ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب MECHANICAL DESIGN AND MANUFACTURING OF ELECTRIC MOTORS.

دانلود کتاب طراحی مکانیکی و ساخت موتورهای الکتریکی.

MECHANICAL DESIGN AND MANUFACTURING OF ELECTRIC MOTORS.

مشخصات کتاب

MECHANICAL DESIGN AND MANUFACTURING OF ELECTRIC MOTORS.

ویرایش: 2 
نویسندگان:   
سری:  
ISBN (شابک) : 9780367564285, 0367564289 
ناشر: CRC PRESS 
سال نشر: 2022 
تعداد صفحات: 987 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 45 مگابایت 

قیمت کتاب (تومان) : 28,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 11


در صورت تبدیل فایل کتاب MECHANICAL DESIGN AND MANUFACTURING OF ELECTRIC MOTORS. به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب طراحی مکانیکی و ساخت موتورهای الکتریکی. نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Half Title
Title Page
Copyright Page
Dedication
Table of Contents
Preface (2[sup(nd)] Edition)
Preface (1[sup(st)] Edition)
Author
List of Abbreviations
Chapter 1 Introduction to Electric Motors
	1.1 History of Electric Machines
	1.2 Motor Design Characteristics
		1.2.1 Motor Torque
			1.2.1.1 Static and Dynamic Torque
			1.2.1.2 Motor Torque in Motor-Load System
			1.2.1.3 Continuous Torque
			1.2.1.4 Peak Torque
			1.2.1.5 RMS Torque
			1.2.1.6 Stall Torque
			1.2.1.7 Cogging Torque and Reduction Methods
			1.2.1.8 Torque Ripple
		1.2.2 Motor Speed
			1.2.2.1 Continuous Speed
			1.2.2.2 Peak Speed
			1.2.2.3 Speed Ripple
		1.2.3 Torque Density
		1.2.4 Motor Power and Power Factor
		1.2.5 Torque–Speed Characteristics
		1.2.6 Mechanical Resonance and Resonant Frequency
		1.2.7 Load-to-Motor Inertia Ratio
		1.2.8 Duty Cycle
		1.2.9 Motor Efficiency
			1.2.9.1 Definition of Motor Efficiency
			1.2.9.2 IEC Standards on Efficiency Classes of AC
Electric Motors
		1.2.10 Motor Insulation
		1.2.11 Motor Operation Reliability
	1.3 Classifications of Electric Motors
		1.3.1 DC and AC Motors
		1.3.2 Single-Phase and Three-Phase Motors
		1.3.3 Induction and PM Motors
		1.3.4 Synchronous and Asynchronous Motors
		1.3.5 Servo and Stepper Motors
		1.3.6 Gear Drive and Direct Drive Motors
		1.3.7 Brush and Brushless Motors
		1.3.8 Reluctance Motors
		1.3.9 Radial Flux and Axial Flux Motors
		1.3.10 Rotary and Linear Motors
		1.3.11 Open and Enclosed Motors
		1.3.12 Housed and Frameless Motors
		1.3.13 Internal Rotor Motor and External Rotor Motor
		1.3.14 Specialty Electric Motors
			1.3.14.1 Explosion Proof Motor and Flame Proof Motor
			1.3.14.2 Submersible Motor
			1.3.14.3 Ultrahigh-Speed Motor
			1.3.14.4 Motor Operating under Vacuum Environment
			1.3.14.5 Motor Operating under Nuclear Radiation Environment
			1.3.14.6 Piezoelectric Motor
		1.3.15 Motor Classification According to Power Rating
	1.4 Motor Design and Operation Parameters
		1.4.1 Back EMF Constant, K[sub(e)]
		1.4.2 Torque Constant, K[sub(t)]
		1.4.3 Velocity Constant, K[sub(v)]
		1.4.4 Motor Constant, K[sub(m)]
		1.4.5 Mechanical Time Constant, τ[sub(m)]
		1.4.6 Electrical Time Constant, τ[sub(e)]
		1.4.7 Thermal Time Constant, τ[sub(th)]
		1.4.8 Viscous Damping, K[sub(vd)]
	1.5 Sizing Equations
	1.6 Motor Design Process and Considerations
		1.6.1 Design Process
		1.6.2 Design Integration
		1.6.3 Mechatronics
		1.6.4 Temperature Effect on Motor Performance
	1.7 Motor Failure Modes
	1.8 IP Code
	References
Chapter 2 Rotor Design
	2.1 Rotor in Induction Motor
		2.1.1 Wound Rotor
		2.1.2 Squirrel Cage Rotor
			2.1.2.1 Factors Affecting Resistance of Squirrel Cage Rotor
			2.1.2.2 Double-Cage Rotor
			2.1.2.3 Casting Squirrel Cage Rotor
			2.1.2.4 Skin Effect
		2.1.3 Induction Motor Design Types and Their Performing Characteristics
	2.2 Permanent Magnet Rotor
		2.2.1 Discovery of Phenomenon of Magnetism
		2.2.2 Permanent Magnet Characteristics
		2.2.3 Permanent Magnet Materials
			2.2.3.1 Ferrite Permanent Magnets
			2.2.3.2 Rare Earth Permanent Magnets
			2.2.3.3 New Developments of Alternative PMs and Reductions of Reliance on Rare Earths
		2.2.4 Magnetization
		2.2.5 Factors Causing Demagnetization
		2.2.6 Maximum Operating Temperature
		2.2.7 Permanent Magnet Mounting and Retention Methods
		2.2.8 Ring Magnets
		2.2.9 Corrosion Protection of Permanent Magnets
	2.3 Rotor Manufacturing Process
		2.3.1 Lamination Materials
		2.3.2 Lamination Cutting
		2.3.3 Lamination Surface Insulation
		2.3.4 Lamination Annealing
		2.3.5 Lamination Stacking
		2.3.6 Rotor Casting for Squirrel Cage Motor
		2.3.7 Heat Treatment of Casted Rotor
		2.3.8 Rotor Assembly
		2.3.9 Rotor Machining and Runout Measurement
		2.3.10 Rotor Balancing
			2.3.10.1 Type of Unbalance
			2.3.10.2 Rotor Balancing Machine
			2.3.10.3 Balancing Operation
	2.4 Interference Fit
		2.4.1 Press Fit
		2.4.2 Shrink Fit
		2.4.3 Serration Fit
		2.4.4 Fit with Knurling
		2.4.5 Fit with Adjustable Ringfeder® Locking Devices
		2.4.6 Fit with Tolerance Rings
	2.5 Stress Analysis of Rotor
	2.6 Rotordynamic Analysis
		2.6.1 Rotor Inertia
		2.6.2 Motor Critical Speed and Resonance
	2.7 Rotor Burst Containment Analysis
		2.7.1 Rotor Burst Speed
		2.7.2 Energy in Rotating Rotor
			2.7.2.1 Kinetic Energy in Rotor
			2.7.2.2 Elastic Potential Energy in Rotor
			2.7.2.3 Ratio of Potential Energy to Kinetic Energy of Rotor
		2.7.3 Rotor Burst Containment Design
	References
Chapter 3 Shaft Design
	3.1 Shaft Materials
	3.2 Shaft Loads
	3.3 Solid and Hollow Shafts
	3.4 Shaft Design Methods
		3.4.1 Macaulay’s Method
		3.4.2 Area–Moment Method
		3.4.3 Castigliano’s Method
		3.4.4 Graphical Method
	3.5 Engineering Calculations
		3.5.1 Normal Stress for Shaft Subjected to Axial Force
		3.5.2 Bending Stress for Shaft Subjected to Bending Moment
		3.5.3 Torsional Shear Stress and Torsional Deflection
		3.5.4 Lateral Deflection of Shaft
			3.5.4.1 Lateral Deflection due to Bending Moment
			3.5.4.2 Lateral Deflection due to Transverse Force
			3.5.4.3 Lateral Deflection due to Shear Force
	3.6 Shaft Design Issues
		3.6.1 Shaft Design Considerations
		3.6.2 Shaft Rigidity
		3.6.3 Critical Shaft Speed
			3.6.3.1 Shaft with Uniform Diameter
			3.6.3.2 Stepped Shaft
		3.6.4 Dimensional Tolerance
		3.6.5 Shaft Runout
		3.6.6 Shaft Eccentricity
		3.6.7 Heat Treatment and Shaft Hardness
		3.6.8 Shaft Surface Finishing
		3.6.9 Shaft Lead
		3.6.10 Shaft Seal
			3.6.10.1 O-Ring Seal
			3.6.10.2 Universal Lip Seal
			3.6.10.3 V-Shaped Spring Seal
			3.6.10.4 Brush Seal
			3.6.10.5 PTFE Seal
			3.6.10.6 Spring-Energized Seal
			3.6.10.7 Noncontact Seal
		3.6.11 Diametrical Fit Types
	3.7 Stress Concentration
	3.8 Torque Transmission through Mechanical Joints
		3.8.1 Keyed Shafts
			3.8.1.1 Selection of Key Material
			3.8.1.2 Stress Analysis of Key and Keyseat
			3.8.1.3 Key Fit
			3.8.1.4 Stress Concentration Factors of Keyed Shafts
		3.8.2 Spline Shafts
			3.8.2.1 Advantages of Spline Shafts
			3.8.2.2 Type of Spline
			3.8.2.3 Stress Concentration Factors of Spline Shafts
		3.8.3 Tapered Shafts
	3.9 Fatigue Failure under Alternative Loading
	3.10 Shaft Manufacturing Methods
		3.10.1 Machined Shaft
		3.10.2 Forged Shaft
		3.10.3 Welded Hollow Shaft
		3.10.4 Shaft Measurement
	3.11 Shaft Misalignment between Motor and Driven Machine
		3.11.1 Type of Misalignment
		3.11.2 Correction of Shaft Misalignment
	3.12 Shaft Coupling
		3.12.1 Rigid and Semirigid Couplings
		3.12.2 Flexible Couplings
		3.12.3 Non-Contact Couplings
		3.12.4 Oil Shear Couplings
	References
Chapter 4 Stator Design
	4.1 Stator Lamination
		4.1.1 Stator Lamination Material
		4.1.2 Stator Lamination Patterns
			4.1.2.1 One-Piece Lamination
			4.1.2.2 T-Shaped Segmented Lamination
			4.1.2.3 Connected Segmented Lamination
			4.1.2.4 Two-Section Stator Lamination
			4.1.2.5 Stator Lamination Integrated by Individual Teeth and a Yoke Section
			4.1.2.6 Slotless Stator Core
			4.1.2.7 Slinky Lamination Stator Core
	4.2 Magnet Wire
		4.2.1 Regular Magnet Wire
		4.2.2 Self-Adhesive Magnet Wire
		4.2.3 Litz Wire
	4.3 Stator Insulation
		4.3.1 Injection Molded Plastic Insulation
		4.3.2 Slot Liner
		4.3.3 Glass Fiber Reinforced Mica Tape
		4.3.4 Powder Coating on Stator Core
	4.4 Manufacturing Process of a Stator Core
		4.4.1 Stator Lamination Cutting
		4.4.2 Lamination Fabrication Process
		4.4.3 Lamination Annealing
		4.4.4 Lamination Stacking
		4.4.5 Stator Winding
			4.4.5.1 Random Winding by Hand
			4.4.5.2 Coil Formation—Distributed Winding
			4.4.5.3 Coil Formation—Concentrated Winding
			4.4.5.4 Coil Formation—Conductor Bar
	4.5 Stator Encapsulation and Impregnation
		4.5.1 Encapsulation
			4.5.1.1 Encapsulation Materials
			4.5.1.2 Encapsulation Process
		4.5.2 Varnish Dipping
		4.5.3 Trickle Impregnation
		4.5.4 Vacuum Pressure Impregnation
	4.6 Stator Design Considerations
		4.6.1 Cogging Torque
		4.6.2 Airgap
		4.6.3 Stator Cooling
		4.6.4 Robust Design of Stator
		4.6.5 Power Density Improvement
	4.7 Mechanical Stress of Stator
	References
Chapter 5 Motor Frame Design
	5.1 Types of Motor Housing Based on Manufacturing Method
		5.1.1 Wrapped Housing
		5.1.2 Casted Housing
			5.1.2.1 Casting Material
			5.1.2.2 Casting Process
			5.1.2.3 Pressure Casting
			5.1.2.4 Heat Treatment
		5.1.3 Machined Housing
		5.1.4 Stamped Housing
		5.1.5 Extruded Motor Housing
		5.1.6 Motor Housing with Composite Materials
		5.1.7 Motor Housing Fabricated by 3D Printing and Other Additive Manufacturing Processes
		5.1.8 Frameless Motor
	5.2 Testing Methods of Casted Motor Housing
	5.3 Endbell Manufacturing
		5.3.1 Casted Endbell
		5.3.2 Stamped Endbell
		5.3.3 Iron Casting versus Aluminum Casting
		5.3.4 Machined Endbell
		5.3.5 Forged Endbell
	5.4 Motor Assembly Methods
		5.4.1 Tie Bar
		5.4.2 Tapping at Housing End Surface
		5.4.3 Forged Z-Shaped Fastener
		5.4.4 Rotary Fasteners
			5.4.4.1 Triangle-Base Rotating Fastener
			5.4.4.2 Square-Base Rotating Fastener
			5.4.4.3 Butterfly-Base Rotating Fastener
		5.4.5 Other Types of Fasteners
			5.4.5.1 Cylinder-Base Fastener Locked with Retaining Ring
			5.4.5.2 Cylinder-Base Fastener with Self-Locking Aperture
			5.4.5.3 Fastener Engaged with Housing from Housing Interior
			5.4.5.4 Self-Clinching Fastener
	5.5 Fastening System Design
		5.5.1 Types of Thread Fasteners
		5.5.2 Thread Formation
		5.5.3 Fastener Preload
		5.5.4 Fastener-Tightening Process
		5.5.5 Tightening Torque
		5.5.6 Thread Engagement and Load Distribution
	5.6 Common Types of Electric Motor Enclosures
		5.6.1 Open Drip Proof Enclosure
		5.6.2 Totally Enclosed Non-Ventilated Enclosure
		5.6.3 Totally Enclosed Fan Cooled Enclosure
		5.6.4 Totally Enclosed Air over Enclosure
		5.6.5 Totally Enclosed Forced Ventilated Enclosure
		5.6.6 Totally Enclosed Washdown Enclosure
		5.6.7 Explosion Proof Enclosure
	5.7 Anticorrosion of Electric Motor and Components
		5.7.1 Surface Treatment Methods
			5.7.1.1 Electroplating
			5.7.1.2 Electroless Plating
			5.7.1.3 Physical Vapor Deposition
			5.7.1.4 Inorganic Coating
			5.7.1.5 Phosphate Coating
			5.7.1.6 Electropolishing
			5.7.1.7 Nanocoating
		5.7.2 Anticorrosion Treatment of Electric Motor
		5.7.3 Hydrogen Embrittlement Issues
	References
Chapter 6 Motor Bearing
	6.1 Bearing Classification
		6.1.1 Journal Bearing
		6.1.2 Rolling Bearing
			6.1.2.1 Ball Bearing
			6.1.2.2 Roller Bearing
		6.1.3 Noncontact Bearing
		6.1.4 Sensor Bearing
		6.1.5 Slewing Ring Bearing
		6.1.6 Crossed Roller Bearing
		6.1.7 Ball Screw
	6.2 Bearing Design
		6.2.1 Bearing Materials
		6.2.2 Bearing Internal Clearances
		6.2.3 Allowable Bearing Speed
		6.2.4 Bearing Fit
		6.2.5 Prevention of Bearing Axial Movement
		6.2.6 Bearing Load
			6.2.6.1 Bearing Preload Arrangement
			6.2.6.2 Radial and Axial Bearing Load
			6.2.6.3 Load Distribution
	6.3 Bearing Fatigue Life
		6.3.1 Calculation of Bearing Fatigue Life
		6.3.2 Bearing Failure Probability Distribution
		6.3.3 Influence of Unbalance on Bearing Fatigue Life
		6.3.4 Influence of Wear on Bearing Fatigue Life
		6.3.5 Influence of Internal Radial Clearance on Bearing Fatigue Life
	6.4 Bearing Failure Mode
		6.4.1 Major Causes of Premature Bearing Failure
		6.4.2 Lubricant Selection
		6.4.3 Improper Bearing Lubrication
		6.4.4 Lubricant Contamination
		6.4.5 Grease Leakage
		6.4.6 Bearing Sealing and Bearing Shielding
		6.4.7 Excessive Load
		6.4.8 Internal Radial Interference Condition
		6.4.9 Bearing Current
		6.4.10 Impact of High Temperature on Bearing Failure
		6.4.11 Bearing Failure Associated with Motor Vibration and Overloading
		6.4.12 Improper Bearing Installation and Bearing Misalignment
		6.4.13 Vertically Mounted Motor
	6.5 Bearing Noise
	6.6 Bearing Selection
		6.6.1 Bearing Type Selection Based on Load
		6.6.2 Bearing Type Selection Based on Speed
		6.6.3 Selection of Bearing Size
	6.7 Bearing Performance Improvement
	References
Chapter 7 Motor Brake
	7.1 Fundamental Knowledge of Motor Brake
		7.1.1 Static and Dynamic Friction
		7.1.2 Wear
		7.1.3 Kinetic Energy of Rotating Object
		7.1.4 Brake Friction Materials
		7.1.5 Brake Operation Mode
	7.2 Key Design Parameters and Considerations in Brake Design
		7.2.1 Braking Torque
		7.2.2 Brake Operation Time
			7.2.2.1 Definitions of Various Brake Action Time
			7.2.2.2 Brake Response Time
			7.2.2.3 Actual Braking Time
			7.2.2.4 Total Braking Time
		7.2.3 Braking Energy for Single Operation and Operation Frequency per Minute
		7.2.4 Mean Heat Power
		7.2.5 Temperature Rise and Thermal Capacity Rating
		7.2.6 Factor of Safety
		7.2.7 Brake Backlash
		7.2.8 Brake Noise
		7.2.9 Maximum Sliding Speed
		7.2.10 Reliability and Durability
		7.2.11 Brake Operation Cycle
		7.2.12 Brake Mounting Arrangement
		7.2.13 Brake Size
		7.2.14 Brake Integration with Electric Motor
		7.2.15 Brake Ingress Protection Rating
		7.2.16 Accumulation of Brake Wear Particles
	7.3 Classification of Braking System
		7.3.1 Electromagnetic Brake
			7.3.1.1 Spring-Engaged, Electromagnetically Released Brake
			7.3.1.2 Solenoid-Actuated Brake
			7.3.1.3 Multiple Disc Friction-Blocking Brake
			7.3.1.4 Eddy-Current Brake
			7.3.1.5 Magnetic Particle Brake
			7.3.1.6 Hysteresis Brake
			7.3.1.7 Permanent Magnet Brake
			7.3.1.8 Magnetorheological Brake
			7.3.1.9 Piezoelectric Brake
		7.3.2 Mechanical Brake
			7.3.2.1 Compressed Air-Engaged, Spring-Released Brake
			7.3.2.2 Spring-Engaged, Hydraulic Pressure Released Brake
			7.3.2.3 Pneumatic Brake
			7.3.2.4 Hydraulic Brake
		7.3.3 Oil Shear Brake
		7.3.4 Regenerative Brake
	7.4 Brake Failure
		7.4.1 Overheating of Mating Friction Surfaces
		7.4.2 Excessive Wear on Friction Surfaces
		7.4.3 Failure due to Corrosion
		7.4.4 Runout of Friction Disc
		7.4.5 Thermomechanical Fatigue
	7.5 Brake Design and Selection Considerations
		7.5.1 Dynamic Stopping Brake or Holding Brake?
		7.5.2 AC or DC Brake?
		7.5.3 Braking Torque
		7.5.4 Overall Inertia of System
		7.5.5 Thermal Consideration in Brake Selection
		7.5.6 Other Factors Affecting Brake Selection
	References
Chapter 8 Servo Feedback Devices and Motor Sensors
	8.1 Encoder
		8.1.1 Type of Encoder
			8.1.1.1 Optical Encoder
			8.1.1.2 Magnetic Encoder
			8.1.1.3 Capacitive Encoder
			8.1.1.4 Inductive Encoder
		8.1.2 Absolute and Incremental Encoders
			8.1.2.1 Absolute Encoder
			8.1.2.2 Incremental Encoder
		8.1.3 Resolution of Encoder
		8.1.4 Rotary and Linear Encoder
		8.1.5 Encoder Mounting
	8.2 Resolver
		8.2.1 Type of Resolver
		8.2.2 Resolver Operating Parameters
			8.2.2.1 Resolver Accuracy
			8.2.2.2 Input Excitation Frequency, Voltage, and Current
			8.2.2.3 Phase Shift
			8.2.2.4 Transformation Ratio
			8.2.2.5 Winding Impedance
			8.2.2.6 Speed Ripple
			8.2.2.7 Null Voltage
		8.2.3 Resolver Testing
			8.2.3.1 Test Equipment and Instruments
			8.2.3.2 Determination of Resolver Position Error
			8.2.3.3 Measurement of Transformation Ratio
			8.2.3.4 Measurement of Phase Shift
			8.2.3.5 Measurement of Velocity Ripple
			8.2.3.6 Measurement of Resolver Impedance
			8.2.3.7 Effect of Cable Length on Resolver Performance
			8.2.3.8 Influence of Motor Brake on Resolver Performance
			8.2.3.9 Influence of Mechanical Impacts on Resolver
Performance
	8.3 Hall Effect Sensor
		8.3.1 Linear Sensor
		8.3.2 Threshold Sensor
	8.4 Proximity Sensor
		8.4.1 Inductive Proximity Sensor
		8.4.2 Capacitive Proximity Sensor
		8.4.3 Ultrasonic Proximity Sensor
		8.4.4 Photoelectric Proximity Sensor
	8.5 Other Motor Sensors
		8.5.1 Force/Torque Sensor
		8.5.2 Temperature Sensor
			8.5.2.1 Thermocouple
			8.5.2.2 Resistance Temperature Detector
			8.5.2.3 Thermistor
			8.5.2.4 Monolithic Integrated Circuit Temperature Sensor
			8.5.2.5 Infrared Thermometer
		8.5.3 Vibration Sensor
		8.5.4 Current Sensor
		8.5.5 Pressure Sensor
		8.5.6 Magnetic Field Sensor
	8.6 Improving Motor Sensor Performance
		8.6.1 Mitigation of Electrical Noise
		8.6.2 Suppression of Temperature Rise
		8.6.3 Utilization of Dual- Feedback Solution for Improving Motion Control Accuracy and Reliability
	8.7 Development of Innovative Sensor
		8.7.1 Sensor Miniaturization—Microsensor and Nanosensor
		8.7.2 Advanced Wireless Sensor Technology
		8.7.3 Smart Sensors
		8.7.4 Color-Changing Dye Sensor for Detecting Motor Condition
		8.7.5 Sensor with Newly Developed Material
	8.8 Selection of Motor Feedback Devices and Sensors
	8.9 Cable Technology
	References
Chapter 9 Power Transmission and Gearing Systems
	9.1 Characteristics of Gearing Systems
		9.1.1 Gearing System Efficiency
		9.1.2 Gear Ratio and Torque Ratio
		9.1.3 Inertia Matching
		9.1.4 Gear Tooth Profile
		9.1.5 Backlash
		9.1.6 Gearing Stage
		9.1.7 Gear Lubrication
		9.1.8 Gear Contact Ratio
		9.1.9 Temperature Rise and Thermal Effect on Gearing System Performance
		9.1.10 Compact Structure
		9.1.11 Acoustic Noise
		9.1.12 Operation Reliability
	9.2 Types of Modern Gearing Systems
		9.2.1 Strain Wave Gearing System
		9.2.2 Planetary Gearing System
		9.2.3 Cycloidal Gearing System
		9.2.4 Rotate Vector Gearing System
		9.2.5 Magnetic Gearing System
		9.2.6 Continuously Variable Strain Wave Transmission
		9.2.7 Pulse Drive
		9.2.8 Abacus Drive
		9.2.9 Circular Wave Drive
		9.2.10 Archimedes Drive
		9.2.11 Spiral Cam Gearing System
		9.2.12 Clutch-Type Stepless Speed Changer
	9.3 Conventional Gearing Systems
		9.3.1 Spur Gear
		9.3.2 Helical Gear
		9.3.3 Bevel Gear
		9.3.4 Spiroid Gear
		9.3.5 Helicon Gear
		9.3.6 Worm Gear
		9.3.7 Comparison of Conventional Gearing Systems
	9.4 Gearhead and Gearmotor
		9.4.1 Gearhead
		9.4.2 Gearmotor
	9.5 Failure of Gearing System
	9.6 Selection of Gearing System
	References
Chapter 10 Motor Power Losses
	10.1 Power Losses in Windings due to Electric Resistance in Copper Wires
	10.2 Eddy-Current and Magnetic Hysteresis Losses
		10.2.1 Eddy-Current Loss
		10.2.2 Magnetic Hysteresis Loss
		10.2.3 Calculations of Eddy-Current and Magnetic Hysteresis Losses
		10.2.4 Losses in Stator and Rotor Iron Cores
		10.2.5 Losses in PMs
		10.2.6 Power Losses in Other Core Components
	10.3 Mechanical Friction Losses
		10.3.1 Bearing Losses
		10.3.2 Sealing Losses
		10.3.3 Brush Losses
	10.4 Windage Losses
		10.4.1 Windage Loss due to Rotating Rotor
			10.4.1.1 Taylor Vortex
			10.4.1.2 Friction Factor
			10.4.1.3 Windage Loss Due to Rotating Rotor
		10.4.2 Windage Loss due to Entrance Effect of Axial Airgap Flow
		10.4.3 Windage Loss due to Stator Surface Roughness
		10.4.4 Energy Loss due to Fluid Viscosity
		10.4.5 Fan Losses
		10.4.6 Ventilating Path Losses
		10.4.7 Methods for Reducing Windage Losses
	10.5 Stray Load Losses
	10.6 Influence of Power Rating on Motor Power Losses
	References
Chapter 11 Motor Cooling
	11.1 Introduction
		11.1.1 Passive and Active Cooling Techniques
		11.1.2 Heat Transfer Enhancement Techniques
	11.2 Conductive Heat Transfer Techniques
		11.2.1 Conductive Heat Flux and Energy Equations
		11.2.2 Encapsulation and Impregnation of Electric Motor
		11.2.3 Enhanced Heat Transfer Using High-Thermal-Conductivity Material
		11.2.4 Using Self-Adhesive Magnet Wire for Fabricating Stator Winding
	11.3 Natural Convection Cooling with Fins
		11.3.1 Cooling Fin
		11.3.2 Fin Optimization
		11.3.3 Heatsinks Manufactured with Additive Manufacturing Process
		11.3.4 Applications of Various Fins in Motor Cooling
		11.3.5 Pin Fin Heatsink
		11.3.6 Thermal Interface Materials
	11.4 Forced Air Cooling Techniques
		11.4.1 Thermophysical Properties of Air
		11.4.2 Direct Forced Air Cooling Techniques
			11.4.2.1 Forced Air Cooling at End-Winding Regions
			11.4.2.2 Forced Air Flowing through Internal Cooling Channels across the Motor
			11.4.2.3 Forced Air Flowing Over Motor Outer Surfaces
			11.4.2.4 Forced Air Flowing through Both Motor Outer and Inner Surfaces
			11.4.2.5 Air Jet Impingement Cooling
			11.4.2.6 Cooling with Hydrogen Gas
		11.4.3 Indirect Forced Air Cooling Techniques
			11.4.3.1 Indirect Forced Air Cooling with Heat Exchangers
			11.4.3.2 Indirect Forced Air Cooling via Indirect Evaporative Air Cooler
		11.4.4 Fan and Blower
			11.4.4.1 Fan Types
			11.4.4.2 Forward-Curved, Backward-Curved, and Straight Blades of Centrifugal Fans
			11.4.4.3 Fan Performance Curve and Operation Point
			11.4.4.4 Fan Selection
	11.5 Liquid Cooling Techniques
		11.5.1 Thermophysical Properties of Coolants
		11.5.2 Direct Liquid Cooling Techniques
			11.5.2.1 Direct Liquid Cooling of Bundled Magnet Wires
			11.5.2.2 Spray Cooling
			11.5.2.3 Direct Liquid Cooling through Hollow Winding Coils/Conductors
			11.5.2.4 Liquid Jet Impingement Cooling
		11.5.3 Liquid Immersion Cooling
		11.5.4 Indirect Liquid Cooling Techniques
			11.5.4.1 Indirect Liquid Cooling via Cold Plates Attached to Motor Walls
			11.5.4.2 Indirect Liquid Cooling via Helical Copper Pipes Casted in Motor Housing
			11.5.4.3 Indirect Liquid Cooling with Cooling Channels on Casted Motor Housing
			11.5.4.4 Indirect Liquid Cooling via Copper Pipe in Spacer
			11.5.4.5 Indirect Liquid Cooling through Stator Winding Slots
			11.5.4.6 Indirect Liquid Cooling through Microscale Channels
			11.5.4.7 Indirect Liquid Cooling via Heat Transfer Enhancement Device
	11.6 Phase-Change Cooling Techniques
		11.6.1 Cooling with Heat Pipes
		11.6.2 Cooling with Vapor Chambers
		11.6.3 Evaporative Cooling
		11.6.4 Mist Cooling
	11.7 Radiative Heat Transfer
	11.8 Other Advanced State-of-the-Art Cooling Methods
		11.8.1 Micro Channel Cooling Systems
		11.8.2 Metal Foams
		11.8.3 Heat Transfer Enhancement with Nanotechnology
			11.8.3.1 Nanofluid
			11.8.3.2 Carbon Nanotube
			11.8.3.3 NanoSpreader™ Vapor Cooler
			11.8.3.4 CarbAl™ Heat Transfer Material
			11.8.3.5 Ionic Wind Generator
	References
Chapter 12 Motor Vibration and Acoustic Noise
	12.1 Vibration and Noise of Electric Motor
	12.2 Fundamentals of Vibration
		12.2.1 Simple Harmonic Oscillating System
		12.2.2 Damped Harmonic Oscillating System
		12.2.3 Forced Vibration with Damping
		12.2.4 Forced Vibration Due to Mass Unbalance
		12.2.5 Vibration Induced by Support Excitation
		12.2.6 Directional Vibration
	12.3 Electromagnetic Vibrations
		12.3.1 Unbalanced Forces/Torques Caused by Electric Supply
		12.3.2 Broken Rotor Bar and Cracked End Ring
		12.3.3 Unbalanced Magnetic Pull Due to Asymmetric Airgap
			12.3.3.1 Electromagnetic Force at Airgap
			12.3.3.2 Asymmetric Airgap Due to Nonconcentric Rotor and Stator
			12.3.3.3 Asymmetric Airgap Due to Elliptic Stator
			12.3.3.4 Asymmetric Airgap Due to Elliptic Rotor
			12.3.3.5 Asymmetric Airgap Due to Rotor Misalignment
			12.3.3.6 Asymmetric Airgap Resulting from Shaft Deflection
		12.3.4 Nonuniform Airgap Due to Stator Slots
		12.3.5 Mutual Action Forces between Currents of Stator and Rotor
		12.3.6 Vibration Due to Unbalanced Voltage Operation
	12.4 Mechanical Vibrations
		12.4.1 Misaligned Shaft and Distorted Coupling
		12.4.2 Defective Bearing
		12.4.3 Self-Excited Vibration
		12.4.4 Torsional Vibration
	12.5 Vibration Measurements
	12.6 Vibration Control
		12.6.1 Damping Materials
		12.6.2 Vibration Isolation
		12.6.3 Magnetorheological Damper and Machine Mount
		12.6.4 Tuned Mass Damper
		12.6.5 Double Mounting Isolation System
		12.6.6 Viscoelastic Bearing Support
		12.6.7 Self-Locking Fastener
			12.6.7.1 Hard Lock Nut
			12.6.7.2 Super Lock Nut and Super Stud Bolt
			12.6.7.3 Self-Locking Nut
			12.6.7.4 Jam Nut
			12.6.7.5 Serrated Face Nut and Bolt
			12.6.7.6 Nord-Lock Washer
		12.6.8 Active Vibration Isolation and Damping
		12.6.9 Measurements of Motor Vibration
	12.7 Fundamentals of Acoustic Noise
		12.7.1 Tonal Noise and Broadband Noise
		12.7.2 Sound Pressure Level and Sound Power Level
		12.7.3 Octave Frequency Bands
		12.7.4 Three Sound Weighting Scales
		12.7.5 Averaged Sound Pressure Level
		12.7.6 Type of Noise
			12.7.6.1 Structure-Borne Noise
			12.7.6.2 Airborne Noise
			12.7.6.3 Type of Aerodynamic Noise
	12.8 Noise Classification and Measurement in Rotating Electric Machine
		12.8.1 Noise Type in Rotating Electric Machine
			12.8.1.1 Mechanical Noise
			12.8.1.2 Electromagnetic Noise
			12.8.1.3 Aerodynamic Noise
		12.8.2 Acoustic Anechoic Chamber
		12.8.3 Measurement of Motor Noise
		12.8.4 Acoustic Noise Field Measurement
	12.9 Motor Noise Abatement Techniques
		12.9.1 Active Noise Reduction Techniques
		12.9.2 Passive Noise Reduction Techniques
			12.9.2.1 Blocking Noise Propagation Paths and Isolating Noise Sources
			12.9.2.2 Using Noise-Absorbing Material
			12.9.2.3 Motor Suspension Mounting
			12.9.2.4 Noise-Attenuating Structure
			12.9.2.5 Smoothing Ventilation Path
			12.9.2.6 Selecting Low Noise Bearing
		12.9.3 Innovative Noise Abatement Methods
	References
Chapter 13 Motor Testing
	13.1 Motor Testing Standards
	13.2 Testing Equipment and Measuring Instruments
		13.2.1 Dynamometer
		13.2.2 Thermocouples and Other Temperature Measuring Devices
		13.2.3 Control System
		13.2.4 Data Acquisition System
		13.2.5 Torque Transducer
		13.2.6 Power Quality Analyzer
		13.2.7 Power Supply
		13.2.8 Motor Test Platform
	13.3 Testing Load Level
	13.4 Testing Methods
		13.4.1 Mechanical Differential Testing Method
		13.4.2 Back-to-Back Testing Method
		13.4.3 Indirect Loading Testing Method
		13.4.4 Forward Short-Circuit Testing Method
		13.4.5 Variable Inertia Testing Method
	13.5 Off-Line Motor Testing
		13.5.1 Winding Electrical Resistance Testing
		13.5.2 Megohm Testing
		13.5.3 Polarization Index Testing
		13.5.4 High-Potential Testing
		13.5.5 Surge Testing
		13.5.6 Step-Voltage Testing
		13.5.7 Determination of Rotor’s Moment of Inertia
	13.6 Online Motor Testing
		13.6.1 Locked Rotor Testing
		13.6.2 Motor Heat Run Testing
		13.6.3 Motor Efficiency Testing
		13.6.4 Impulse Testing
		13.6.5 Cogging Torque Testing
		13.6.6 Torque Ripple Measurement
	References
Chapter 14 Modeling, Simulation, and Analysis of Electric Motors
	14.1 Computational Fluid Dynamics and Numerical Heat Transfer
		14.1.1 Strategies in Modeling and Performing CFD Analysis
		14.1.2 Rotating Flow Modeling
		14.1.3 Porous Media Modeling
		14.1.4 Numerical Simulation of Motor Cooling
			14.1.4.1 Mathematical Formulations
			14.1.4.2 Numerical Method
			14.1.4.3 Case Study—3D Thermal Analysis of Large Size Motor
			14.1.4.4 Simulation of Two-Phase Flow and Heat Transfer
	14.2 Thermal Simulation with Lumped-Circuit Modeling
	14.3 Thermal Analysis Using the Finite Element Method
	14.4 Rotordynamic Analysis
		14.4.1 Problem Description
		14.4.2 Bearing Support’s Stiffness and Damping
		14.4.3 Rotordynamic Modeling
		14.4.4 Results of Rotordynamic Analysis
	14.5 Static and Dynamic Stress/Strain Analysis
		14.5.1 Static Analysis
		14.5.2 Dynamic Analysis
			14.5.2.1 Centrifugal Force-Induced Stress on PMs
			14.5.2.2 Structural Analysis Using the Finite Element Method
		14.5.3 Shock Load
	14.6 Fatigue Analysis
	14.7 Torsional Resonance Analysis
	14.8 Motor Noise Prediction
	14.9 Buckling Analysis
	14.10 Thermally Induced Stress Analysis
	14.11 Thermal Expansion and Contraction Analysis
	References
Chapter 15 Innovative and Advanced Motor Design
	15.1 High-Temperature Superconducting Motor
	15.2 Radial-Flux Multirotor or Multistator Motor
		15.2.1 Radial-Flux Multirotor Motor
		15.2.2 Radial-Flux Multistator Motor
		15.2.3 Radial-Flux Brushless Dual-Rotor Machine
		15.2.4 Radial-Flux Dual-Stator PM Machine
		15.2.5 High-Torque PM Motor with 3D Circumferential Flux Design
		15.2.6 Radial-Flux Dual-Rotor, Dual-Stator Motor
		15.2.7 Radial-Flux Integrated Magnetic-Geared In-Wheel Motor
	15.3 Axial-Flux Multirotor or Multistator Motor
		15.3.1 Single-Sided and Double-Sided Axial-Flux Motors
		15.3.2 Multistage Axial-Flux Motor
		15.3.3 Yokeless and Segmented Armature Motors
		15.3.4 Energy Efc fi ient Axial-Flux Yokeless Motor with Modular Stator
		15.3.5 Axial-Flux Motor with PCB Stator
	15.4 Hybrid Motor
		15.4.1 Hybrid Excitation Synchronous Machine
		15.4.2 Hybrid Hysteresis PM Synchronous Motor
		15.4.3 Hybrid Motor Integrating RF Motor and AF Motor
		15.4.4 Hybrid-Field Flux-Controllable PM Motor
		15.4.5 Hybrid Linear Motor
	15.5 Conical Rotor Motor
	15.6 Transverse Flux Motor
	15.7 Recong fi urable PM Motor
	15.8 Variable Reluctance Motor
	15.9 PM Memory Motor
		15.9.1 Variable Flux PM Memory Motor
		15.9.2 Pole-Changing PM Memory Motor
		15.9.3 Doubly Salient Memory Motor
	15.10 Adjustable and Controllable Axial Rotor/Stator Alignment Motor
	15.11 Piezoelectric Motor
	15.12 Advanced Electric Machines for Renewable Energy
	15.13 Micromotor, Nanomotor, and Molecular Motor
		15.13.1 Micromotor
		15.13.2 Nanomotor
		15.13.3 Molecular Motor
	References
Appendix A: Advanced Interconnection Technology for Motors
Index




نظرات کاربران