise Abatement Methods References Chapter 13 Motor Testing 13.1 Motor Testing Standards 13.2 Testing Equipment and Measuring Instruments 13.2.1 Dynamometer 13.2.2 Thermocouples and Other Temperature Measuring Devices 13.2.3 Control System 13.2.4 Data Acquisition System 13.2.5 Torque Transducer 13.2.6 Power Quality Analyzer 13.2.7 Power Supply 13.2.8 Motor Test Platform 13.3 Testing Load Level 13.4 Testing Methods 13.4.1 Mechanical Differential Testing Method 13.4.2 Back-to-Back Testing Method 13.4.3 Indirect Loading Testing Method 13.4.4 Forward Short-Circuit Testing Method 13.4.5 Variable Inertia Testing Method 13.5 Off-Line Motor Testing 13.5.1 Winding Electrical Resistance Testing 13.5.2 Megohm Testing 13.5.3 Polarization Index Testing 13.5.4 High-Potential Testing 13.5.5 Surge Testing 13.5.6 Step-Voltage Testing 13.5.7 Determination of Rotor’s Moment of Inertia 13.6 Online Motor Testing 13.6.1 Locked Rotor Testing 13.6.2 Motor Heat Run Testing 13.6.3 Motor Efficiency Testing 13.6.4 Impulse Testing 13.6.5 Cogging Torque Testing 13.6.6 Torque Ripple Measurement References Chapter 14 Modeling, Simulation, and Analysis of Electric Motors 14.1 Computational Fluid Dynamics and Numerical Heat Transfer 14.1.1 Strategies in Modeling and Performing CFD Analysis 14.1.2 Rotating Flow Modeling 14.1.3 Porous Media Modeling 14.1.4 Numerical Simulation of Motor Cooling 14.1.4.1 Mathematical Formulations 14.1.4.2 Numerical Method 14.1.4.3 Case Study—3D Thermal Analysis of Large Size Motor 14.1.4.4 Simulation of Two-Phase Flow and Heat Transfer 14.2 Thermal Simulation with Lumped-Circuit Modeling 14.3 Thermal Analysis Using the Finite Element Method 14.4 Rotordynamic Analysis 14.4.1 Problem Description 14.4.2 Bearing Support’s Stiffness and Damping 14.4.3 Rotordynamic Modeling 14.4.4 Results of Rotordynamic Analysis 14.5 Static and Dynamic Stress/Strain Analysis 14.5.1 Static Analysis 14.5.2 Dynamic Analysis 14.5.2.1 Centrifugal Force-Induced Stress on PMs 14.5.2.2 Structural Analysis Using the Finite Element Method 14.5.3 Shock Load 14.6 Fatigue Analysis 14.7 Torsional Resonance Analysis 14.8 Motor Noise Prediction 14.9 Buckling Analysis 14.10 Thermally Induced Stress Analysis 14.11 Thermal Expansion and Contraction Analysis References Chapter 15 Innovative and Advanced Motor Design 15.1 High-Temperature Superconducting Motor 15.2 Radial-Flux Multirotor or Multistator Motor 15.2.1 Radial-Flux Multirotor Motor 15.2.2 Radial-Flux Multistator Motor 15.2.3 Radial-Flux Brushless Dual-Rotor Machine 15.2.4 Radial-Flux Dual-Stator PM Machine 15.2.5 High-Torque PM Motor with 3D Circumferential Flux Design 15.2.6 Radial-Flux Dual-Rotor, Dual-Stator Motor 15.2.7 Radial-Flux Integrated Magnetic-Geared In-Wheel Motor 15.3 Axial-Flux Multirotor or Multistator Motor 15.3.1 Single-Sided and Double-Sided Axial-Flux Motors 15.3.2 Multistage Axial-Flux Motor 15.3.3 Yokeless and Segmented Armature Motors 15.3.4 Energy Efc fi ient Axial-Flux Yokeless Motor with Modular Stator 15.3.5 Axial-Flux Motor with PCB Stator 15.4 Hybrid Motor 15.4.1 Hybrid Excitation Synchronous Machine 15.4.2 Hybrid Hysteresis PM Synchronous Motor 15.4.3 Hybrid Motor Integrating RF Motor and AF Motor 15.4.4 Hybrid-Field Flux-Controllable PM Motor 15.4.5 Hybrid Linear Motor 15.5 Conical Rotor Motor 15.6 Transverse Flux Motor 15.7 Recong fi urable PM Motor 15.8 Variable Reluctance Motor 15.9 PM Memory Motor 15.9.1 Variable Flux PM Memory Motor 15.9.2 Pole-Changing PM Memory Motor 15.9.3 Doubly Salient Memory Motor 15.10 Adjustable and Controllable Axial Rotor/Stator Alignment Motor 15.11 Piezoelectric Motor 15.12 Advanced Electric Machines for Renewable Energy 15.13 Micromotor, Nanomotor, and Molecular Motor 15.13.1 Micromotor 15.13.2 Nanomotor 15.13.3 Molecular Motor References Appendix A: Advanced Interconnection Technology for Motors Index