دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 3
نویسندگان: M. Sherif El-Eskandarany
سری:
ISBN (شابک) : 012818180X, 9780128181805
ناشر: William Andrew
سال نشر: 2020
تعداد صفحات: 470
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 22 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Mechanical Alloying: Energy Storage, Protective Coatings, and Medical Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب آلیاژ مکانیکی: ذخیره انرژی، پوشش های محافظ و کاربردهای پزشکی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
آلیاژسازی مکانیکی: ذخیره انرژی، پوششهای محافظ و کاربردهای پزشکی، نسخه سوم مقدمهای مفصل برای آلیاژسازی مکانیکی است که دستورالعملهایی را در مورد تجهیزات و امکانات لازم برای انجام فرآیند ارائه میدهد. پس زمینه ای اساسی برای واکنش های در حال وقوع. El-Eskandarany، یک مرجع پیشرو در زمینه آلیاژسازی مکانیکی، مکانیسم ادغام پودر را با استفاده از فرآیندهای مختلف تراکم پودر مورد بحث قرار می دهد. فصل جدیدی در مورد استفاده از پودرهای آلیاژی مکانیکی برای پاشش حرارتی گنجانده شده است.
به طور کامل به روز شده تا پیشرفت های اخیر در این زمینه را پوشش دهد، این ویرایش دوم همچنین کاربردهای جدید و نوظهور را برای آلیاژسازی مکانیکی، از جمله ساختن نانولوله های کربنی، پوشش محافظ سطح و فناوری ذخیره سازی هیدروژن. El-Eskandarany آخرین تحقیقات در مورد این برنامه ها را مورد بحث قرار می دهد و مهندسین و دانشمندان را با اطلاعات مورد نیاز برای اجرای این پیشرفت ها ارائه می دهد.
Mechanical Alloying: Energy Storage, Protective Coatings, and Medical Applications, Third Edition is a detailed introduction to mechanical alloying that offers guidelines on the necessary equipment and facilities needed to carry out the process, also giving a fundamental background to the reactions taking place. El-Eskandarany, a leading authority on mechanical alloying, discusses the mechanism of powder consolidations using different powder compaction processes. A new chapter is included on utilization of the mechanically alloyed powders for thermal spraying.
Fully updated to cover recent developments in the field, this second edition also introduces new and emerging applications for mechanical alloying, including the fabrication of carbon nanotubes, surface protective coating and hydrogen storage technology. El-Eskandarany discusses the latest research into these applications and provides engineers and scientists with the information they need to implement these developments.
Cover Mechanical Alloying: Energy Storage, Protective Coatings, and Medical Applications Copyright Dedication About the author Preface Acknowledgment 1 - Introduction 1.1 - Advanced materials 1.2 - Strategies used for fabrications of advanced materials 1.3 - Mechanically assisted approach 1.3.1 - Powder metallurgy 1.3.2 - Ball milling 1.3.3 - Mechanical alloying 1.3.4 - Severe plastic deformation 1.4 - Thermal approach 1.4.1 - Rapid solidification 1.4.2 - Droplet method: gas/water atomization 1.4.3 - Thermal plasma processing 1.4.4 - Vapor deposition References 2 - Characterizations of mechanically alloyed powders 2.1 - Introduction 2.2 - Examples of characterization techniques 2.2.1 - Photon probe methods 2.2.2 - Photon probe methods 2.2.3 - Scanning probe methods 2.2.4 - Thermodynamic methods 3 - The history and necessity of mechanical alloying 3.1 - History of story of mechanical alloying 3.2 - Fabrications of ODS alloys 3.2.1 - ODS Ni-base superalloys and Fe-base high-temperature alloys 3.2.1.1 - INCONEL MA 754 3.2.1.2 - INCONEL MA 6000 3.2.1.3 - INCONEL MA 956 3.3 - Fabrications of other advanced materials 3.4 - Mechanical alloying, mechanical grinding, mechanical milling, and mechanical disordering 3.5 - Types of ball mills 3.5.1 - High-energy ball mills 3.5.1.1 - Attritor or attrition ball mill 3.5.1.2 - Shaker mills 3.5.1.3 - RETSCH mixer mills MM 200 and MM 400 3.5.1.4 - Super Misuni 3.5.1.5 - Planetary ball mills 3.5.1.6 - The uni-ball mill 3.5.2 - Low-energy tumbling mill 3.5.2.1 - Tumbler ball mill 3.5.2.2 - Tumbler rod mill 3.6 - Mechanism of mechanical alloying 3.6.1 - Ball–powder–ball collision 3.7 - Necessity of mechanical alloying References 4 - Controlling the powder-milling process 4.1 - Factors affecting the MA/MD/MM 4.1.1 - Types of ball mills 4.1.2 - Shape of the milling vials 4.1.3 - Impurities and the milling tools 4.1.4 - Milling media 4.1.5 - Milling speed 4.1.6 - Milling time 4.1.7 - Milling atmosphere 4.1.8 - Milling environment 4.1.9 - Ball-to-powder weight ratio 4.1.10 - Milling temperature References 5 - Ball milling as a superior nanotechnological fabrication’s tool 5.1 - Introduction 5.1.1 - Types of nanomaterials 5.1.2 - Methods for preparing nanomaterials 5.2 - Nanocrystalline materials 5.2.1 - Influence of nanocrystallinity on mechanical properties: strengthening by grain size reduction 5.3 - Formation of nanocrystalline materials by ball milling technique 5.3.1 - Mechanism(s) 5.3.1.1 - First stage 5.3.1.2 - Second stage 5.3.1.3 - Third stage 5.4 - Selected examples 5.4.1 - Formation of nanocrystalline NixMo100-x (x = 60 and 85 at.%) 5.4.2 - Formation of nanocrystalline fcc metals 5.5 - Effect of ball milling on the structure of carbon nanotubes 5.6 - Pressing and sintering of powders materials 5.6.1 - Classic powder metallurgy 5.7 - Consolidation of nanocrystalline powders 5.7.1 - Approaches used for consolidation of the ball-milled powders 5.8 - Spark plasma sintering for consolidation of ball-milled nanocrystalline powders 5.8.1 - Components and system configurations of SPS system 5.8.2 - Powder specimen filling procedure 5.8.3 - Procedure 5.8.4 - Mechanism 5.9 - Fabrication of nanodiamonds and carbon nanotubes by milling 5.9.1 - Method 5.9.1.1 - Materials and equipment 5.9.1.2 - Nanodiamonds syntheses 5.9.1.3 - Results 5.9.1.4 - Discussion References 6 - Mechanochimical process for fabrication of 3D nanomaterials 6.1 - Introduction 6.2 - Reduction of Cu2O with Ti by room temperature rod milling 6.3 - Properties 6.3.1 - Structural changes with the milling time 6.3.2 - Metallography 6.3.3 - DTA measurements 6.4 - Mechanism of MSSR 6.5 - Fabrication of nanocrystalline WC and nanocomposite WC-MgO refractory materials by MSSR method 6.5.1 - Properties of ball-milled powders 6.5.1.1 - Structural changes with the milling time 6.5.1.2 - Temperature change with the milling time 6.5.1.3 - Hardness, toughness, and elastic moduli of consolidated WC and WC/MgO 6.6 - c-BN 6.6.1 - Synthesis of BN-nanotubes by RBM 6.7 - NbN References 7 - Fabrication of nanocrystalline refractory materials 7.1 - Introduction 7.2 - Preparation challenges and difficulties 7.3 - Synthesizing and properties of mechanically solid-state reacted tic powders 7.3.1 - Consolidation ball-milled Ti55C45 nanopowder particles 7.3.2 - Mechanical properties of consolidated Ti55C45 7.3.2.1 - Microhardness 7.3.2.2 - Elastic moduli 7.4 - Other carbides produced by mechanical alloying 7.4.1 - Fabrication of β-SiC powders 7.4.2 - Fabrication of nanocrystalline WC powders 7.4.2.1 - Top-down approach combined with spark plasma sintering for fabrication of superhard bulk WC nanocrystalline materials 7.4.3 - Fabrication of nanocrystalline ZrC powders 7.4.4 - Fabrication of nanocrystalline TiN powders 7.4.4.1 - Powder preparation 7.4.4.2 - Powder consolidation 7.4.4.3 - Results References 8 - Fabrication of and consolidation of hard nanocomposite materials 8.1 - Introduction and background 8.1.1 - Nanocomposites 8.1.2 - Metal-matrix nanocomposites (MMNCs) 8.2 - Fabrications methods of particulate MMNCs 8.2.1 - SiC/Al MMNCs 8.2.2 - Fabrication of SiCp/Al MMNCs by mechanical solid-state mixing 8.2.2.1 - Properties of mechanically solid-state fabricated SiCp/Al nanocomposites 8.2.2.2 - Mechanism of fabrication 8.2.2.2.1 - Formation of agglomerates coarse composite SiCp/Al powder particles 8.2.2.2.2 - Disintegration of the agglomerates composite SiCp/Al powder particles 8.2.2.2.3 - Formation of nanocomposite SiCp/Al powder particles 8.2.2.2.4 - Consolidation of nanocomposite SiCp/Al powder particles 8.3 - WC-based nanocomposites 8.3.1 - WC/Al2O3 nanocomposite 8.3.2 - WC-5Co-1Cr-3MgO-0.7VC-0.3Cr3C2 nanocomposite 8.3.3 - WC-5Co-1Cr-3MgO-0.7VC-0.3Cr3C2 nanocomposite 8.4 - Fabrication of metal matrix/carbon nanotubes nanocomposites by mechanical alloying References 9 - Solid-state hydrogen storage nanomaterials for fuel cell applications 9.1 - Introduction 9.2 - Hydrogen energy 9.2.1 - Hydrogen economy 9.2.2 - Hydrogen storage 9.2.2.1 - Gaseous storage method 9.2.2.2 - Liquid storage method 9.3 - Solid-state hydrogen storage 9.3.1 - Nanomaterials for hosting hydrogen 9.3.2 - Metal hydrides 9.4 - Magnesium hydride as an example of solid-state hydrogen storage material 9.4.1 - Traditional approach for synthesizing commercial MgH2 9.4.2 - Synthesizing of nanocrystalline MgH2 powders by reactive ball milling 9.4.2.1 - High-energy reactive ball milling 9.4.2.2 - Low-energy reactive ball milling 9.4.3 - Characterization of reacted ball-milled MgH2 powders 9.4.3.1 - Structural change of Mg powders upon RBM under hydrogen gas 9.4.3.2 - Morphological changes of Mg powders upon RBM under hydrogen gas 9.4.3.3 - Thermal stability of MgH2 powders obtained after different stages of RBM 9.4.3.4 - Effect of RBM time on the hydrogenation/dehydrogenation behavior of MgH2 9.4.3.4.1 - Pressure–composition–temperature (PCT) 9.4.3.4.2 - Hiden Isotherma 9.4.3.4.3 - Experimental procedure References 10 - Mechanically induced-catalyzation for improving the behavior of MgH2 10.1 - Introduction 10.2 - Scenarios for improving the behavior of MgH2 10.2.1 - Alloying elements for improving the hydrogenation/dehydrogenation kinetics of Mg-based alloys 10.2.2 - Doping MgH2 with catalysts 10.2.2.1 - Metal and metal alloys 10.2.2.2 - New approach for doping MgH2 with pure metals 10.2.2.3 - New intermetallic catalytic agents 10.2.2.4 - Catalyzation with metal/metal oxide nanocomposite powders 10.2.2.5 - Catalyzation with titanium carbide nanopowders 10.2.3 - Catalyzation with metastable phases of Zr-based nanopowders 10.2.3.1 - Mechanism of enhancing MgH2 kinetics upon doping with metallic glassy abrasive nanopowders 10.3 - Combination of cold rolling and ball milling for improving the kinetics behavior of MgH2 powders References 11 - Implementation of MgH2-based nanocomposite for fuel cell applications 11.1 - Introduction 11.2 - Hydrogen reactors 11.2.1 - Bulk nanocomposite MgH2/10 wt.% (8 Nb2O5/2 wt.% Ni) system 11.2.1.1 - Implementation of nanocomposite MgH2/8 wt.% Nb2O5/2 wt.% Ni green compacts for fuel cell applications References 12 - Utilization of ball-milled powders for surface protective coating 12.1 - Introduction 12.2 - Thermal spraying 12.2.1 - Combustion-based processes 12.2.1.1 - High velocity oxygen thermal spraying (HVOF) 12.2.1.2 - Utilization of ball-milled powders as feedstock materials for HVOF 12.2.1.2.1 - HVOF reactive spraying of mechanically alloyed Ni–Ti–C powders 12.2.1.2.2 - HVOF of nanostructured Cr3C2-Ni20Cr coatings 12.2.1.2.3 - HVOF of nanocrystalline iron aluminide 12.2.1.2.4 - High-feed-milled HVOF sprayed WC-Co coatings 12.2.1.2.5 - HVOF sprayed diamond reinforced bronze coatings 12.2.2 - Cold spray process 12.2.2.1 - Advantages 12.2.2.2 - Mechanism 12.2.2.3 - Cold spraying of metastable powders obtained by mechanical alloying 12.2.2.4 - Cold spraying of metal matrix reinforced with carbon nanotubes (CNTs) 12.2.2.5 - Cold spraying of metal matrix reinforced with diamond powders 12.2.2.6 - Cold spraying of metal matrix reinforced with tungsten carbide 12.2.2.7 - Applications of cold spray coating feedstock powders References 13 - Mechanically induced solid-state amorphization 13.1 - Introduction 13.2 - Fabrication of amorphous alloys by mechanical alloying process 13.3 - Crystal-to-glass transition 13.3.1 - The metastable phase diagram 13.4 - Mechanism of amorphization by mechanical alloying process 10.4.1 - Structural changes with the milling time 10.4.1.1 - X-ray analysis 10.4.1.2 - TEM observations 13.4.2 - Morphology and metallography changes with the milling time 13.4.3 - Thermal stability 13.4.3.1 - Amorphization process 13.4.3.2 - Crystallization process 13.4.3.3 - Mechanism 13.4.3.3.1 Amorphization via TASSA process: the early stage of milling 13.4.3.3.2 The intermediate stage of milling: the role of amorphization via TASSA and MDSSA processes 13.4.3.3.3 The final stage of milling: the role of amorphization via MDSSA process 13.5 - The glass-forming range 13.6 - Amorphization via mechanical alloying when ∆Hfor= Zero; mechanical solid-state amorphization of Fe50W50 binary system 13.6.1 - Structural changes with the milling time 13.6.2 - Magnetic studies 13.6.3 - Thermal stability 13.6.4 - Mechanism 13.6.4.1 - The stage of composite FeW powder particles formation 13.6.4.2 - The stage of formation of FeW solid solution 13.6.4.3 - The stage of amorphous FeW formation 13.7 - Special systems and applications 13.7.1 - Amorphous austenitic stainless steel 13.7.2 - Fabrication amorphous Fe52Nb48 special steel 13.7.3 - Fe-Zr-B system 13.8 - Difference between mechanical alloying and mechanical disordering in the amorphization reaction of Al50Ta50 in a rod... 13.8.1 - Background 13.8.2 - Procedure 13.8.3 - Structural changes with milling time 13.8.4 - Morphological changes with milling time 13.8.5 - Thermal stability 13.8.6 - Mechanism of formation of amorphous Al50Ta50 via MD method 13.9 - Mechanically induced cyclic crystalline-amorphous transformations during mechanical alloying 13.9.1 - Co-Ti binary system 13.9.1.1 - Structural changes with the milling time 13.9.1.2 - Thermal stability 13.9.2 - Al-Zr binary system 13.9.2.1 - Structural changes with the milling time 13.9.2.2 - Thermal stability 13.9.3 - Mechanism of amorphous-crystalline-amorphous cyclic phase transformations during ball milling 13.10 - Consolidation of multicomponent metallic glassy alloy powders into full-dense bulk materials 13.10.1 - Fabrication and consolidation of multicomponent Zr52Al6Ni8Cu14W20 metallic glassy alloy powders 13.10.1.1 - Structural change 13.10.1.2 - Thermal stability 13.10.1.3 - Consolidation 13.10.2 - Consolidation of mechanically alloyed Ti40.6Cu15.4Ni8.5Al5.5W30 metallic glassy alloy powders by SPS 13.11 - Recent studies References 14 - Mechanical alloying for preparing nanocrystalline high-entropy alloys 14.1 - Introduction 14.1.1 - Traditional alloys 14.1.2 - The birth of high-entropy alloys 14.1.3 - Basic science behind the HEAs 14.1.4 - Advantage and attractive properties of HEAs 14.1.4.1 - Preparations 14.1.4.2 - Properties 14.2 - Preparations of nanocrystalline HEAs by mechanical alloying 14.2.1 - Examples of recent HEAs systems prepared by mechanical alloying 14.2.1.1 - Bulk nanocrystalline VNbMoTaW high-entropy alloy 14.2.1.2 - High-entropy multicomponent WMoNbZrV alloy 14.2.1.3 - High-pressure torsion-driven mechanical alloying of CoCrFeMnNi high-entropy alloy 14.2.1.4 - Magnetic properties of CoxCrCuFeMnNi high-entropy alloy powders References 15 - Biomedical applications of mechanically alloyed powders 15.1 - Introduction 15.2 - Metallic biomaterials 15.3 - Mechanical alloying for fabrication of metallic biomaterials 15.3.1 - Selected examples 15.3.1.1 - Ti-based alloys 15.3.1.1.1 - High strength, antibacterial, and biocompatible Ti-5Mo-5Ag alloy 15.3.1.1.2 - Low-cost Ti-Mn-Nb alloys for biomedical applications 15.3.1.1.3 - Low modulus titanium-niobium-tantalum-zirconium (TNTZ) alloy 15.3.1.1.4 - β-type Ti-Nb-Ta-Zr-xHaP (x = 0, 10) alloy 15.3.1.1.5 - Ti-13Nb-13Zr alloy with radial porous Ti-HA coatings 15.3.1.2 - Mg-based alloys 15.3.1.2.1 - High-performance MgFe biodegradable alloy 15.3.1.2.2 - Biodegradable Mg-Zn/HA composite 15.3.1.2.3 - Nanocrystalline AZ31 magnesium alloy with titanium additive 15.3.1.2.4 - Lamellar structured degradable magnesium–hydroxyapatite implants References Index Back Cover