دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2
نویسندگان: D.H. Fremlin
سری: Measure Theory
ISBN (شابک) : 9780953812981
ناشر: Lulu.com
سال نشر: 2011
تعداد صفحات: 102
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 1,012 کیلوبایت
در صورت تبدیل فایل کتاب Measure Theory: Volume 1: The Irreducible Minimum به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب : جلد 1: حداقل غیر قابل تقلیل نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Measure Theory 1_The Irreducible Minimum(2e,2011,102p)D.H.Fremlin_9780953812981 Contents General Introduction Introduction to Volume 1 Note on second and third printings Note on second edition, 2011 Chapter 11. Measure spaces 111. σ-algebras 111A. Definition 111B. Remarks 111C. Infinite unions and intersections 111D. Elementary properties of σ-algebras 111E. More on infinite unions and intersections 111F. Countable sets 111G. Borel sets 111X. Basic exercises 111Y. Further exercises 111 Notes and comments 112. Measure spaces 112A. Definition 112B. Remarks 112C. Elementary properties of measure spaces 112D. Negligible sets 112X. Basic exercises 112Y. Further exercises 112 Notes and comments 113. Outer measures and Carath éodory's construction 113A. Outer measures 113B. Remarks 113C. Carathéodory's Method 113D. Remark 113X. Basic exercises 113Y. Further exercises 113 Notes and comments 114. Lebesgue measure on R 114A. Definitions 114B. Lemma 114C. Definition 114D. Proposition 114E. Definition 114F. Lemma 114G. Proposition 114X. Basic exercises 114Y. Further exercises 114 Notes and comments 115. Lebesgue measure on R^r 115A. Definitions 115B. Lemma 115C. Definition 115D. Proposition 115E. Definition 115F. Lemma 115G. Proposition 115X. Basic exercises 115Y. Further exercises 115 Notes and comments Chapter 12. Integration 121. Measurable functions 121A. Lemma 121B. Proposition 121C. Definition 121D. Proposition 121E. Theorem 121F. Theorem 121G. Remarks 121H. Proposition *121I. *121J. *121K. Proposition 121X. Basic exercises 121Y. Further exercises 121 Notes and comments 122. Definition of the integral 122A. Definitions 122B. Lemma 122C. Lemma 122D. Corollary 122E. Definition 122F. Proposition 122G. Lemma 122H. Definition 122I. Lemma 122J. Lemma 122K. Definition 122L. Lemma 122M. Definition 122N. Remarks 122O. Theorem 122P. Theorem 122Q. Remark 122R. Corollary 122X. Basic exercises 122Y. Further exercises 122 Notes and comments 123. The convergence theorems 123A. B.Levi's theorem 123B. Fatou's Lemma 123C. Lebesgue's Dominated Convergence Theorem 123D. differentiating through an integral 123X. Basic exercises 123Y. Further exercises 123 Notes and comments Chapter 13. Complements 131. Measurable subspaces 131A. Proposition 131B. Definition 131C. Lemma 131D. Integration over subsets: Definition 131E. Proposition 131F. Corollary 131G. Corollary 131H. Corollary 131X. Basic exercises 131Y. Further exercises 131 Notes and comments 132. Outer measures from measures 132A. Proposition 132B. Definition 132C. Proposition 132D. Measurable envelopes 132E. Lemma 132F. Full outer measure 132X. Basic exercises 132Y. Further exercises 132 Notes and comments 133. Wider concepts of integration 133A. Infinite integrals 133B. Functions with exceptional values 133C. Complex-valued functions 133D. Definitions 133E. Lemma 133F. Proposition 133G. Lebesgue's Dominated Convergence Theorem 133H. Corollary 133I. Upper and lower integrals 133J. Proposition 133K. Convergence theorems for upper integrals *133L. 133X. Basic exercises 133Y. Further exercises 133 Notes and comments 134. More on Lebesgue measure 134A. Proposition 134B. Theorem *134C. Remark *134D. 134E. Borel sets and Lebesgue measure on R^r 134F. Proposition 134G. The Cantor set 134H. The Cantor function 134I. The Cantor function modified 134J. More examples *134K. Riemann integration *134L. 134X. Basic exercises 134Y. Further exercises 134 Notes and comments 135. The extended real line 135A. The algebraic structure of [-∞, ∞] 135B. The order structure of [-∞,. ∞] 135C. The Borel structure of [-∞,. ∞] 135D. Convergent sequences in [-∞,. ∞] 135E. Measurable functions 135F. [-∞,. ∞]-valued integrable functions 135G. 135H. Upper and lower integrals again 135I. Subspace measures 135X. Basic exercises 135Y. Further exercises 135 Notes and comments *136. The Monotone Class Theorem 136A. Lemma 136B. Monotone Class Theorem 136C. Corollary 136D. Corollary 136E. Algebras of sets: Definition 136F. Remarks 136G. Theorem *136H. Proposition 136X. Basic exercises 136Y. Further exercises 136 Notes and comments Appendix to Volume 1 - Useful Facts 1A1. Set theory 1A1A. Square bracket notations 1A1B. Direct and inverse images 1A1C. Countable sets 1A1D. Proposition 1A1E. Properties of countable sets 1A1F. *1A1G. Remark 1A1H. Some uncountable sets 1A1I. Remark 1A1J. Notation 1A1 Notes and comments 1A2. Open and closed sets in R^r 1A2A. Open sets 1A2B. The family of all open sets 1A2C. Cauchy's inequality 1A2D. Corollary 1A2E Closed sets 1A2F. Proposition 1A2G. 1A3. Lim sups and lim infs 1A3A. Definition 1A3B. 1A3C. Remark *1A3D. Other expressions of the same idea Concordance References for Volume 1 Index to volume 1 Principal topics and results General index Measure Theory 2_Broad Foundations(2016,570p)D.H.Fremlin_9780953812974 Contents General introduction Introduction to Volume 2 Note on second printing, April 2003 Note on hardback edition, January 2010 Note on second printing of hardback edition, April 2016 *Chapter 21. Taxonomy of measure spaces 211. Definitions 211A. Definition 211B. Definition 211C. Definition 211D. Definition 211E. Definition 211F. Definition 211G. Definition 211H. Definition 211I. Definition 211J. Definition 211K. Definition 211L. 211M. Example: Lebesgue measure 211N. Counting measure 211O. A non-semi-finite space 211P. A non-complete space 211Q. Some probability spaces 211R. Countable-cocountable measure 211X. Basic exercises 211Y. Further exercises 211 Notes and comments 212. Complete spaces 212A. Proposition 212B. Proposition 212C. The completion of a measure 212D. 212E. 212F. 212G. 212X. Basic exercises 212Y. Further exercises 212 Notes and comments 213. Semi-finite, locally determined and localizable spaces 213A. Lemma 213B. Proposition *213C. Proposition 213D. C.l.d. versions 213E. Definition 213F. 213G. 213H. 213I. Locally determined negligible sets 213J. Proposition *213K. Lemma 213L. Proposition 213M. Corollary 213N. 213O. 213X. Basic exercises 213Y. Further exercises 213 Notes and comments 214. Subspaces 214A. Proposition 214B. Definition 214C. Lemma 214D. Integration over subsets 214E. Proposition 214F. Proposition 214G. Corollary 214H. Subspaces and Carathéodory's method 214I. 214J. Upper and lower integrals 214K. Measurable subspaces 214L. Direct sums 214M. Proposition 214N. Corollary *214O. *214P. Theorem *214Q. Proposition 214X. Basic exercises 214Y. Further exercises 214 Notes and comments 215 σ-finite spaces and the principle of exhaustion 215A. The principle of exhaustion 215B. 215C. Corollary 215D. *215E. 215X. Basic exercises 215Y. Further exercises 215 Notes and comments 216. Examples 216A. Lebesgue measure 216B. *216C. A complete, localizable, non-locally-determined space *216D. A complete, locally determined space which is not localizable *216E. A complete, locally determined, localizable space which is not strictly localizable 216X. Basic exercises 216Y. Further exercises 216 Notes and comments Chapter 22. The Fundamental Theorem of Calculus 221. Vitali's theorem in R 221A. Vitali's theorem 221B. Remarks 221X. Basic exercises 221Y. Further exercises 221 Notes and comments 222. Differentiating an indefinite integral 222A. Theorem 222B. Remarks 222C. Lemma 222D. Lemma 222E. Theorem 222F. Corollary 222G. Corollary 222H. 222I. Complex-valued functions *222J. The Denjoy-Young-Saks theorem *222K. Lemma *222L. Theorem 222X. Basic exercises 222Y. Further exercises 222 Notes and comments 223. Lebesgue's density theorems 223A. Lebesgue's Density Theorem 223B. Corollary 223C. Corollary 223D. Theorem 223E. Complex-valued functions 223X. Basic exercises 223Y. Further exercises 223 Notes and comments 224. Functions of bounded variation 224A. Definition 224B. Remarks 224C. Proposition 224D. Theorem 224E. Corollary 224F. Corollary 224G. Corollary 224H. Proposition 224I. Theorem 224J. 224K. Complex-valued functions 224X. Basic exercises 224Y. Further exercises 224 Notes and comments 225. Absolutely continuous functions 225A. Absolute continuity of the indefinite integral 225B. Absolutely continuous functions on R 225C. Proposition 225D. Lemma 225E. Theorem 225F. Integration by parts 225G. 225H. Semi-continuous functions 225I. Proposition 225J. 225K. Proposition 225L. Corollary 225M. Corollary 225N. The Cantor function 225O. Complex-valued functions 225X. Basic exercises 225Y. Further exercises 225 Notes and comments 226. The Lebesgue decomposition of a function of bounded variation 226A. Sums over arbitrary index sets 226B. Saltus functions 226C. The Lebesgue decomposition of a function of bounded variation 226D. Complex functions 226E. 226X. Basic exercises 226Y. Further exercises 226 Notes and comments Chapter 23. The Radon-Nikodym Theorem 231. Countably additive functionals 231A. Definition 231B. Elementary facts 231C. Definition 231D. Elementary facts 231E. 231F. Corollary 231X. Basic exercises 231Y. Further exercises 231 Notes and comments 232. The Radon-Nikodým theorem 232A. Absolutely continuous functionals 232B. Proposition 232C. Lemma 232D. Proposition 232E. The Radon-Nikodým theorem 232F. Corollary 232G. Corollary 232H. Remarks 232I. The Lebesgue decomposition of a countably additive functional 232X. Basic exercises 232Y. Further exercises 232 Notes and comments 233. Conditional expectations 233A. σ-subalgebras 233B. Lemma 233C. Remarks 233D. Conditional expectations 233E. 233F. Remarks 233G. Convex functions 233H. 233I. Jensen's inequality 233J. 233K. 233X. Basic exercises 233Y. Further exercises 233 Notes and comments 234. Operations on measures 234A. Inverse-measure-preserving functions 234B. Proposition 234C. Image measures 234D. Definition 234E. Proposition *234F. 234G. Sums of measures 234H. Proposition 234I. Indefinite-integral measures 234J. Definition 234K. Remarks 234L. The domain of an indefinite-integral measure 234M. Corollary *234N. *234O. 234P. Ordering measures 234Q. Proposition 234X. Basic exercises 234Y. Further exercises 234 Notes and comments 235. Measurable transformations 235A. 235B. Remarks 235C. 235D. 235E. 235F. Remarks 235G. Theorem 235H. The image measure catastrophe 235I. Lemma 235J. Theorem 235K. Corollary 235L. Applying the Radon-Nikodým theorem 235M. Theorem 235N. Remark *235O. *235P. Proposition *235Q. 235R. Reversing the burden 235X. Basic exercises 235Y. Further exercises 235 Notes and comments Chapter 24. Function spaces 241. \usepackage{euscript} \mathscr{L}^0 and L^0 241A. The space \usepackage{euscript} \mathscr{L}^0 : Definition 241B. Basic properties 241C. The space L^0: Definition 241D. The linear structure of L^0 241E. The order structure of L^0 241F. Riesz spaces 241G. 241H. The multiplicative structure of L^0 241I. The action of Borel functions on L^0 241J. Complex L^0 241X. Basic exercises 241Y. Further exercises 241 Notes and comments 242. L^1 242A. The space L^1 242B. Theorem 242C. The order structure of L^1 242D. The norm of L^1 242E. 242F. Theorem 242G. Definition 242H. L^1 as a Riesz space 242I. The Radon-Nikodým theorem 242J. Conditional expectations revisited 242K. 242L. Proposition 242M. L^1 as a completion 242N. 242O. Theorem 242P. Complex L^1 242X. Basic exercises 242Y. Further exercises 242 Notes and comments 243. L^∞ 243A. Definitions 243B. Theorem 243C. The order structure of L^∞ 243D The norm of L^∞ 243E. Theorem 243F. The duality between L^∞ and L^1 243G. Theorem 243H. 243I. A dense subspace of L^∞ 243J. Conditional expectations 243K. Complex L^∞ 243X. Basic exercises 243Y. Further exercises 243 Notes and comments 244. L^p 244A. Definitions 244B. Theorem 244C. The order structure of L^p 244D. The norm of L^p 244E. 244F. Proposition 244G. Theorem 244H. *244I. Corollary 244J. Duality in L^p 244K. Theorem 244L. 244M. 244N. The space L^2 *244O. 244P. Complex L^p 244X. Basic exercises 244Y. Further exercises 244 Notes and comments 245. Convergence in measure 245A. Definitions 245B. Remarks 245C. Pointwise convergence 245D. Proposition 245E. 245F. Alternative description of the topology of convergence in measure 245G. Embedding L^p in L^0 245H. 245I. Remarks 245J. 245K. 245L. Corollary 245M. Complex L^0 245X. Basic exercises 245Y. Further exercises 245 Notes and comments 246. Uniform integrability 246A. Definition 246B. Remarks 246C. 246D. Proposition 246E. Remarks 246F. 246G. 246H. Remarks 246I. Corollary 246J. 246K. Complex \usepackage{euscript} \mathscr{L}^1 and L^1 246X. Basic exercises 246Y. Further exercises 246 Notes and comments 247. Weak compactness in L^1 247A. 247B. Corollary 247C. Theorem 247D. Corollary 247E. Complex L^1 247X. Basic exercises 247Y. Further exercises 247 Notes and comments Chapter 25. Product Measures 251. Finite products 251A. Definition 251B. Lemma 251C. Definition 251D. Definition 251E. Proposition 251F. Definition 251G. Remark 251H. 251I. 251J. Proposition 251K. σ-finite spaces *251L. 251M. 251N. Theorem 251O. 251P. Lemma 251Q. Proposition 251R. Corollary 251S. Corollary 251T. 251U. *251W. Products of more than two spaces 251X. Basic exercises 251Y. Further exercises 251 Notes and comments 252. Fubini's theorem 252A. Repeated integrals 252B. Theorem 252C. 252D. 252E. Corollary 252F. 252G. 252H. Corollary 252I. Corollary 252J. Remarks 252K. Example 252L. Example 252M. Remark 252N. Integration through ordinate sets I 252O. Integration through ordinate sets II *252P. 252Q. The volume of a ball 252R. Complex-valued functions 252X. Basic exercises 252Y. Further exercises 252 Notes and comments 253. Tensor products 253A. Bilinear operators 253B. Definition 253C. Proposition 253D. 253E. The canonical map L^1 × L^1 -> L^1 253F. 253G. The order structure of L^1 253H. Conditional expectations 253I. *253J. Upper integrals *253K. 253L. Complex spaces 253X. Basic exercises 253Y. Further exercises 253 Notes and comments 254. Infinite products 254A. Definitions 254B. Lemma 254C. Definition 254D. Remarks 254E. Definition 254F. Theorem 254G. 254H. Corollary 254I. 254J. The product measure on {0,1}^I 254K. 254L. Subspaces 254M. 254N. Theorem 254O. Proposition 254P. Proposition 254Q. Proposition 254R. Conditional expectations again 254S. Proposition 254T. Remarks *254U. *254V. 254X. Basic exercises 254Y. Further exercises 254 Notes and comments 255. Convolutions of functions 255A. 255B. Corollary 255C. Remarks 255D. 255E. The basic formula 255F. Elementary properties 255G. 255H. 255I. Corollary 255J. Theorem 255K. 255L. The r-dimensional case 255M. The case of ]-π, π] 255N. Theorem 255O. Convolutions on ]-π, π] 255X. Basic exercises 255Y. Further exercises 255 Notes and comments 256. Radon measures on R^r 256A. Definitions 256B. 256C. Theorem 256D. Proposition 256E. 256F. Theorem 256G. Theorem 256H. Examples 256I. Remarks 256J. Absolutely continuous Radon measures 256K. Products 256L. Remark *256M. 256X. Basic exercises 256Y. Further exercises 256 Notes and comments 257. Convolutions of measures 257A. Definition 257B. Theorem 257C. Corollary 257D. Corollary 257E. Corollary 257F. Theorem 257X. Basic exercises 257Y. Further exercises 257 Notes and comments Chapter 26. Change of Variable in the Integral 261. Vitali's theorem in R^r 261A. Notation 261B. Vitali's theorem in R^r 261C. 261D. Corollary 261E. Theorem 261F. 261X. Basic exercises 261Y. Further exercises 261 Notes and comments 262 Lipschitz and differentiable functions 262A. Lipschitz functions 262B. 262C. Remark 262D. Proposition 262E. Corollary 262F. Differentiability 262G. Remarks 262H. The norm of a matrix 262I. Lemma 262J. Remark 262K. The Cantor function revisited 262L. 262M. 262N. Corollary 262O. Corollary 262P. Corollary *262Q. 262X. Basic exercises 262Y. Further exercises 262 Notes and comments 263. Differentiable transformations in R^r 263A. Linear transformations 263B. Remark 263C. Lemma 263D. 263E. Remarks *263F. Corollary 263G. Polar coordinates in the plane 263H. Corollary 263I. 263J. The one-dimensional case 263X. Basic exercises 263Y. Further exercises 263 Notes and comments 264 Hausdorff measures 264A. Definitions 264B. 264C. Definition 264D. Remarks 264E. Theorem 264F. Proposition 264G. Lipschitz functions 264H. 264I. Theorem *264J. The Cantor set 264X. Basic exercises 264Y. Further exercises 264 Notes and comments 265. Surface measures 265A. Normalized Hausdorff measure 265B. Linear subspaces 265C. Corollary 265D. 265E. Theorem 265F. The surface of a sphere 265G. 265H. Corollary 265X. Basic exercises 265Y. Further exercises 265 Notes and comments *266 .The Brunn-Minkowski inequality 266A. Arithmetic and geometric means 266B. Proposition 266C. Theorem 266X. Basic exercises 266 Notes and comments Chapter 27. Probability theory 271. Distributions 271A. Notation 271B. Theorem 271C. Definition 271D. Remarks 271E. Measurable functions of random variables 271F. Corollary 271G. Distribution functions 271H. Densities 271I. Proposition 271J. 271K. *271L. 271X. Basic exercises 271Y. Further exercises 271 Notes and comments 272. Independence 272A. Definitions 272B. Remarks 272C. The σ-subalgebra defined by a random variable 272D. Proposition 272E. Corollary 272F. 272G. Distributions of independent random variables 272H. Corollary 272I. Corollary 272J. 272K. Proposition 272L. 272M. Products of probability spaces and independent families of random variables 272N. 272O. Tail σ-algebras and the zero-one law 272P. *272Q. 272R. 272S. Bienaymé's Equality 272T. The distribution of a sum of independent random variables 272U. Corollary 272V. *272W. 272X. Basic exercises 272Y. Further exercises 272 Notes and comments 273. The strong law of large numbers 273A. 273B. Lemma 273C. 273D. The strong law of large numbers: first form 273E. Corollary 273F. Corollary 273G. Corollary 273H. Strong law of large numbers: second form 273I. Strong law of large numbers: third form 273J. Corollary 273K. 273L. *273M. 273N. Theorem 273X. Basic exercises 273Y. Further exercises 273 Notes and comments 274. The central limit theorem 274A. The normal distribution 274B. Proposition 274C. Lemma 274D. Lemma 274E. Lemma 274F. Lindeberg's theorem 274G. Central Limit Theorem 274H. Remarks 274I. Corollary 274J. Corollary 274K. Corollary 274L. Remarks *274M. 274X. Basic exercises 274Y. Further exercises 274 Notes and comments 275. Martingales 275A. Definition 275B. Examples 275C. Remarks 275D. 275E. Up-crossings 275F. Lemma 275G. 275H. Theorem 275I. Theorem *275J. 275K. Reverse martingales 275L. Stopping times 275M. Examples 275N. Lemma 275O. Proposition 275P. Corollary 275X. Basic exercises 275Y. Further exercises 275 Notes and comments 276. Martingale difference sequences 276A. Martingale difference sequences 276B. Proposition 276C. The strong law of large numbers: fourth form 276D. Corollary 276E. `Impossibility of systems' *276F. *276G. Lemma *276H. Komlós' theorem (KOMLÓS 67) 276X. Basic exercises 276Y. Further exercises 276 Notes and comments Chapter 28. Fourier analysis 281. The Stone-Weierstrass theorem 281A. Stone-Weierstrass theorem: first form 281B. 281C. Lemma 281D. Corollary 281E. Stone-Weierstrass theorem: second form 281F. Corollary: Weierstrass' theorem 281G. Stone-Weierstrass theorem: third form 281H. Corollary 281I. Corollary 281J. Corollary 281K. Corollary 281L. Corollary 281M. Weyl's Equidistribution Theorem 281N. Theorem 281X. Basic exercises 281Y. Further exercises 281 Notes and comments 282. Fourier series 282A. Definition 282B. Remarks 282C. The problems 282D. Lemma 282E. 282F. Corollary 282G. 282H. 282I. Corollary 282J. 282K. Corollary 282L. 282M. Lemma 282N. 282O. Theorem 282P. Corollary 282Q. *282R. 282X. Basic exercises 282Y. Further exercises 282 Notes and comments 283. Fourier transforms I 283A. Definitions 283B. Remarks 283C. Proposition 283D. Lemma 283E. 283F. Theorem 283G. Corollary 283H. Lemma 283I. Theorem 283J. Corollary 283K. 283L. 283M. 283N. 283O. 283W. Higher dimensions 283X. Basic exercises 283Y. Further exercises 283 Notes and comments 284. Fourier transforms II 284A. Test functions: Definition 284B. 284C. Proposition 284D. Definition 284E. 284F. 284G. Lemma 284H. Definition 284I. Remarks 284J. Lemma 284K. Proposition 284L. 284M. Theorem 284N. L^2 spaces 284O. Theorem 284P. Corollary 284Q. Remarks 284R. Dirac's delta function 284W. The multidimensional case 284X. Basic exercises 284Y. Further exercises 284 Notes and comments 285. Characteristic functions 285A. Definition 285B. Remarks 285C. 285D. 285E. Lemma 285F. 285G. Corollary 285H. Remark 285I. Proposition 285J. 285K. Characteristic functions and the vague topology 285L. Theorem 285M. Corollary 285N. Remarks 285O. Lemma 285P. Lemma 285Q. Law of Rare Events: Theorem 285R. Convolutions 285S. The vague topology and pointwise convergence of characteristic functions 285T. Proposition 285U. Corollary 285X. Basic exercises 285Y. Further exercises 285 Notes and comments 286. Carleson's theorem 286A. The Maximal Theorem 286B. Lemma 286C. Shift, modulation and dilation 286D. Lemma 286E. The Lacey-Thiele construction 286F. A partial order 286G. 286H. `Mass' and `energy' (Lacey & Thiele 00) 286I. Lemma 286J. Lemma 286K. Lemma 286L. Lemma 286M. The Lacey-Thiele lemma 286N. Lemma 286O. Lemma 286P. Lemma 286Q. Lemma 286R. Lemma 286S. Lemma 286T. Lemma 286U. Theorem 286V. Theorem 286W. Glossary 286X. Basic exercises 286Y. Further exercises 286 Notes and comments Appendix to Volume 2 - Useful Facts 2A1. Set theory 2A1A. Ordered sets 2A1B. Transfinite Recursion: Theorem 2A1C. Ordinals 2A1D. Basic facts about ordinals 2A1E. Initial ordinals An initial ordinal 2A1F. Basic facts about initial ordinals 2A1G. Schröder-Bernstein theorem 2A1H. Countable subsets of PN 2A1I. Filters 2A1J. The Axiom of Choice 2A1K. Zermelo's Well-Ordering Theorem 2A1L. Fundamental consequences of the Axiom of Choice 2A1M. Zorn's Lemma 2A1N. Ultrafilters 2A1O. The Ultrafilter Theorem 2A1P. 2A2. The topology of Euclidean space 2A2A. Closures: Definition 2A2B. Lemma 2A2C. Continuous functions 2A2D. Compactness in R^r: Definition 2A2E. Elementary properties of compact sets 2A2F. 2A2G. Corollary 2A2H. Lim sup and lim inf revisited 2A2I. 2A3. General topology 2A3A. Topologies 2A3B. Continuous functions 2A3C. Subspace topologies 2A3D. Closures and interiors 2A3E Hausdorff topologies 2A3F. Pseudometrics 2A3G. Proposition 2A3H. 2A3I. Remarks 2A3J. Subspaces: Proposition 2A3K. Closures and interiors 2A3L. Hausdorff topologies 2A3M. Convergence of sequences 2A3N. Compactness 2A3O. Cluster points 2A3P. Filters 2A3Q. Convergent filters 2A3R. 2A3S. Further calculations with filters 2A3T. Product topologies 2A3U. Dense sets 2A4. Normed spaces 2A4A. The real and complex fields 2A4B. Definitions 2A4C. Linear subspaces 2A4D. Banach spaces 2A4E. 2A4F. Bounded linear operators 2A4G. Theorem 2A4H. Dual spaces 2A4I. Extensions of bounded operators: Theorem 2A4J. Normed algebras *2A4K. Definition 2A5. Linear topological spaces 2A5A. Linear space topologies 2A5B. *2A5C. 2A5D. Definition 2A5E. Convex sets 2A5F. Completeness in linear topological spaces 2A5G. 2A5H. Normed spaces and sequential completeness 2A5I. Weak topologies *2A5J. Angelic spaces 2A6. Factorization of matrices 2A6A. Determinants 2A6B. Orthonormal families 2A6C. Concordance References for Volume 2 Index to volumes 1 and 2 Principal topics and results General index Measure Theory 3-1_Measure Algebras(2e,2012,216p)D.H.Fremlin_9780956607102 Contents General introduction Introduction to Volume 3 Note on second printing Note on second (`Lulu') edition Chapter 31. Boolean algebras 311. Boolean algebras 311A. Definitions 311B. Examples 311C. Proposition 311D. Lemma 311E. M.H.Stone's theorem: first form 311F. Remarks 311G. The operations ∪, \, Δ on a Boolean ring 311H. The order structure of a Boolean ring 311I. The topology of a Stone space: Theorem 311J. 311K. Remark 311L. Complemented distributive lattices 311X. Basic exercises 311Y. Further exercises 311 Notes and comments 312. Homomorphisms 312A. Subalgebras 312B. Proposition 312C. Ideals in Boolean algebras: Proposition 312D. Principal ideals 312E. Proposition 312F. Boolean homomorphisms 312G. Proposition 312H. Proposition 312I. Proposition 312J. Proposition *312K. Fixed-point subalgebras 312L. Quotient algebras: Proposition 312M. 312N. 312O. Lemma 312P. Homomorphisms and Stone spaces 312Q. Theorem 312R. Theorem 312S. Proposition 312T. Principal ideals 312X. Basic exercises 312Y. Further exercises 312 Notes and comments 313. Order-continuous homomorphisms 313A. Relative complementation: Proposition 313B. General distributive laws: Proposition 313C. 313D. 313E. Order-closed subalgebras and ideals 313F. Order-closures and generated sets 313G. 313H. Definitions 313I. Proposition 313J. 313K. Lemma 313L. Proposition 313M. 313N. Definition 313O. Proposition 313P. 313Q. Corollary 313R. 313S. Upper envelopes 313X. Basic exercises 313Y. Further exercises 313 Notes and comments 314. Order-completeness 314A. Definitions 314B. Remarks 314C. Proposition 314D. Corollary 314E. Proposition 314F. 314G. Corollary 314H. Corollary 314I. Corollary 314J. 314K. Extension of homomorphisms 314L. The Loomis-Sikorski representation of a Dedekind σ-complete Boolean algebra 314M. Theorem 314N. Corollary 314O. Regular open algebras 314P. Theorem 314Q. Remarks *314R. 314S. 314T. 314U. The Dedekind completion of a Boolean algebra 314X. Basic exercises 314Y. Further exercises 314 Notes and comments 315. Products and free products 315A. Products of Boolean algebras 315B. Theorem 315C. Products of partially ordered sets 315D. Proposition 315E. Factor algebras as principal ideals 315F. Proposition 315G. Algebras of sets and their quotients *315H. 315I. Free products 315J. Theorem 315K. 315L. Proposition 315M. Algebras of sets and their quotients 315N. Notation 315O. Lemma 315P. Example 315Q. Example *315R. Projective and inductive limits: Proposition *315S. Definitions 315X. Basic exercises 315Y. Further exercises 315 Notes and comments 316. Further topics 316A. Definitions 316B. Theorem 316C. Proposition 316D. Corollary 316E. Proposition 316F. Corollary 316G. Definition 316H. Proposition 316I. 316J. The regular open algebra of R 316K. Atoms in Boolean algebras 316L. Proposition 316M. Proposition 316N. Definition *316O. Lemma *316P. Proposition *316Q. Proposition 316X. Basic exercises 316Y. Further exercises 316 Notes and comments Chapter 32. Measure algebras 321. Measure algebras 321A. Definition 321B. Elementary properties of measure algebras 321C. Proposition 321D. Corollary 321E. Corollary 321F. Corollary 321G. Subalgebras 321H. The measure algebra of a measure space 321I. Definition 321J. The Stone representation of a measure algebra 321K. Definition 321X. Basic exercises 321Y. Further exercises 321 Notes and comments 322. Taxonomy of measure algebras 322A. Definitions 322B. 322C. 322D. 322E. Proposition 322F. Proposition 322G. 322H. Principal ideals 322I. Subspace measures 322J. Corollary 322K. Indefinite-integral measures 322L. Simple products *322M. Strictly localizable spaces 322N. Subalgebras 322O. The Stone space of a localizable measure algebra 322P. Theorem 322Q. Definition 322R. Further properties of Stone spaces 322X. Basic exercises 322Y. Further exercises 322 Notes and comments 323. The topology of a measure algebra 323A. The pseudometrics 323B. Proposition 323C. Proposition 323D. 323E. Corollary 323F. 323G. The classification of measure algebras 323H. Closed subalgebras 323I. Notation 323J. Proposition 323K. 323L. Proposition *323M. 323X. Basic exercises 323Y. Further exercises 323 Notes and comments 324. Homomorphisms 324A. Theorem 324B. Corollary 324C. Remarks 324D. Proposition 324E. Stone spaces 324F. 324G. Corollary 324H. Corollary 324I. Definition 324J. Proposition 324K. Proposition 324L. Corollary 324M. Proposition 324N. Proposition 324O. Proposition *324P. 324X. Basic exercises 324Y. Further exercises 324 Notes and comments 325. Free products and product measures 325A. Theorem 325B. Characterizing the measure algebra of a product space 325C. 325D. Theorem 325E. Remarks 325F. 325G. *325H. Products of more than two factors 325I. Infinite products 325J. 325K. Definition 325L. Independent subalgebras 325M. *325N. Notation 325X. Basic exercises 325Y. Further exercises 325 Notes and comments 326. Additive functionals on Boolean algebras 326A. Additive functionals 326B. Elementary facts 326C. The space of additive functionals 326D. The Jordan decomposition (I) *326E. Additive functionals on free products *326F. *326G. Lemma *326H Liapounoff's convexity theorem (LIAPOUNOFF 40) 326I. Countably additive functionals 326J. Elementary facts 326K. Corollary 326L. The Jordan decomposition (II) 326M. The Hahn decomposition 326N. Completely additive functionals 326O. Basic facts 326P. 326Q. The Jordan decomposition (III) 326R. 326S. 326T. Corollary 326X. Basic exercises 326Y. Further exercises 326 Notes and comments 327. Additive functionals on measure algebras 327A. 327B. Theorem 327C. Proposition 327D. The Radon-Nikodým theorem 327E. 327F. Standard extensions 327G. Definition 327X. Basic exercises 327Y. Further exercises 327 Notes and comments *328 .Reduced products and other constructions 328A. Construction 328B. Proposition 328C. Definition 328D. Proposition 328E. Proposition 328F. Corollary 328G. Corollary 328H. Proposition 328I. 328J. 328X. Basic exercises 328 Notes and comments Chapter 33. Maharam's theorem 331. Maharam types and homogeneous measure algebras 331A. Definition 331B. 331C. Corollary 331D. Lemma 331E. Generating sets 331F. Maharam types 331G. 331H. Proposition 331I. 331J. Lemma 331K. Theorem 331L. Theorem 331M. Homogeneous Boolean algebras 331N. Proposition 331O. 331X. Basic exercises 331Y. Further exercises 331 Notes and comments 332. Classification of localizable measure algebras 332A. Lemma 332B. Maharam's theorem 332C. Corollary 332D. The cellularity of a Boolean algebra 332E. Proposition 332F. Corollary 332G. Definitions 332H. Lemma 332I. Lemma 332J. 332K. Remarks 332L. Proposition 332M. Lemma 332N. Lemma 332O. Lemma 332P. Proposition 332Q. Proposition 332R. 332S. Theorem 332T. Proposition 332X. Basic exercises 332Y. Further exercises 332 Notes and comments 333. Closed subalgebras 333A. Definitions 333B. 333C. Theorem 333D. Corollary 333E. Theorem 333F. Corollary 333G. Corollary 333H. 333I. Remarks 333J. Lemma 333K. Theorem 333L. Remark 333M. Lemma 333N. A canonical form for closed subalgebras 333O. Remark 333P. 333Q. Corollary 333R. 333X. Basic exercises 333Y. Further exercises 333 Notes and comments 334. Products 334A. Theorem 334B. Corollary 334C. Theorem 334D. Corollary 334E. 334X .Basic exercises 334Y. Further exercises 334 Notes and comments Chapter 34. The lifting theorem 341. The lifting theorem 341A. Definition 341B. Remarks 341C. Definition 341D. Remarks 341E. Example 341F. 341G. Lemma 341H. 341I. 341J. Proposition 341K. The Lifting Theorem 341L. Remarks 341M. 341N. Extension of partial liftings 341O. Liftings and Stone spaces 341P. Proposition 341Q. Corollary 341X. Basic exercises 341Y. Further exercises 341Z. Problems 341 Notes and comments 342. Compact measure spaces 342A. Definitions 342B. 342C. Corollary 342D. Lemma 342E. Corollary 342F. Corollary 342G. 342H. Proposition 342I. Proposition 342J. Examples 342K. 342L. Theorem 342M. *342N. Example 342X. Basic exercises 342Y. Further exercises 342 Notes and comments 343. Realization of homomorphisms 343A. Preliminary remarks 343B. Theorem 343C. Examples 343D. Uniqueness of realizations 343E. Lemma 343F. Proposition 343G. Corollary 343H. Examples 343I. Example 343J. The split interval 343K. 343L. 343M. Example 343X. Basic exercises 343Y. Further exercises 343 Notes and comments 344. Realization of automorphisms 344A. Stone spaces 344B. Theorem 344C. Corollary 344D. 344E. Theorem 344F. Corollary 344G. Corollary 344H. Lemma 344I. Theorem 344J. Corollary 344K. Corollary 344L. 344X. Basic exercises 344Y. Further exercises 344 Notes and comments 345. Translation-invariant liftings 345A. Translation-invariant liftings 345B. Theorem 345C. Theorem 345D. 345E. 345F. Proposition 345X. Basic exercises 345Y. Further exercises 345 Notes and comments 346. Consistent liftings 346A. Definition 346B. Lemma 346C. Theorem 346D. 346E. Theorem 346F. 346G. Theorem 346H. Theorem 346I. Theorem 346J. Consistent liftings 346K. Lemma 346L. Proposition 346X. Basic exercises 346Y. Further exercises 346Z. Problems 346 Notes and comments Concordance Measure Theory 3-2_Measure Algebras(2e,2012,469p)D.H.Fremlin_9780956607119 Contents Chapter 35. Riesz spaces 351. Partially ordered linear spaces 351A. Definition 351B. Elementary facts 351C. Positive cones 351D. Suprema and infima 351E. Linear subspaces 351F. Positive linear operators 351G. Order-continuous positive linear operators 351H. Riesz homomorphisms 351I. Solid sets 351J. Proposition 351K. Lemma 351L. Products 351M. Reduced powers of R 351N. 351O. Lemma 351P. Lemma 351Q. 351R. Archimedean spaces 351X. Basic exercises 351Y. Further exercises 351 Notes and comments 352. Riesz spaces 352A. 352B. Lemma 352C. Notation 352D. Elementary identities 352E. Distributive laws 352F. Further identities and inequalities 352G. Riesz homomorphisms 352H. Proposition 352I. Riesz subspaces 352J. Solid subsets 352K. Products 352L. Theorem 352M. Corollary 352N. Order-density and order-continuity 352O. Bands 352P. Complemented bands 352Q. Theorem 352R. Projection bands 352S. Proposition 352T. Products again 352U. Quotient spaces 352V. Principal bands 352W. f-algebras 352X. Basic exercises 352 Notes and comments 353. Archimedean and Dedekind complete Riesz spaces 353A. Proposition 353B. Proposition 353C. Corollary 353D. Proposition 353E. Lemma 353F. Lemma 353G. Dedekind completeness 353H. Proposition 353I. Proposition 353J. Proposition 353K. Proposition 353L. Order units 353M. Theorem 353N. Lemma 353O. f-algebras 353P. Proposition 353Q. Proposition 353X. Basic exercises 353Y. Further exercises 353 Notes and comments 354. Banach lattices 354A. Definitions 354B. Lemma 354C. Lemma 354D. 354E. Proposition 354F. Lemma 354G. Definitions 354H. Examples 354I. Lemma 354J. Proposition 354K. Theorem 354L. Corollary 354M. 354N. Theorem 354O. Proposition 354P. Uniform integrability in L-spaces 354Q. 354R. 354X. Basic exercises 354Y. Further exercises 354 Notes and comments 355. Spaces of linear operators 355A. Definition 355B. Lemma 355C. Theorem 355D. Lemma 355E. Theorem 355F. Theorem 355G. Definition 355H. Theorem 355I. Theorem 355J. Proposition 355K. Proposition 355X. Basic exercises 355Y. Further exercises 355 Notes and comments 356. Dual spaces 356A. Definition 356B. Theorem 356C. Proposition 356D. Proposition 356E. Biduals 356F. Theorem 356G. Lemma 356H. Lemma 356I. Theorem 356J. Definition 356K. Proposition 356L. Proposition 356M. Proposition 356N. L- and M-spaces 356O. Theorem 356P. Proposition 356Q. Theorem 356X. Basic exercises 356Y. Further exercises 356 Notes and comments Chapter 36. Function Spaces 361. S 361A. Boolean rings 361B. Definition 361C. Elementary facts 361D. Construction 361E. 361F. 361G. Theorem 361H. Theorem 361I. Theorem 361J. 361K. Proposition 361L. Proposition 361M. Proposition 361X. Basic exercises 361Y. Further exercises 361 Notes and comments 362. S~ 362A. Theorem 362B. Spaces of finitely additive functionals 362C. 362D. 362E. Uniformly integrable sets 362X. Basic exercises 362Y. Further exercises 362 Notes and comments 363. L^∞ 363A. Definition 363B. Theorem 363C. Proposition 363D. Proposition 363E. Theorem 363F. Theorem 363G. Corollary 363H. Representations of L^\infty ( \mathfrak{A} ) 363I. Corollary 363J. Recovering the algebra \mathfrak{A} 363K. Dual spaces of L^\infty *363L. Integration with respect to a finitely additive functional 363M. 363N. 363O. Corollary 363P. Corollary 363Q. 363R. 363S. The Banach-Ulam problem 363X. Basic exercises 363Y. Further exercises 363 Notes and comments 364. L^0 364A. The set L^0( \mathfrak{A} ) 364B. Proposition 364C. Theorem 364D. Theorem 364E. 364F. 364G. Definition 364H. Proposition 364I. Examples 364J. Embedding S and L^\infty in L^0 364K. Corollary 364L. Suprema and infima in L^0 364M. 364N. The multiplication of L^0 364O. Recovering the algebra 364P. 364Q. Proposition 364R. Products *364S. Regular open algebras *364T. Theorem *364U. Compact spaces *364V. Theorem 364X. Basic exercises 364Y. Further exercises 364 Notes and comments 365. L^1 365A. Definition 365B. Theorem 365C. 365D. Integration 365E. The Radon-Nikodým theorem again 365F. 365G. Semi-finite algebras 365H. Measurable transformations 365I. Theorem 365J. Corollary 365K. Theorem 365L. The duality between L^1 and L^\infty 365M. Theorem 365N. Corollary 365O. Theorem 365P. Theorem 365Q. Proposition 365R. Conditional expectations 365S. Recovering the algebra: Proposition 365T. 365U. Uniform integrability 365X. Basic exercises 365Y. Further exercises 365 Notes and comments 366. L^p 366A. Definition 366B. Theorem 366C. Corollary 366D. 366E. Proposition 366F. 366G. Lemma 366H. Theorem 366I. Corollary 366J. Corollary 366K. Corollary 366L. Corollary *366M. Complex L^p spaces 366X. Basic exercises 366Y. Further exercises 366 Notes and comments 367. Convergence in measure 367A. Order*-convergence 367B. Lemma 367C. Proposition 367D. 367E. 367F. 367G. Corollary 367H. Proposition 367I. Dominated convergence 367J. The Martingale Theorem 367K. 367L. 367M. Theorem 367N. Proposition 367O. Theorem 367P. Proposition 367Q. 367R. 367S. Proposition 367T. Intrinsic description of convergence in measure *367U. Theorem *367V. Corollary *367W. Independence 367X. Basic exercises 367Y. Further exercises 367 Notes and comments 368. Embedding Riesz spaces in L^0 368A. Lemma 368B. Theorem 368C. Corollary 368D. Corollary 368E. Theorem 368F. Corollary 368G. Corollary 368H. Corollary 368I. Corollary 368J. Definition 368K. 368L. Definition 368M. Theorem 368N Weakly (σ, ∞)-distributive Riesz spaces 368O. Lemma 368P. Proposition 368Q. Theorem 368R. Corollary 368S. Corollary 368X. Basic exercises 368Y. Further exercises 368 Notes and comments 369. Banach function spaces 369A. Theorem 369B. Corollary 369C. 369D. Corollary 369E. Kakutani's theorem 369F. 369G. Proposition 369H. Associate norms 369I. Theorem 369J. Theorem 369K. Corollary 369L. L^p 369M. Proposition 369N. 369O. Proposition 369P. 369Q. Corollary 369R. 369X. Basic exercises 369Y. Further exercises 369 Notes and comments Chapter 37. Linear operators between function spaces 371. The Chacon-Krengel theorem 371A. Lemma 371B. Theorem 371C. Theorem 371D. Corollary 371E. Remarks 371F. The class T^{(0)} 371G. Proposition 371H. Remark 371X. Basic exercises 371Y. Further exercises 371 Notes and comments 372. The ergodic theorem 372A. Lemma 372B. Lemma 372C. Maximal Ergodic Theorem 372D. 372E. Corollary 372F. The Ergodic Theorem: second form 372G. Corollary 372H. 372I. 372J. The Ergodic Theorem: third form 372K. Remark 372L. Continued fractions 372M. Theorem 372N. Corollary 372O. Mixing and ergodic transformations 372P. 372Q. 372R. Remarks 372S. 372X. Basic exercises 372Y. Further exercises 372 Notes and comments 373. Decreasing rearrangements 373A. Definition 373B. Proposition 373C. Decreasing rearrangements 373D. Lemma 373E. Theorem 373F. Theorem 373G. Lemma 373H. Lemma 373I. Lemma 373J. Corollary 373K. The very weak operator topology of T 373L. Theorem 373M. Corollary 373N. Corollary 373O. Theorem 373P. Theorem 373Q. Corollary 373R. Order-continuous operators: Proposition 373S. Adjoints in T^{(0)} 373T. Corollary 373U. Corollary 373X. Basic exercises 373Y. Further exercises 373 Notes and comments 374. Rearrangement-invariant spaces 374A. T-invariance 374B. 374C. 374D. 374E. 374F. Remarks 374G. Definition 374H. Proposition 374I. Corollary 374J. Lemma 374K. Theorem 374L. Lemma 374M. Proposition 374X. Basic exercises 374Y. Further exercises 374 Notes and comments 375. Kwapien's theorem 375A. Theorem 375B. Proposition 375C. Theorem 375D. Corollary 375E. Theorem 375F. 375G. Lemma 375H. Lemma 375I. Lemma 375J. Theorem 375K. Corollary 375L. Corollary 375X. Basic exercises 375Y. Further exercises 375Z. Problem 375 Notes and comments 376. Kernel operators 376A. Kernel operators 376B. The canonical map L^0 × L^0 -> L^0 376C. 376D. Abstract integral operators 376E. Theorem 376F. Corollary 376G. Lemma 376H. Theorem 376I. 376J. Corollary 376K. 376L. Lemma 376M. Theorem 376N. Corollary: Dunford's theorem 376O. 376P. Theorem 376Q. Corollary 376R. 376S. Theorem 376X. Basic exercises 376Y. Further exercises 376 Notes and comments *377 .Function spaces of reduced products 377A. Proposition 377B. Theorem 377C. Theorem 377D. 377E. Proposition 377F. 377G. Projective limits 377H. Inductive limits 377X. Basic exercises 377Y. Further exercises 377 Notes and comments Chapter 38. Automorphism groups 381. Automorphisms of Boolean algebras 381A. The group Aut \mathfrak{A} 381B. 381C. 381D. Corollary 381E. Lemma 381F. Corollary 381G. Corollary 381H. Proposition 381I. Full and countably full subgroups 381J. Lemma 381K. Lemma 381L. Lemma 381M. 381N. Lemma 381O. Lemma 381P. Proposition 381Q. 381R. Cyclic automorphisms 381S. Lemma 381X. Basic exercises 381Y. Further exercises 382. Factorization of automorphisms 382A. Definitions 382B. Lemma 382C. Corollary 382D. Lemma 382E. Corollary 382F. Corollary 382G. Lemma 382H. Lemma 382I. Lemma 382J. Lemma 382K. Lemma 382L. Lemma 382M. Theorem 382N. Corollary 382O. Definition 382P. Lemma 382Q. Lemma 382R. Theorem 382S. Corollary 382X. Basic exercises 382Y. Further exercises 382 Notes and comments 383. Automorphism groups of measure algebras 383A. Definition 383B. Lemma 383C. Corollary 383D. Theorem 383E. Lemma 383F. Lemma 383G. Lemma 383H. Corollary 383I. Normal subgroups of Aut \mathfrak{A} and Aut_{\bar{\mu}} \mathfrak{A} 383J. 383K. 383L. Corollary 383X. Basic exercises 383Y. Further exercises 383 Notes and comments 384. Outer automorphisms 384A. Lemma 384B. A note on supports 384C. Lemma 384D. Theorem 384E. 384F. Corollary 384G. Corollary 384H. Definitions 384I. Lemma 384J. Theorem 384K. Corollary 384L. Examples 384M. Theorem 384N. 384O. Corollary 384P. 384Q. Example 384X. Basic exercises 384Y. Further exercises 384 Notes and comments 385. Entropy 385A. Notation 385B. Lemma 385C. Definition 385D. Definition 385E. Elementary remarks 385F. Definition 385G. Lemma 385H. Corollary 385I. Lemma 385J. Lemma 385K. Definition 385L. Lemma 385M. Definition 385N. Lemma 385O. Lemma 385P. Theorem (Kolmogorov 58, Sinai 59) 385Q. Bernoulli shifts 385R. Theorem 385S. Remarks 385T. Isomorphic homomorphisms 385U. Definition 385V. 385X. Basic exercises 385Y. Further exercises 385 Notes and comments 386. More about entropy 386A. 386B. Corollary 386C. The Halmos-Rokhlin-Kakutani lemma 386D. Corollary 386E. 386F. Corollary 386G. Definition 386H. Lemma 386I. Corollary 386J. 386K. Lemma 386L. Lemma 386M. Lemma 386N. Lemma 386O. Lemma 386X. Basic exercises 386Y. Further exercises 386 Notes and comments 387. Ornstein's theorem 387A. 387B. Remarks 387C. Lemma 387D. Corollary 387E. Sinaĭ's theorem (atomic case) (SINAĬ 62) 387F. Lemma 387G. Lemma 387H. Lemma 387I. Ornstein's theorem (finite entropy case) 387J. 387K. Ornstein's theorem (infinite entropy case) 387L. Corollary: Sinaĭ's theorem (general case) 387X. Basic exercises 387Y. Further exercises 387 Notes and comments 388. Dye's theorem 388A. Orbit structures 388B. Corollary 388C. 388D. von Neumann automorphisms 388E. Example 388F. 388G. Lemma 388H. Lemma 388I. Lemma 388J. Lemma 388K. Theorem 388L. Theorem 388X. Basic exercises 388Y. Further exercises 388 Notes and comments Chapter 39. Measurable algebras 391. Kelley's theorem 391A. Proposition 391B. Definition 391C. Proposition 391D. Theorem (Kantorovich Vulikh & Pinsker 50) 391E. 391F. Theorem 391G. Corollary 391H. Definition 391I. Proposition 391J. Theorem 391K. Corollary 391X. Basic exercises 391Y. Further exercises 391 Notes and comments 392. Submeasures 392A. Definition 392B. 392C. Proposition 392D. Lemma 392E. Lemma 392F. Theorem 392G. Corollary 392H. 392I. Corollary 392J. Proposition *392K. Products of submeasures 392X. Basic exercises 392Y. Further exercises 392 Notes and comments 393. Maharam submeasures 393A. Definition 393B. Lemma 393C. Proposition 393D. Theorem 393E. Maharam algebras 393F. Lemma 393G. Proposition 393H. Proposition 393I. Proposition 393J. Lemma *393K. Theorem 393L. 393M. Lemma 393N. Proposition 393O. Proposition 393P. Lemma 393Q. Theorem (Balcar Głowczynski & Jech 98, Balcar Jech & Pazák 05) 393R. Definition 393S. Theorem (TODORČEVIĆ 04) 393X. Basic exercises 393Y. Further exercises 393 Notes and comments 394. Talagrand's example 394A. 394B. Lemma 394C. Definitions 394D. Very elementary facts 394E. Lemma 394F. Corollary 394G. 394H. Definitions 394I. Proposition 394J. Lemma 394K. Lemma 394L. Lemma 394M. Theorem 394N. Remarks *394O. Control measures *394P. Example *394Q. 394X. Basic exercises 394Y. Further exercises 394Z. Problems 394 Notes and comments 395. Kawada's theorem 395A. Definitions 395B. 395C. Lemma 395D. Theorem 395E. Definition 395F. Proposition 395G. The fixed-point subalgebra of a group 395H. 395I. 395J. Notation 395K. Lemma 395L. Lemma 395M. Lemma 395N. 395O. 395P. Theorem 395Q. Corollary: Kawada's theorem 395R. 395X. Basic exercises 395Y. Further exercises 395Z. Problem 395 Notes and comments 396. The Hajian-Ito theorem 396A. Lemma 396B. Theorem (Hajian & Ito 69) 396C. Remark 396X. Basic exercises 396Y. Further exercises 396 Notes and comments Appendix to Volume 3 - Useful Facts 3A1. Set Theory 3A1A. The axioms of set theory 3A1B. Definition 3A1C. Calculation of cardinalities 3A1D. Cardinal exponentiation 3A1E. Definition 3A1F. Cofinal sets 3A1G. Zorn's Lemma 3A1H. Natural numbers and finite ordinals 3A1I. Definitions 3A1J. Subsets of given size 3A1K. 3A2. Rings 3A2A. Definition 3A2B. Elementary facts 3A2C. Subrings 3A2D. Homomorphisms 3A2E. Ideals 3A2F. Quotient rings 3A2G. Factoring homomorphisms through quotient rings 3A2H. Product rings 3A3. General topology 3A3A. Taxonomy of topological spaces 3A3B. Elementary relationships 3A3C. Continuous functions 3A3D. Compact spaces 3A3E. Dense sets 3A3F. Meager sets 3A3G. Baire's theorem for locally compact Hausdorff spaces 3A3H. Corollary 3A3I. Product spaces 3A3J. Tychonoff's theorem 3A3K. The spaces {0, 1}^{I} 3A3L. Cluster points of filters 3A3M. Topology bases 3A3N. Uniform convergence 3A3O. One-point compactifications 3A3P. Topologies defined from a sequential convergence 3A3Q. Miscellaneous definitions 3A4. Uniformities 3A4A. Uniformities 3A4B. Uniformities and pseudometrics 3A4C. Uniform continuity 3A4D. Subspaces 3A4E. Product uniformities 3A4F. Completeness 3A4G. Extension of uniformly continuous functions 3A4H. Completions 3A4I. A note on metric spaces 3A5. Normed spaces 3A5A. The Hahn-Banach theorem 3A5B. Cones 3A5C. Hahn-Banach theorem: geometric forms 3A5D. Separation from finitely-generated cones 3A5E. Weak topologies 3A5F. Weak* topologies 3A5G. Reflexive spaces 3A5H. Uniform Boundedness Theorem *3A5I. Strong operator topologies 3A5J. Completions 3A5K. Normed algebras 3A5L. Compact operators 3A5M. Hilbert spaces *3A5N. Bounded sets in linear topological spaces 3A6. Group Theory 3A6A. Definition 3A6B. Definition 3A6C. Normal subgroups Concordance References for Volume 3 Index to volumes 1, 2 and 3 Principal topics and results General index Measure Theory 4-1_Topological Measure Spaces(2e,2013,577p)D.H.Fremlin_9780956607126 Contents General introduction Introduction to Volume 4 Note on second printing Note on second (`Lulu') edition Chapter 41. Topologies and Measures I 411. Definitions 411A. 411B. 411C. Definition 411D. 411E. 411F. 411G. Elementary facts 411H. 411I. Remarks 411J. 411K. Borel and Baire measures 411L. 411M. Definition 411N. 411O. Example 411P. Example: Stone spaces 411Q. Example: Dieudonné's measure 411R. Example: The Baire σ-algebra of ω_1 411X. Basic exercises 411Y. Further exercises 411 Notes and comments 412. Inner regularity 412A. 412B. Corollary 412C. 412D. 412E. Theorem 412F. Lemma 412G. Theorem 412H. Proposition 412I. Lemma 412J. Proposition 412K. Proposition 412L. Corollary 412M. Corollary 412N. Lemma 412O. Lemma 412P. Proposition 412Q. Proposition 412R. Lemma 412S. Proposition 412T. Lemma 412U. Proposition 412V. Corollary *412W. Outer regularity 412X. Basic exercises 412Y. Further exercises 412 Notes and comments 413. Inner measure constructions 413A. 413B. 413C. Measures from inner measures 413D. The inner measure defined by a measure 413E. 413F. 413G. 413H. 413I. Theorem (Topsøe 70A) 413J. Theorem 413K. Corollary 413L. 413M. Corollary 413N. 413O. Corollary 413P. 413Q. Theorem 413R. 413S. Corollary 413T. 413X. Basic exercises 413Y. Further exercises 413 Notes and comments 414. τ-additivity 414A. Theorem 414B. Corollary 414C. Corollary 414D. Corollary 414E. Corollary 414F. Corollary 414G. Corollary 414H. Corollary 414I. Proposition 414J. Theorem 414K. Proposition 414L. Lemma 414M. Proposition 414N. Proposition 414O. 414P. Density topologies 414Q. Lifting topologies 414R. Proposition 414X. Basic exercises 414Y. Further exercises 414 Notes and comments 415. Quasi-Radon measure spaces 415A. Theorem 415B. Theorem 415C. 415D. 415E. 415F. Corollary 415G. Comparing quasi-Radon measures 415H. Uniqueness of quasi-Radon measures 415I. Proposition 415J. Proposition 415K. 415L. Proposition 415M. Corollary 415N. Corollary 415O. Proposition 415P. Proposition 415Q. 415R. Proposition 415X. Basic exercises 415Y. Further exercises 415 Notes and comments 416. Radon measure spaces 416A. Proposition 416B. Corollary 416C. 416D. 416E. Specification of Radon measures 416F. Proposition 416G. 416H. Corollary 416I. 416J. 416K. Proposition (see TOPSØE 70A) 416L. Proposition 416M. Corollary 416N. Henry's theorem (Henry 69) 416O. Theorem 416P. Theorem 416Q. Proposition 416R. Theorem 416S. 416T. 416U. Theorem 416V. Stone spaces 416W. Compact measure spaces 416X. Basic exercises 416Y. Further exercises 416 Notes and comments 417. τ-additive product measures 417A. Lemma 417B. Lemma 417C. Theorem (RESSEL 77) 417D. Multiple products 417E. Theorem 417F. Corollary 417G. Notation 417H. Fubini's theorem for τ-additive product measures 417I. 417J. 417K. Proposition 417L. Corollary 417M. Proposition 417N. Theorem 417O. Theorem 417P. Theorem 417Q. Theorem 417R. Notation 417S. 417T. Proposition 417U. Proposition 417V. Proposition 417X. Basic exercises 417Y. Further exercises 417 Notes and comments 418. Measurable functions and almost continuous functions 418A. Proposition 418B. Proposition 418C. Proposition 418D. Proposition 418E. Theorem 418F. Proposition 418G. Proposition 418H. Proposition 418I. 418J. Theorem 418K. Corollary 418L. 418M. Prokhorov's theorem 418N. Remarks 418O. 418P. Proposition 418Q. Corollary 418R. 418S. Corollary 418T. Corollary (MAULDIN & STONE 81) *418U. Independent families of measurable functions 418X. Basic exercises 418Y. Further exercises 418 Notes and comments 419. Examples 419A. Example 419B. Lemma 419C. Example (FREMLIN 75B) 419D. Example (FREMLIN 75B) 419E. Example (FREMLIN 76) 419F. Theorem (RAO 69) 419G. Corollary (ULAM 30) 419I. 419J. Example 419K. Example (BLACKWELL 56) 419L. The split interval again 419X. Basic exercises 419Y. Further exercises 419 Notes and comments Chapter 42. Descriptive set theory 421. Souslin's operation 421A. Notation 421B. Definition 421C. Elementary facts 421D. 421E. Corollary 421F. Corollary 421G. Proposition 421H. 421I. 421J. Proposition 421K. Definition 421L. Proposition 421M. Proposition *421N. *421O. Theorem *421P. Corollary *421Q. Lemma 421X. Basic exercises 421Y. Further exercises 421 Notes and comments 422. K-analytic spaces 422A. Definition 422B. 422C. Proposition 422D. Lemma 422E. 422F Definition (FROLÍK 61) 422G. Theorem 422H. Theorem 422I. 422J. Corollary *422K. 422X. Basic exercises 422Y. Further exercises 422 Notes and comments 423. Analytic spaces 423A. Definition 423B. Proposition 423C. Theorem 423D. Corollary 423E. Theorem 423F. Proposition 423G. Lemma 423H. Lemma 423I. Theorem 423J. Lemma 423K. Corollary 423L. Proposition 423M. 423N. 423O. Corollary *423P. Constituents of coanalytic sets *423Q. Remarks *423R. Coanalytic and PCA sets 423S. Proposition 423X. Basic exercises 423Y. Further exercises 423 Notes and comments 424. Standard Borel spaces 424A. Definition 424B. Proposition 424C. Theorem 424D. Corollary 424E. Proposition 424F. Corollary 424G. Proposition *424H. 424X. Basic exercises 424Y. Further exercises 424 Notes and comments *425. Realization of automorphisms 425A. 425B. Lemma 425C. Master actions 425D. Törnquist's theorem (TÖRNQUIST 11) 425E. Scholium 425X. Basic exercises 425Y. Further exercises 425Z. Problems 425 Notes and comments Chapter 43. Topologies and measures II 431. Souslin's operation 431A. Theorem 431B. Corollary 431C. Corollary 431D. Theorem 431E. Corollary *431F. *431G. 431X. Basic exercises 431Y. Further exercises 431 Notes and comments 432. K-analytic spaces 432A. Proposition 432B. Theorem 432C. Proposition 432D. Theorem (ALDAZ & RENDER 00) 432E. Corollary 432F. Corollary 432G. Corollary 432H. Corollary 432I. Corollary 432J. Capacitability 432K. Theorem (CHOQUET 55) 432L. Proposition 432X. Basic exercises 432Y. Further exercises 432 Notes and comments 433. Analytic spaces 433A. Proposition 433B. Lemma 433C. Theorem 433D. Theorem 433E. Proposition 433F. 433G. Proposition 433H. Proposition 433I. 433J. Proposition 433K. 433L. Proposition 433X. Basic exercises 433Y. Further exercises 433 Notes and comments 434. Borel measures 434A. Types of Borel measures 434B. Compact, analytic and K-analytic spaces 434C. Radon spaces 434D. Universally measurable sets 434E. Universally Radon-measurable sets 434F. Elementary properties of Radon spaces 434G. 434H. Proposition 434I. Proposition 434J. Proposition 434K. 434L. 434M. 434N. Proposition 434O. Quasi-dyadic spaces 434P. Proposition 434Q. Theorem (FREMLIN & GREKAS 95) 434R. *434S. *434T. 434X. Basic exercises 434Y. Further exercises 434Z. Problems 434 Notes and comments 435. Baire measures 435A. Types of Baire measures 435B. Theorem 435C. Theorem (MARÍK 57) 435D. 435E. 435F. Elementary facts 435G. Proposition 435H. Corollary 435X. Basic exercises 435Y. Further exercises 435 Notes and comments 436. Representation of linear functionals 436A. Definition 436B. Definition 436C. Lemma 436D. Theorem 436E. Proposition 436F. 436G. Definition 436H. Theorem 436I. Lemma 436J. Riesz Representation Theorem (first form) 436K. Riesz Representation Theorem (second form) *436L. *436M. Corollary 436X. Basic exercises 436Y. Further exercises 436 Notes and comments 437. Spaces of measures 437A. Smooth and sequentially smooth duals 437B. Signed measures 437C. Theorem 437D. Remarks 437E. Corollary 437F. Proposition 437G. Definitions 437H. Theorem 437I. Proposition 437J. Vague and narrow topologies 437K. Proposition 437L. Corollary 437M. Theorem (RESSEL 77) 437N. 437O. Uniform tightness 437P. Proposition 437Q. Two metrics 437R. Theorem 437S. 437T. 437U. 437V. Theorem 437X. Basic exercises 437Y. Further exercises 437 Notes and comments 438. Measure-free cardinals 438A. Measure-free cardinals 438B. 438C. 438D. 438E. Proposition 438F. Proposition 438G. Corollary 438H. 438I. Proposition 438J. 438K. Hereditarily weakly θ-refinable spaces 438L. Lemma 438M. Proposition (GARDNER 75) 438N. 438O. Lemma 438P. Lemma 438Q. Theorem 438R. Corollary *438S. Càllàl functions 438T. Proposition 438U. 438X. Basic exercises 438Y. Further exercises 438 Notes and comments 439. Examples 439A. Example 439B. Definition 439C. Proposition 439D. Remarks 439E. Lemma 439F. Proposition 439G. Corollary 439H. Corollary 439I. Example 439J. Example 439K. Example 439L. Example 439M. Example 439N. Example 439O. 439P. Example (cf. MORAN 68) 439Q. Example 439R. Example 439S. 439X. Basic exercises 439Y. Further exercises 439 Notes and comments Chapter 44. Topological groups 441. Invariant measures on locally compact spaces 441A. Group actions 441B. 441C. Theorem (STEINLAGE 75) 441D. 441E. Theorem 441F. 441G. The topology of an isometry group 441H. Theorem 441I. Remarks 441J. 441K. Theorem 1L P.roposition 441X. Basic exercises 441Y. Further exercises 441 Notes and comments 442. Uniqueness of Haar measures 442A. Lemma 442B. Theorem 442C. Proposition 442D. Remark 442E. Lemma 442F. Domains of Haar measures 442G. Corollary 442H. Remark 442I. The modular function 442J. Proposition 442K. Theorem 442L. Corollary 442X. Basic exercises 442Y. Further exercises 442Z. Problem 442 Notes and comments 443. Further properties of Haar measure 443A. Haar measurability 443B. Lemma 443C. Theorem 443D. Proposition 443E. Corollary 443F. 443G. 443H. Theorem 443I. Corollary 443J. Proposition 443K. Theorem 443L. Corollary 443M. Theorem (HALMOS 50) 443N. 443O. 443P. Quotient spaces 443Q. Theorem 443R. Theorem 443S. Applications 443T. Theorem 443U. Transitive actions 443X. Basic exercises 443Y. Further exercises 443 Notes and comments 444. Convolutions 444A. Convolution of measures 444B. Proposition 444C. Theorem 444D. Proposition 444E. The Banach algebra of τ-additive measures 444F. 444G. Corollary 444H. Convolutions of measures and functions 444I. Proposition 444J. Convolutions of functions and measures 444K. Proposition 444L. Corollary 444M. Proposition 444N. 444O. Convolutions of functions 444P. Proposition 444Q. Proposition 444R. Proposition 444S. Remarks 444T. Proposition 444U. Corollary 444V. 444X. Basic exercises 444Y .Further exercises 444 Notes and comments 445. The duality theorem 445A. Dual groups 445B. Examples 445C. Fourier-Stieltjes transforms 445D. Theorem 445E. 445F. Fourier transforms of functions 445G. Proposition 445H. Theorem 445I. The topology of the dual group 445J. Corollary 445K. Proposition 445L. Positive definite functions 445M. Proposition 445N. Bochner's theorem (HERGLOTZ 1911, BOCHNER 33, WEIL 40) 445O. Proposition 445P. The Inversion Theorem 445Q. Remark 445R. The Plancherel Theorem 445S. 445T. Corollary 445U. The Duality Theorem (PONTRYAGIN 34, KAMPEN 35) 445X. Basic exercises 445Y. Further exercises 445 Notes and comments 446. The structure of locally compact groups 446A. Finite-dimensional representations 446B. Theorem 446C. Corollary *446D. Notation *446E. Lemma *446F. Lemma *446G. `Groups with no small subgroups' *446H. Lemma *446I. Lemma *446J. Lemma *446K. Lemma *446L. Definition *446M. Proposition *446N. Proposition *446O. Theorem *446P. Corollary 446X. Basic exercises 446Y. Further exercises 446 Notes and comments 447. Translation-invariant liftings 447A. Liftings and lower densities 447B. Lemma 447C. Vitali's theorem 447D. Theorem 447E. 447F. Lemma 447G. Lemma 447H. Lemma 447I. Theorem (IONESCU TULCEA & IONESCU TULCEA 67) 447J. Corollary 447X. Basic exercises 447Y. Further exercises 447 Notes and comments 448. Polish group actions 448A. Definitions 448B. 448C. Lemma 448D. Theorem 448E. Definition 448F. 448G. 448H. Lemma 448I. Notation 448K. 448L. 448M. Lemma 448N. Theorem 448O. 448P. 448Q. 448R. Lemma 448S. Mackey's theorem (MACKEY 62) 448T. Corollary 448X. Basic exercises 448Y. Further exercises 448 Notes and comments 449. Amenable groups 449A. Definition 449B. Lemma 449C. Theorem 449D. Theorem 449E. Corollary 449F. Corollary 449G. Example 449H. 449I. Notation 449J. Theorem 449K. Proposition 449L. 449M. Corollary 449N. Theorem 449O. Corollary (BANACH 1923) 449X. Basic exercises 449Y. Further exercises 449 Notes and comments Chapter 45. Perfect measures and disintegrations 451. Perfect, compact and countably compact measures 451A. 451B. 451C. Proposition (RYLL-NARDZEWSKI 53) 451D. Proposition 451E. Proposition 451F. Lemma (SAZONOV 66) 451G. Proposition 451H. Lemma 451I. Theorem 451J. Theorem 451K. *451L. 451M. 451N. Proposition 451O. Corollary 451P. Corollary 451Q. 451R. Lemma 451S. Proposition 451T. Theorem (FREMLIN 81, KOUMOULLIS & PRIKRY 83) 451U. Example (VINOKUROV & MAKHKAMOV 73, MUSIAŁ 76) *451V Weakly α-favourable spaces 451X. Basic exercises 451Y. Further exercises 451 Notes and comments 452. Integration and disintegration of measures 452A. Lemma 452B. Theorem 452C. Theorem 452D. Theorem 452E. 452F. Proposition 452G. 452H. Lemma 452I. Theorem (PACHL 78) 452J. Remarks 452K. Example 452L. 452M. 452N. Corollary 452O. Proposition 452P. Corollary (cf. BLACKWELL 56) 452Q. Disintegrations and conditional expectations *452R. *452S. Corollary (PACHL 78) 452T. 452X. Basic exercises 452Y. Further exercises 452 Notes and comments 453. Strong liftings 453A. 453B. 453C. Proposition 453D. Proposition 453E. Proposition 453F. Proposition 453G. Corollary 453H. Lemma 453I. Proposition 453J. Corollary 453K. 453L. Remark 453M. Strong liftings and Stone spaces 453N. Losert's example (LOSERT 79) 453X. Basic exercises 453Y. Further exercises 453Z. Problems 453 Notes and comments 454. Measures on product spaces 454A. Theorem 454B. Corollary 454C. Theorem (MARCZEWSKI & RYLL-NARDZEWSKI 53) 454D. Theorem (KOLMOGOROV 33, §III.4) 454E. Corollary 454F. Corollary 454G. Corollary 454H. Corollary 454I. Remarks 454J. Distributions of random processes 454K. Definition 454L. Independence 454M. 454N. 454O. Proposition 454P. Theorem 454Q. Continuous processes 454R. Proposition 454S. Corollary 454T. 454X. Basic exercises 454Y. Further exercises 454 Notes and comments 455. Markov and Lévy processes 455A. Theorem 455B. Lemma 455C. Theorem 455D. Remarks 455E. Theorem 455F. 455G. Theorem 455H. Corollary 455I. 455J. Theorem 455K. Corollary 455L. Stopping times 455M. Hitting times 455N. 455O. 455P. 455Q. Lévy processes 455R. Theorem 455S. Lemma 455T. Corollary 455U. Theorem 455X. Basic exercises 455Y. Further exercises 455 Notes and comments 456. Gaussian distributions 456A. Definitions 456B. 456C. 456D. Gaussian processes 456E. Independence and correlation 456F. Proposition 456G. 456H. The support of a Gaussian distribution 456I. Remarks 456J. Universal Gaussian distributions 456K. Proposition 456L. Lemma 456M. Cluster sets 456N. Lemma 456O. 456P. Corollary 456Q. Proposition 456X. Basic exercises 456Y. Further exercises 456 Notes and comments 457. Simultaneous extension of measures 457A. 457B. Corollary 457C. Corollary *457D. 457E. Proposition 457F. Proposition 457G. Theorem 457H. Example 457I. Example 457J. Example 457K. 457L. Theorem 457M. 457N. Remarks 457X. Basic exercises 457Y. Further exercises 457Z. Problems 457 Notes and comments 458. Relative independence and relative products 458A. Relative independence 458B. 458C. Proposition 458D. Proposition 458E. Example 458F. *458G. 458H. 458I. 458J. Theorem 458K. 458L. Measure algebras 458M. Proposition 458N. Relative free products of probability algebras 458O. Theorem 458P. 458Q. Relative product measures 458R. Proposition 458S. 458T. 458U. 458X. Basic exercises 458Y. Further exercises 458 Notes and comments 459. Symmetric measures and exchangeable random variables 459A. 459B. Theorem 459C. Exchangeable random variables 459D. 459E. 459F. Lemma 459G. Lemma 459H. Theorem 459I. 459J. Corollary 459K. 459X. Basic exercises 459Y. Further exercises 459 Notes and comments Concordance to chapters 41-45 References Measure Theory 4-2_Topological Measure Spaces(2e,2013,573p)D.H.Fremlin_9780956607133 Contents Chapter 46. Pointwise compact sets of measurable functions 461. Barycenters and Choquet's theorem 461A. Definitions 461B. Proposition 461C. Lemma 461D. Theorem 461E. Theorem 461F. Theorem 461G. Lemma 461H. Proposition 461I. Theorem 461J. Corollary: Kreĭn's theorem 461K. Lemma 461L. Lemma 461M. Theorem 461N. Lemma 461O. Lemma 461P. Theorem 461Q. 461R. Corollary 461X. Basic exercises 461Y. Further exercises 461 Notes and comments 462. Pointwise compact sets of continuous functions 462A. Definitions *462B. Proposition (PRYCE 71) *462C. Theorem (PRYCE 71) *462D. Theorem 462E. Theorem 462F. Lemma 462G. Proposition 462H. Lemma 462I. Theorem 462J. Corollary 462K. Proposition 462L. Corollary 462X. Basic exercises 462Y. Further exercises 462Z. Problem 462 Notes and comments 463. \mathfrak{T}_p and \mathfrak{T}_m 463A. Preliminaries 463B. Lemma 463C. Proposition (IONESCU TULCEA 73) 463D. Lemma 463E. Proposition 463F. Corollary 463G. Theorem (IONESCU TULCEA 74) 463H. Corollary 463I. Lemma 463J. Lemma 463K. Fremlin's Alternative (FREMLIN 75A) 463L. Corollary 463M. Proposition 463N. Corollary 463X. Basic exercises 463Y. Further exercises 463Z. Problems 463 Notes and comments 464. Talagrand's measure 464A. The usual measure on PI 464B. Lemma 464C. Lemma 464D. Construction (TALAGRAND 80) 464E. Example 464F. The L-space \ell^\infty(I)^\ast 464G. 464H. 464I. Measurable and purely non-measurable functionals 464J. Examples 464K. The space M_m 464L. The space M_{pnm} 464M. Theorem (FREMLIN & TALAGRAND 79) 464N. Corollary (FREMLIN & TALAGRAND 79) 464O. Remark 464P. More on purely non-measurable functionals 464Q. More on measurable functionals 464R. A note on \ell^\infty(I) 464X. Basic exercises 464Y. Further exercises 464Z. Problem 464 Notes and comments 465. Stable sets 465A. Notation 465B. Definition 465C. 465D. 465E. The topology \mathfrak{T}_s(\mathcal{L}^2, \mathcal{L}^2) 465F. Lemma 465G. Theorem 465H. 465I. 465J. 465K. Lemma 465L. Lemma (TALAGRAND 87) 465M. Theorem (TALAGRAND 82, TALAGRAND 87) 465N. Theorem 465O. Stable sets in L^0 465P. Theorem 465Q. Remarks 465R. Theorem (TALAGRAND 84) *465S. R-stable sets *465T. Proposition (TALAGRAND 84) *465U. *465V. Remark 465X. Basic exercises 465Y. Further exercises 465 Notes and comments 466. Measures on linear topological spaces 466A. Theorem 466B. Corollary 466C. Definition 466D. Proposition (HANSELL 01) 466E. Corollary 466F. Proposition 466G. Definition 466H. Proposition (JAYNE & ROGERS 95) 466I. Examples 466J. Theorem 466K. Proposition 466L. Proposition 466M. Corollary 466N. Gaussian measures 466O. Proposition 466X. Basic exercises 466Y. Further exercises 466Z. Problems 466 Notes and comments *467 .Locally uniformly rotund norms 467A. Definition 467B. Proposition 467C. A technical device 467D. Lemma 467E. Theorem 467F. Lemma 467G. Theorem 467H. Definitions 467I. Lemma 467J. Lemma 467K. Theorem 467L. Weakly compactly generated Banach spaces 467M. Proposition (TALAGRAND 75) 467N. Theorem 467O. Eberlein compacta 467P. Proposition 467X. Basic exercises 467Y. Further exercises 467 Notes and comments Chapter 47. Geometric measure theory 471. Hausdorff measures 471A. Definition 471B. Definition 471C. Proposition 471D. Theorem 471E. Corollary 471F. Corollary 471G. Increasing Sets Lemma (DAVIES 70) 471H. Corollary 471I. Theorem 471J. Proposition 471K. Lemma 471L. Proposition 471M. 471N. Lemma 471O. Lemma 471P. Theorem 471Q. 471R. Lemma (HOWROYD 95) 471S. Theorem (HOWROYD 95) 471T. Proposition 471X. Basic exercises 471Y. Further exercises 471 Notes and comments 472. Besicovitch's Density Theorem 472A. Besicovitch's Covering Lemma 472B. Theorem 472C. Theorem 472D. Besicovitch's Density Theorem *472E. Proposition *472F. Theorem 472X. Basic exercises 472Y. Further exercises 472 Notes and comments 473. Poincaré's inequality 473A. Notation 473B. Differentiable functions 473C. Lipschitz functions 473D. Smoothing by convolution 473E. Lemma 473F. Lemma 473G. Lemma 473H. Gagliardo-Nirenberg-Sobolev inequality 473I. Lemma 473J. Lemma 473K. Poincaré's inequality for balls 473L. Corollary 473M. The case r = 1 473X. Basic exercises 473Y. Further exercises 473 Notes and comments 474. The distributional perimeter 474A. Notation 474B. The divergence of a vector field 474C. Invariance under isometries 474D. Locally finite perimeter 474E. Theorem 474F. Definitions 474G. The reduced boundary 474H. Invariance under isometries 474I. Half-spaces 474J. Lemma 474K. Lemma 474L .Two isoperimetric inequalities 474M. Lemma 474N. Lemma 474O. Definition 474P. Lemma 474Q. Lemma 474R. Theorem 474S. Corollary 474T. The Compactness Theorem 474X. Basic exercises 474Y. Further exercises 474 Notes and comments 475. The essential boundary 475A. Notation 475B. The essential boundary 475C. Lemma 475D. Lemma 475E. Lemma 475F. Lemma 475G. Theorem 475H. Proposition 475I. Lemma 475J. Lemma 475K. Lemma 475L. Theorem 475M. Corollary 475N. The Divergence Theorem 475O. 475P. Lemma 475Q. Theorem 475R. Convex sets in R^r 475S. Corollary: Cauchy's Perimeter Theorem 475T. Corollary: the Convex Isoperimetric Theorem 475X. Basic exercises 475Y. Further exercises 475 Notes and comments 476. Concentration of measure 476A. Proposition 476B. Lemma 476C. Proposition 476D. Concentration by partial reflection 476E. Lemma 476F. Theorem 476G. Theorem 476H. The Isoperimetric Theorem 476I. Spheres in inner product spaces 476J. Lemma 476K. 476L. Corollary 476X. Basic exercises 476Y. Further exercises 476 Notes and comments 477. Brownian motion 477A. Brownian motion 477B. *477C. 477D. Multidimensional Brownian motion 477E. Invariant transformations of Wiener measure 477F. Proposition 477G. The strong Markov property 477H. Some families of σ-algebras 477I. Hitting times 477J. 477K. Typical Brownian paths 477L. Theorem 477X. Basic exercises 477Y. Further exercises 477 Notes and comments 478. Harmonic functions 478A. Notation 478B. Harmonic and superharmonic functions 478C. Elementary facts 478D. Maximal principle 478E. Theorem 478F. Basic examples 478G. 478H. Corollary 478I. 478J. Convolutions and smoothing 478K. Dynkin's formula 478L. Theorem 478M. Proposition 478N. Wandering paths 478O. Theorem 478P. Harmonic measures 478Q. 478R. Theorem 478S. Corollary 478T. Corollary 478U. *478V. Theorem 478X. Basic exercises 478Y. Further exercises 478 Notes and comments 479. Newtonian capacity 479A. Notation 479B. Theorem 479C. Definitions 479D. 479E. Theorem 479F. 479G. 479H. 479I. Proposition 479J. 479K. Lemma 479L. 479M. 479N. 479O. Polar sets 479P. 479Q. Hausdorff measure 479R. 479S. *479T. *479U. Theorem *479V. *479W. 479X. Basic exercises 479Y. Further exercises 479 Notes and comments Chapter 48. Gauge integrals 481. Tagged partitions 481A. Tagged partitions and Riemann sums 481B. Notation 481C. Proposition 481D. Remarks 481E. Gauges 481F. Residual sets 481G. Subdivisions 481H. Remarks 481I. 481J. The Henstock integral on a bounded interval (HENSTOCK 63) 481K. The Henstock integral on R 481L. The symmetric Riemann-complete integral (cf. CARRINGTON 72, chap. 3) 481M. The McShane integral on an interval (McSHANE 73) 481N. The McShane integral on a topological space (FREMLIN 95) 481O. Convex partitions in R^r 481P. Box products (cf. MULDOWNEY 87, Prop. 1) 481Q. The approximately continuous Henstock integral (GORDON 94, chap. 16) 481X. Basic exercises 481Y. Further exercises 481 Notes and comments 482. General theory 482A. Lemma 482B. Saks-Henstock Lemma 482C. Definition 482D. 482E. Theorem 482F. Proposition 482G. Proposition 482H. Proposition 482I. Integrating a derivative 482J. Definition 482K. B.Levi's theorem 482L. Lemma 482M. Fubini's theorem 482X. Basic exercises 482Y. Further exercises 482 Notes and comments 483. The Henstock integral 483A. Definition 483B. 483C. Corollary 483D. Corollary 483E. Definition 483F. 483G. Theorem 483H. Upper and lower derivates 483I. Theorem 483J. Theorem 483K. Proposition 483L. Definition 483M. Proposition 483N. Proposition 483O. Definitions 483P. Elementary results 483Q. Lemma 483R. Theorem 483X. Basic exercises 483Y. Further exercises 483 Notes and comments 484. The Pfeffer integral 484A. Notation 484B. Theorem (TAMANINI & GIACOMELLI 89) 484C. Lemma 484D. Definitions 484E. Lemma 484F. A family of tagged-partition structures 484G. The Pfeffer integral 484H. 484I. Definition 484J. 484K. Lemma 484L. Proposition 484M. Lemma 484N. Pfeffer's Divergence Theorem 484O. Differentiating the indefinite integral 484P. Lemma 484Q. Definition 484R. Lemma 484S. Theorem 484X. Basic exercises 484Y. Further exercises 484 Notes and comments Chapter 49. Further topics 491. Equidistributed sequences 491A. The asymptotic density ideal 491B. Equidistributed sequences 491C. 491D. 491E. Proposition 491F. Theorem 491G. Corollary 491H. Theorem (VEECH 71) 491I. The quotient PN/Z 491J. Lemma 491K. Corollary 491L. Effectively regular measures 491M. Examples 491N. Theorem 491O. Proposition 491P. Proposition 491Q. Corollary 491R. 491S. The asymptotic density filter 491X. Basic exercises 491Y. Further exercises 491Z. Problem 491 Notes and comments 492. Combinatorial concentration of measure 492A. Lemma 492B. Corollary 492C. Lemma 492D. Theorem (TALAGRAND 95) 492E. Corollary 492F. 492G. Lemma (MILMAN & SCHECHTMAN 86) 492H. Theorem (MAUREY 79) 492I. Corollary 492X. Basic exercises 492 Notes and comments 493. Extremely amenable groups 493A. Definition 493B. Proposition 493C. Theorem 493D. 493E. Theorem (PESTOV 02) 493F. 493G. Theorem 493H. 493X. Basic exercises 493Y. Further exercises 493 Notes and comments 494. Groups of measure-preserving automorphisms 494A. Definitions (HALMOS 56) 494B. Proposition 494C. Proposition 494D. Lemma 494E. Theorem (HALMOS 44, ROKHLIN 48) 494F. 494G. Proposition 494H. Proposition 494I. 494J. Lemma 494K. Lemma 494L. Theorem 494M. Lemma 494N. Lemma 494O. Theorem (KITTRELL & TSANKOV 09) 494P. Remark 494Q. 494R. 494X. Basic exercises 494Y. Further exercises 494Z. Problems 494 Notes and comments 495. Poisson point processes 495A. Poisson distributions 495B. Theorem 495C. Lemma 495D. Theorem 495E. Definition 495F. Proposition 495G. Proposition 495H. Lemma 495I. Theorem 495J. Proposition 495K. Proposition 495L. 495M. 495N. 495O. Proposition 495P. 495X. Basic exercises 495Y. Further exercises 495 Notes and comments 496. Maharam submeasures 496A. Definitions 496B. Basic facts 496C. Radon submeasures 496D. Proposition 496E. Theorem 496F. Theorem 496G. Theorem 496H. Theorem 496I. Theorem 496J. Theorem 496K. Proposition 496L. Free products of Maharam algebras 496M. Representing products of Maharam algebras 496X. Basic exercises 496Y. Further exercises 496 Notes and comments 497. Tao's proof of Szemerédi's theorem 497A. Definitions 497B. Lemma 497C. Lemma 497D. Lemma 497E. Theorem (TAO 07) 497F. Invariant measures on P([I]^{<ω}) 497G. Theorem (TAO 07) 497H. 497I. Definition 497J. Theorem (NAGLE RÖDL & SCHACHT 06) 497K. Corollary: the Hypergraph Removal Lemma 497L. Corollary: Szemerédi's Theorem (SZEMERÉDI 75) 497M. 497N. Theorem (FURSTENBURG 81) 497X. Basic exercises 497Y. Further exercises 497 Notes and comments 498. Cubes in product spaces 498A. Proposition 498B. Proposition (see BRODSKIĬ 49, EGGLESTON 54) 498C. Proposition (see CIESIELSKI & PAWLIKOWSKI 03) 498X. Basic exercises 498Y. Further exercises 498 Notes and comments Appendix to Volume 4 - Useful Facts 4A1. Set theory 4A1A. Cardinals again 4A1B. Closed cofinal sets 4A1C. Stationary sets 4A1D. Δ-systems 4A1E. Free sets 4A1F. Selecting subsequences 4A1G. Ramsey's theorem 4A1H. The Marriage Lemma again 4A1I. Filters 4A1J. Lemma 4A1K. Theorem 4A1L. Theorem 4A1M. Ostaszewski's 4A1N. Lemma 4A1O. The size of σ-algebras 4A1P. An incidental fact 4A2. General topology 4A2A. Definitions 4A2B. Elementary facts about general topological spaces 4A2C. G_δ, F_σ, zero and cozero sets 4A2D. Weight 4A2E. The countable chain condition 4A2F. Separation axioms 4A2G. Compact and locally compact spaces 4A2H. Lindelöf spaces 4A2I. Stone-Čech compactifications 4A2J. Uniform spaces 4A2K. First-countable, sequential and countably tight spaces 4A2L. (Pseudo-)metrizable spaces 4A2M. Complete metric spaces 4A2N. Countable networks 4A2O. Second-countable spaces 4A2P. Separable metrizable spaces 4A2Q. Polish spaces 4A2R. Order topologies 4A2S. Order topologies on ordinals 4A2T. Topologies on spaces of subsets 4A2U. Old friends 4A3. Topological σ-algebras 4A3A. Borel sets 4A3B. (Σ, T)-measurable functions 4A3C. Elementary facts 4A3D. Hereditarily Lindelöf spaces 4A3E. Applications 4A3F. Spaces with countable networks 4A3G. Second-countable spaces 4A3H. Borel sets in Polish spaces 4A3I. Corollary 4A3J. Borel sets in ω_1 4A3K. Baire sets 4A3L. Lemma 4A3M. Product spaces 4A3N. Products of separable metrizable spaces 4A3O. Compact spaces 4A3P. Proposition 4A3Q. Baire property 4A3R. Proposition *4A3S. 4A3T. Cylindrical σ-algebras 4A3U. Proposition 4A3V. Proposition 4A3W. Càdlàg functions 4A3X. Basic exercises 4A3Y. Further exercises 4A3 Notes and comments 4A4. Locally convex spaces 4A4A. Linear spaces 4A4B. Linear topological spaces 4A4C. Locally convex spaces 4A4D. Hahn-Banach theorem 4A4E. The Hahn-Banach theorem in locally convex spaces 4A4F. The Mackey topology 4A4G. Extreme points 4A4H. Proposition 4A4I. Normed spaces 4A4J. Inner product spaces 4A4K. Hilbert spaces 4A4L. Compact operators 4A4M. Self-adjoint compact operators 4A4N. Max-flow Min-cut Theorem (FORD & FULKERSON 56) 4A5. Topological groups 4A5A. Notation 4A5B. Group actions 4A5C. Examples 4A5D. Definitions 4A5E. Elementary facts 4A5F. Proposition 4A5G. Proposition 4A5H. The uniformities of a topological group 4A5I. Definitions 4A5J. Quotients under group actions, and quotient groups 4A5K. Proposition 4A5L. Theorem 4A5M. Proposition 4A5N. Theorem 4A5O. Proposition 4A5P. Lemma 4A5Q. Metrizable groups 4A5R. Corollary 4A5S. Lemma *4A5T. 4A6. Banach algebras 4A6A. Definition 4A6B. Stone-Weierstrass Theorem: fourth form 4A6C. Proposition 4A6D. Proposition 4A6E. Proposition 4A6F. Proposition 4A6G. Definition 4A6H. Theorem 4A6I. Theorem 4A6J. Theorem 4A6K. Corollary 4A6L. Exponentiation 4A6M. Lemma 4A6N. Lemma 4A6O. Proposition 4A7. `Later editions only' Concordance to chapters 46-49 References for Volume 4 Index to volumes 1-4 Principal topics and results General index Measure Theory 5-1_Set-theoretic Measure Theory(2015,329p)D.H.Fremlin_9780953812950 Contents General introduction Introduction to Volume 5 Note on second printing Chapter 51. Cardinal functions 511. Definitions 511A. Pre-ordered sets 511B. Definitions 511C. On the symbol ∞ 511D. Definitions 511E. Precalibers 511F. Definitions 511G. Definition 511H. Elementary facts: pre-ordered sets 511I. Elementary facts: Boolean algebras 511J. Elementary facts: ideals of sets 511X. Basic exercises 511Y. Further exercises 511 Notes and comments 512. Galois-Tukey connections 512A. Definitions 512B. Definitions 512C. 512D. Theorem 512E. Examples 512F. 512G. Proposition 512H. Simple products 512I. Sequential compositions 512J. Proposition 512K. 512X. Basic exercises 512 Notes and comments 513. Partially ordered sets 513A. 513B. Theorem 513C. Cofinalities of cardinal functions 513D. 513E. Theorem 513F. Theorem (TUKEY 40) 513G. 513H. Definition 513I. Proposition *513J. Cofinalities of products *513K. *513L. Proposition *513M. Proposition *513N. Lemma *513O. Theorem (SOLECKI & TODORČEVIC 04) 513P. 513X. Basic exercises 513Y. Further exercises 513 Notes and comments 514. Boolean algebras 514A. 514B. Stone spaces 514C. 514D. Theorem 514E. Subalgebras, homomorphic images, products 514F. 514G. Order-preserving functions of Boolean algebras 514H. Regular open algebras 514I. Category algebras 514J. 514K. 514L. The regular open algebra of a pre-ordered set 514M. 514N. Proposition 514O. 514P. Corollary 514Q. Proposition 514R. Corollary 514S. Proposition 514T. Finite-support products 514U. Proposition 514X. Basic exercises 514Y. Further exercises 514. Notes and comments 515. The Balcar-Franĕk theorem 515A. Definition 515B. Lemma 515C. Proposition 515D. Lemma 515E. Lemma (BALCAR & VOITÁŠ 77) 515F. Lemma 515G. Lemma 515H. The Balcar-Franĕk theorem (BALCAR & FRANĔK 82) 515I. Corollary 515J. Corollary 515K. 515L. Theorem (KOPPELBERG 75) 515M. Corollary 515N. 515X. Basic exercises 515Y. Further exercises 515 Notes and comments 516. Precalibers 516A. Definition 516B. Elementary remarks 516C. Theorem 516D. Corollary 516E. Remark 516F. 516G. Corollary 516H. Corollary 516I. Corollary 516J. 516K. 516L. Corollary 516M. 516N. Corollary 516O. 516P. Corollary 516Q. 516R. 516S. 516T. 516U. 516X. Basic exercises 516 Notes and comments 517. Martin numbers 517A. Proposition 517B. Lemma 517C. Lemma 517D. Proposition 517E. Corollary 517F. Proposition 517G. Corollary 517H. Proposition 517I. Proposition 517J. Proposition 517K. Corollary 517L. 517M. 517N. Corollary 517O. Martin cardinals 517P. 517Q. Lemma 517R. Proposition 517S. Proposition 517X. Basic exercises 517Y. Further exercises 517 Notes and comments 518. Freese-Nation numbers 518A. Proposition (FUCHINO KOPPELBERG & SHELAH 96) 518B. Proposition 518C. Corollary 518D. Corollary 518E. 518F. Lemma 518G. Lemma (FUCHINO KOPPELBERG & SHELAH 96) 518H. Lemma 518I. Theorem (FUCHINO & SOUKUP 97) 518J. Lemma 518K. Theorem (FUCHINO GESCHKE SHELAH & SOUKUP 01) 518L. 518M. Theorem 518N. Definition 518O. Lemma 518P. Lemma (GESCHKE 02) 518Q. Corollary 518R. Lemma 518S. Theorem (GESCHKE 02) 518X. Basic exercises 518Y. Further exercises 518 Notes and comments Chapter 52. Cardinal functions of measure theory 521. Basic theory 521A. Proposition 521B. Proposition 521C. 521D. Proposition 521E. 521F. Proposition 521G. Proposition 521H. Proposition 521I. Corollary 521J. 521K. 521L. Proposition 521M. Proposition 521N. Proposition 521O. Proposition 521P. Proposition 521Q. Free products 521R. Proposition 521S. Proposition 521T. 521X. Basic exercises 521Y. Further exercises 521 Notes and comments 522. Cichoń's diagram 522A. Notation 522B. Cichoń's diagram 522C. Lemma 522D. Proposition 522E. Proposition 522F. Proposition 522G. Proposition (ROTHBERGER 38A) 522H. Proposition 522I. Proposition 522J. Theorem (see TRUSS 77 and MILLER 81) 522K. Localization *522L. Lemma 522M. Proposition 522N. Lemma 522O. Proposition 522P. Corollary 522Q. Theorem (BARTOSZYŃSKI 84, RAISONNIER & STERN 85) 522R. The exactness of Cichoń's diagram 522S. The cardinal cov M 522T. Martin numbers *522U. FN(PN) 522V. Cofinalities 522W. Other spaces 522X. Basic exercises 522Y. Further exercises 522 Notes and comments 523. The measure of {0, 1}^{I} 523A. Notation 523B. The basic diagram 523C. 523D. 523E. Additivities 523F. Covering numbers 523G. 523H. Uniformities 523I. Theorem 523J. Corollary (KRASZEWSKI 01) 523K. Corollary (BURKE N05) 523L. 523M. Shrinking numbers 523N. Cofinalities 523O. Cofinalities of the cardinals 523P. The generalized continuum hypothesis 523X. Basic exercises 523Y. Further exercises 523Z. Problem 523 Notes and comments 524. Radon measures 524A. Notation 524B. Proposition 524C. Lemma 524D. Proposition 524E. Proposition 524F. Lemma 524G. Proposition 524H. Corollary 524I. Corollary 524J. Theorem 524K. Corollary 524L. 524M. Theorem 524N. Corollary 524O. Freese-Nation numbers 524P. The Maharam classification *524Q. 524R. 524S. 524T. Corollary 524X. Basic exercises 524Y. Further exercises 524Z. Problems 524 Notes and comments 525. Precalibers 525A. Notation 525B. Proposition 525C. Theorem 525D. Proposition 525E. Proposition 525F. Proposition 525G. 525H. The structure of B_I 525I. Theorem 525J. Corollary 525K. Proposition 525L. 525M. Proposition 525N. Proposition (ARGYROS & TSARPALIAS 82) 525O. *525P. 525Q. 525R. Lemma 525S. Theorem (FREMLIN 88) 525T. Corollary (ARGYROS & KALAMIDAS 82) 525X. Basic exercises 525Z. Problem 525 Notes and comments 526. Asymptotic density zero 526A. Proposition 526B. Proposition (FREMLIN 91) 526C. 526D. Lemma 526E. Lemma 526F. Theorem 526G. Corollary 526H. 526I. 526J. Proposition 526K. Proposition 526L. Proposition (MÁTRAI P09) 526M. 526X. Basic exercises 526Y. Further exercises 526 Notes and comments 527. Skew products of ideals 527A. Notation 527B. Skew products of ideals 527C. 527D. 527E. Corollary 527F. 527G. Theorem 527H. Corollary 527I. 527J. Theorem (see FREMLIN 91) 527K. Corollary 527L. 527M. 527N. Lemma 527O. Theorem 527X. Basic exercises 527Y. Further exercises 527 Notes and comments 528. Amoeba algebras 528A. Amoeba algebras 528B. 528C. Proposition 528D. Proposition 528E. Lemma 528F. Proposition 528G. Proposition 528H. Proposition 528I. Definition 528J. Proposition 528K. Theorem (TRUSS 88) 528L. 528M. Lemma 528N. Theorem (BRENDLE 00, 2.3.10; JUDAH & REPICKÝ 95) 528O. Corollary 528P. Proposition 528Q. Proposition 528R. Theorem 528S. 528T. Lemma 528U. Lemma 528V. Theorem 528X. Basic exercises 528Y. Further exercises 528Z. Problems 528 Notes and comments 529. Further partially ordered sets of measure theory 529A. Notation 529B. Proposition 529C. Theorem (FREMLIN 91) 529D. Theorem (FREMLIN 91) 529E. Proposition 529F. Corollary (BRENDLE 00, 2.3.10; BRENDLE 06, Theorem 1) 529G. Reaping numbers (following BRENDLE 00) 529H. Proposition (BRENDLE 00, 2.7; BRENDLE 06, Theorem 5) 529X. Basic exercises 529Y. Further exercises 529 Notes and comments Chapter 53. Topologies and measures III 531. Maharam types of Radon measures 531A. Proposition 531B. 531C. Lemma 531D. Definition 531E. Proposition 531F. Proposition 531G. Proposition 531H. Remarks 531I. Notation 531J. Lemma 531K. Lemma 531L. Theorem 531M. Proposition (PLEBANEK 97) 531N. 531O. 531P. 531Q. 531R. 531S. 531T. Theorem (FREMLIN 97) 531X. Basic exercises 531Y. Further exercises 531Z. Problems 531 Notes and comments 532. Completion regular measures on {0, 1}^{I} 532A. Definition 532B. Proposition 532C. Remarks 532D. Theorem (FREMLIN & GREKAS 95) 532E. Corollary 532F. Corollary 532G. Proposition 532H. Lemma 532I. 532J. Corollary 532K. Corollary 532L. Corollary 532M. 532N. 532O. Proposition 532P. Proposition 532Q. Proposition 532R. 532S. Proposition 532X. Basic exercises 532Y. Further exercises 532Z. Problems 532 Notes and comments 533. Special topics 533A. Lemma 533B. Corollary 533C. Proposition 533D. Proposition 533E. Corollary 533F. Definition 533G. Lemma 533H. Theorem 533I. 533J. Theorem (see FREMLIN 77) 533X. Basic exercises 533Y. Further exercises 533Z. Problem 533 Notes and comments 534. Hausdorff measures and strong measure zero 534A. 534B. Hausdorff measures 534C. Strong measure zero 534D. Proposition 534E. Rothberger's property 534F. Proposition 534G. Corollary 534H. Theorem 534I. Proposition 534J. Proposition (FREMLIN 91) 534K. Corollary 534L. Smz-equivalence 534M. Lemma 534N. Proposition 534O. Large sets with strong measure zero 534P. 534X. Basic exercises 534Y. Further exercises 534Z. Problems 534 Notes and comments 535. Liftings 535A. Notation 535B. Proposition 535C. Proposition 535D. 535E. Proposition 535F. 535G. Corollary (see NEUMANN 31) 535H. 535I. Corollary (see MOKOBODZKI 75) 535J. 535K. Lemma 535L. Lemma 535M. Lemma 535N. Theorem 535O. Linear liftings 535P. 535Q. Proposition 535R. Proposition 535X. Basic exercises 535Y. Further exercises 535Z. Problems 535 Notes and comments 536. Alexandra Bellow's problem 536A. The problem 536B. Known cases 536C. Proposition (see TALAGRAND 84, 9-3-3.) 536D. Theorem 536X. Basic exercises 536Y. Further exercises 536 Notes and comments 537. Sierpiński sets, shrinking numbers and strong Fubini theorems 537A. Definitions 537B. Proposition 537C. Entangled sets 537D. Lemma 537E. Lemma 537F. Corollary 537G. Theorem (TODORČEVIĆ 85) 537H. Scalarly measurable functions 537I. Proposition 537J. Corollary 537K. 537L. Corollary 537M. 537N. 537O. Corollary 537P. Corollary 537Q. 537R. Lemma 537S. Proposition 537X. Basic exercises 537Z. Problems 537 Notes and comments 538. Filters and limits 538A. Filters 538B. 538C. Lemma 538D. Finite products of filters 538E. 538F. Ramsey filters 538G. Measure-centering filters 538H. Proposition 538I. Theorem 538J. Proposition 538K. 538L. Theorem 538M. Benedikt's theorem (BENEDIKT 98) 538N. Measure-converging filters 538O. The Fatou property 538P. Theorem 538Q. Definition 538R. Proposition 538S. Theorem 538X. Basic exercises 538Y. Further exercises 538Z. Problem 538 Notes and comments 539. Maharam submeasures 539A. The story so far 539B. Proposition 539C. Theorem 539D. Corollary 539E. Proposition (VELIČKOVIĆ 05, BALCAR JECH & PAZÁK 05) 539F. Definition 539G. Proposition 539H. Corollary 539I. Corollary 539J. Theorem 539K. 539L. 539M. Lemma 539N. Theorem (BALCAR JECH & PAZÁK 05, VELIČKOVIĆ 05) 539O. Corollary 539P. 539Q. Reflection principles 539R. Exhaustivity rank 539S. Elementary facts 539T. The rank of a Maharam algebra 539U. Theorem 539X. Basic exercises 539Y. Further exercises 539Z. Problems 539 Notes and comments Concordance to chapters 51-53 Measure Theory 5-2_Set-theoretic Measure Theory(2015,411p)D.H.Fremlin_9780953812967 Contents Chapter 54. Real-valued-measurable cardinals 541. Saturated ideals 541A. Definition 541B. Proposition 541C. Proposition 541D. Lemma 541E. Corollary 541F. Lemma 541G. Definition 541H. Proposition 541I. Lemma 541J. Theorem (SOLOVAY 71) 541K. Lemma 541L. Theorem 541M. Definition 541N. Theorem 541O. Lemma 541P. Theorem (TARSKI 45, SOLOVAY 71) 541Q. Theorem 541R. Corollary 541S. Lemma 541X. Basic exercises 541Y. Further exercises 541 Notes and comments 542. Quasi-measurable cardinals 542A. Definition 542B. Proposition 542C. Proposition 542D. Proposition 542E. Theorem (GITIK & SHELAH 93) 542F. Corollary 542G. Corollary 542H. Lemma 542I. Theorem (SHELAH 96) 542J. Corollary 542X. Basic exercises 542Y. Further exercises 542 Notes and comments 543. The Gitik-Shelah theorem 543A. Definitions 543B. 543C. Theorem (see KUNEN N70) 543D. Corollary 543E. The Gitik-Shelah theorem (GITIK & SHELAH 89, GITIK & SHELAH 93) 543F. Theorem 543G. Corollary 543H. Corollary 543I. Corollary 543J. Proposition 543K. Proposition 543L. Proposition 543X. Basic exercises 543Y. Further exercises 543Z. Problems 543 Notes and comments 544. Measure theory with an atomlessly-measurable cardinal 544A. Notation 544B. Proposition 544C. Theorem (KUNEN N70) 544D. Corollary 544E. Theorem (KUNEN N70) 544F. Theorem (KUNEN N70) 544G. Proposition 544H. Corollary 544I. 544J. Proposition (ZAKRZEWSKI 92) 544K. Proposition 544L. Corollary 544M. Theorem 544N. Cichoń's diagram and other cardinals 544X. Basic exercises 544Y. Further exercises 544Z. Problems 544 Notes and comments 545. PMEA and NMA 545A. Theorem 545B. Definition 545C. Proposition 545D. Definition 545E. Proposition 545F. Proposition 545G. Corollary 545X. Basic exercises 545Y. Further exercises 545 Notes and comments 546 Power set σ-quotient algebras 546A. 546B. Lemma 546C. 546D. 546E. 546F. Corollary 546G. The Gitik-Shelah theorem for Cohen algebras 546H. 546I. Corollary 546J. 546K. Lemma 546L. 546M. Theorem 546N. Lemma 546O. Lemma 546P. Theorem 546Q. Corollary 546X. Basic exercises 546Y. Further exercises 546Z. Problems 546 Notes and comments 547. Disjoint refinements of sequences of sets 547A. Lemma 547B. Lemma 547C. Lemma 547D. Lemma 547E. Lemma 547F. Theorem 547G. Corollary 547H. 547I. Proposition 547J. Corollary 547X. Basic exercises 547Z. Problems 547 Notes and comments Chapter 55. Possible worlds 551. Forcing with quotient algebras 551A. Definition 551B. Definition 551C. Definition 551D. Definition 551E. Proposition 551F. Proposition 551G. 551H. Examples 551I. Theorem 551J. Corollary 551K. 551L. Remark 551M. 551N. Proposition 551O. Measure algebras 551P. Theorem 551Q. Iterated forcing 551R. Extending filters 551X. Basic exercises 551Y. Further exercises 551 Notes and comments 552. Random reals I 552A. Notation 552B. Theorem 552C. Theorem 552D. Lemma 552E. Theorem 552F. Theorem 552G. Theorem 552H. Theorem 552I. Theorem 552J. Theorem 552K. Lemma 552L. Lemma 552M. Proposition 552N. Theorem (CARLSON 84) 552O. Proposition 552P. Theorem 552X. Basic exercises 552Y. Further exercises 552 Notes and comments 553. Random reals II 553A. Notation 553B. Lemma 553C. Proposition 553D. Remark 553E. Proposition 553F. Corollary 553G. Lemma 553H. Theorem 553I. Lemma 553J. Theorem 553K. 553L. Lemma 553M. Proposition (LAVER 87) 553N. Proposition 553O. 553X. Basic exercises 553Y. Further exercises 553Z. Problem 553 Notes and comments 554. Cohen reals 554A. Notation 554B. Theorem 554C. Definition 554D. Proposition 554E. Theorem 554F. Corollary 554G. Theorem 554H. Corollary 554I. Theorem (CARLSON FRANKIEWICZ & ZBIERSKI 94) 554X. Basic exercises 554Y. Further exercises 554 Notes and comments 555. Solovay's construction of real-valued-measurable cardinals 555A. Notation 555B. Theorem 555C. Theorem 555D. Corollary (SOLOVAY 71) 555E. Theorem 555F. Proposition 555G. Cohen forcing 555H. Corollary 555I. 555J. Lemma 555K. Główczyński's example (GŁÓWCZYŃSKI 91, BALCAR JECH & PAZÁK 05, GŁÓWCZYŃSKI 08) 555L. Supercompact cardinals and the normal measure axiom 555M. Proposition 555N. Theorem (PRIKRY 75, FLEISSNER 91) 555O. 555X. Basic exercises 555Y. Further exercises 555Z. Problems 555 Notes and comments 556. Forcing with Boolean subalgebras 556A. Forcing with Boolean subalgebras 556B. Theorem 556C. Theorem 556D. Regularly embedded subalgebras 556E. Proposition 556F. Quotient forcing 556G. Proposition 556H. L^0(\mathfrak{A}) 556I. Proposition 556J. Theorem 556K. Theorem 556L. Relatively independent subalgebras 556M. Laws of large numbers 556N. Dye's theorem 556O. 556P. Kawada's theorem 556Q. 556R. Proposition 556S. Theorem (FARAH 06) 556X. Basic exercises 556Y. Further exercises 556 Notes and comments Chapter 56. Choice and determinacy 561. Analysis without choice 561A. Set theory without choice 561B. Real analysis without choice 561C. 561D. Tychonoff's theorem 561E. Baire's theorem 561F. Stone's Theorem 561G. Haar measure 561H. Kakutani's theorem 561I. Hilbert spaces 561X. Basic exercises 561Y. Further exercises 561 Notes and comments 562. Borel codes 562A. Trees 562B. Coding sets with trees 562C. 562D. Proposition 562E. Proposition *562F. 562G. Resolvable sets 562H. Proposition 562I. Theorem 562J. Codable families of sets 562K. Proposition 562L. Codable Borel functions 562M. Theorem 562N. Proposition 562O. Remarks 562P. Codable Borel equivalence 562Q. Resolvable functions 562R. Theorem 562S. Codable families of codable functions 562T. Codable Baire sets 562U. Proposition 562V. 562X. Basic exercises 562Y. Further exercises 562 Notes and comments 563. Borel measures without choice 563A. Definitions 563B. Proposition 563C. Corollary 563D. 563E. Lemma 563F. Proposition 563G. Proposition 563H. Theorem 563I. Theorem 563J. Baire-coded measures 563K. Proposition 563L. Proposition 563M. Measure algebras 563N. Theorem 563X. Basic exercises 563Z. Problem 563 Notes and comments 564. Integration without choice 564A. Definitions 564B. Lemma 564C. Definition 564D. Lemma 564E. Theorem 564F. 564G. Integration over subsets 564H. Theorem 564I. Riesz Representation Theorem 564J. The space L^1 564K. 564L. Radon-Nikodým theorem 564M. Inverse-measure-preserving functions 564N. Product measures 564O. Theorem 564X. Basic exercises 564Y. Further exercises 564 Notes and comments 565. Lebesgue measure without choice 565A. Definitions 565B. Proposition 565C. Lemma 565D. Definition 565E. Proposition 565F. Vitali's Theorem 565G. Proposition 565H. Corollary 565I. Lemma 565J. Lemma 565K. Theorem 565L. Lemma 565M. Theorem 565N. Hausdorff measures 565O. Theorem 565X. Basic exercises 565Y. Further exercises 565 Notes and comments 566. Countable choice 566A. 566B. Volume 1 566C. Volume 2 566D. Exhaustion 566E. 566F. Atomless algebras 566G. Vitali's theorem 566H. Bounded additive functionals 566I. Infinite products 566J. 566K. Volume 3 566L. The Loomis-Sikorski theorem 566M. Measure algebras 566N. Characterizing the usual measure on {0, 1}^N 566O. Boolean values 566P. Weak compactness 566Q. Theorem [AC(ω)] 566R. Automorphisms of measurable algebras 566S. Volume 4 566T. 566U. Dependent choice 566X. Basic exercises 566Y. Further exercises 566Z. Problem 566 Notes and comments 567. Determinacy 567A. Infinite games 567B. Theorem 567C. The axiom of determinacy 567D. Theorem (MYCIELSKI 64) 567E. Consequences of AC(R; ω) 567F. Lemma (see MYCIELSKI & ŚWIERCZKOWSKI 64) [AC(R; ω)] 567G. Theorem [AD] 567H. Theorem 567I. Proposition [AC(R; ω)] 567J. Proposition [AD] 567K. Theorem [AD+AC(ω)] 567L. Theorem (R.M.Solovay) [AD] 567M. Theorem (MOSCHOVAKIS 70) [AD] 567N. Theorem (MARTIN 70) [AC] 567O. Corollary [AC] 567X. Basic exercises 567Y. Further exercises 567 Notes and comments Appendix to Volume 5 - Useful Facts 5A1. Set theory 5A1A. Order types 5A1B. Ordinal arithmetic 5A1C. Well-founded sets 5A1D. Trees 5A1E. Cardinal arithmetic 5A1F. Three fairly simple facts 5A1G. Partition calculus - The Erdös-Rado theorem 5A1H. Δ-systems and free sets 5A1I. Remarks 5A1J. Lemma 5A1K. Lemma 5A1L. Definitions 5A1M. Lemma 5A1N. Almost-square-sequences 5A1O. Corollary 5A2. Pcf theory 5A2A. Reduced products 5A2B. Theorem 5A2C. Theorem 5A2D. Definitions 5A2E. Lemma 5A2F. Lemma 5A2G. Theorem 5A2H. Lemma 5A2I. Lemma 5A3. Forcing 5A3A. Forcing notions 5A3B. Forcing languages 5A3C. The Forcing Relation (KUNEN 80, VII.3.3) 5A3D. The Forcing Theorem 5A3E. More notation 5A3F. Boolean truth values 5A3G. Concerning š 5A3H. Names for functions 5A3I. Regular open algebras 5A3J. 5A3K. Lemma 5A3L. Real numbers in forcing languages 5A3M. Forcing with Boolean algebras 5A3N. Ordinals and cardinals 5A3O. Iterated forcing (KUNEN 80, VIII.5.2) 5A3P. Martin's axiom 5A3Q. Countably closed forcings 5A3 Notes and comments 5A4. General topology 5A4A. Definitions 5A4B. Proposition 5A4C. Compactness 5A4D. Vietoris topologies 5A4E. Category and the Baire property 5A4F. Normal and paracompact spaces 5A4G. Baire σ-algebras 5A4H. Proposition 5A4I. Old friends 5A5. Real analysis 5A5A. Entire functions 5A6. Special axioms 5A6A. The generalized continuum hypothesis 5A6B. L, 0^# and Jensen's Covering Lemma 5A6C. Theorem 5A6D. Square principles 5A6E. Lemma 5A6F. Chang's transfer principle 5A6G. Todorčević's p-ideal dichotomy *5A6H. Analytic P-ideals 5A6I. u, g and the filter dichotomy *5A6J. Proposition (BLASS & LAFLAMME 89) References for Volume 5 Index to volumes 1-5 Principal topics and results General index A B C D E F G H I J・K L M N O P Q・R S T U V・W Z Subject Index A B・C D・E・F G・H・I・J・K・L M N・O・P・Q・R S・T・U・V・W・Z α・β・γ・δ・θ・λ・μ・ν・π・σ τ・υ・φ・χ・ψ・ω math symbols