ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Measure and Integral: An Introduction to Real Analysis

دانلود کتاب اندازه گیری و انتگرال: مقدمه ای بر تحلیل واقعی

Measure and Integral: An Introduction to Real Analysis

مشخصات کتاب

Measure and Integral: An Introduction to Real Analysis

دسته بندی: تحلیل و بررسی
ویرایش: 2nd 
نویسندگان: ,   
سری: Chapman & Hall/CRC Pure and Applied Mathematics 
ISBN (شابک) : 1498702899, 9781498702898 
ناشر: Chapman and Hall/CRC 
سال نشر: 2015 
تعداد صفحات: 534 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 5 مگابایت 

قیمت کتاب (تومان) : 28,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 2


در صورت تبدیل فایل کتاب Measure and Integral: An Introduction to Real Analysis به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب اندازه گیری و انتگرال: مقدمه ای بر تحلیل واقعی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب اندازه گیری و انتگرال: مقدمه ای بر تحلیل واقعی



اکنون یک متن کلاسیک در مورد این موضوع در نظر گرفته می شود، اندازه گیری و انتگرال: مقدمه ای بر تحلیل واقعی مقدمه ای بر تحلیل واقعی با توسعه نظریه اندازه گیری و ادغام در محیط ساده اقلیدسی ارائه می کند. ، و سپس ارائه یک درمان کلی تر مبتنی بر مفاهیم انتزاعی که با بدیهیات و با محتوای هندسی کمتر مشخص می شوند.

این نسخه دوم تقریبا چهل سال پس از چاپ اول منتشر شد. همچنین:

این متن پرکاربرد و بسیار مورد احترام برای دانشجویان مقطع کارشناسی ارشد و سال اول کارشناسی ارشد ریاضیات، آمار است. ، احتمال یا مهندسی برای نسل جدیدی از دانش آموزان و مربیان تجدید نظر شده است. این کتاب همچنین به عنوان یک مرجع مفید برای ریاضیدانان حرفه ای عمل می کند.


توضیحاتی درمورد کتاب به خارجی

Now considered a classic text on the topic, Measure and Integral: An Introduction to Real Analysis provides an introduction to real analysis by first developing the theory of measure and integration in the simple setting of Euclidean space, and then presenting a more general treatment based on abstract notions characterized by axioms and with less geometric content.

Published nearly forty years after the first edition, this long-awaited Second Edition also:

This widely used and highly respected text for upper-division undergraduate and first-year graduate students of mathematics, statistics, probability, or engineering is revised for a new generation of students and instructors. The book also serves as a handy reference for professional mathematicians.



فهرست مطالب

Preface to the Second Edition
Preface to the First Edition
Authors

Preliminaries
Points and Sets in Rn
Rn as a Metric Space
Open and Closed Sets in Rn, and Special Sets
Compact Sets and the Heine–Borel Theorem
Functions
Continuous Functions and Transformations
The Riemann Integral
Exercises

Functions of Bounded Variation and the Riemann–Stieltjes Integral
Functions of Bounded Variation
Rectifiable Curves
The Riemann–Stieltjes Integral
Further Results about Riemann–Stieltjes Integrals
Exercises

Lebesgue Measure and Outer Measure
Lebesgue Outer Measure and the Cantor Set
Lebesgue Measurable Sets
Two Properties of Lebesgue Measure
Characterizations of Measurability
Lipschitz Transformations of Rn
A Nonmeasurable Set
Exercises

Lebesgue Measurable Functions
Elementary Properties of Measurable Functions
Semicontinuous Functions
Properties of Measurable Functions and Theorems of Egorov and Lusin
Convergence in Measure
Exercises

The Lebesgue Integral
Definition of the Integral of a Nonnegative Function
Properties of the Integral
The Integral of an Arbitrary Measurable f
Relation between Riemann–Stieltjes and Lebesgue Integrals, and the Lp Spaces, 0 < p < ∞
Riemann and Lebesgue Integrals
Exercises

Repeated Integration
Fubini’s Theorem
Tonelli’s Theorem
Applications of Fubini’s Theorem
Exercises

Differentiation
The Indefinite Integral
Lebesgue’s Differentiation Theorem
Vitali Covering Lemma
Differentiation of Monotone Functions
Absolutely Continuous and Singular Functions
Convex Functions
The Differential in Rn
Exercises

Lp Classes
Definition of Lp
Hölder’s Inequality and Minkowski’s Inequality
Classes l p
Banach and Metric Space Properties
The Space L2 and Orthogonality
Fourier Series and Parseval’s Formula
Hilbert Spaces
Exercises

Approximations of the Identity and Maximal Functions
Convolutions
Approximations of the Identity
The Hardy–Littlewood Maximal Function
The Marcinkiewicz Integral
Exercises

Abstract Integration
Additive Set Functions and Measures
Measurable Functions and Integration
Absolutely Continuous and Singular Set Functions and Measures
The Dual Space of Lp
Relative Differentiation of Measures
Exercises

Outer Measure and Measure
Constructing Measures from Outer Measures
Metric Outer Measures
Lebesgue–Stieltjes Measure
Hausdorff Measure
Carathéodory–Hahn Extension Theorem
Exercises

A Few Facts from Harmonic Analysis
Trigonometric Fourier Series
Theorems about Fourier Coefficients
Convergence of S[f] and SÞ[f]
Divergence of Fourier Series
Summability of Sequences and Series
Summability of S[f] and SÞ[f] by the Method of the Arithmetic Mean
Summability of S[f] by Abel Means
Existence of f Þ
Properties of f Þ for f ∈ Lp, 1 < p < ∞
Application of Conjugate Functions to Partial Sums of S[f]
Exercises

The Fourier Transform
The Fourier Transform on L1
The Fourier Transform on L2
The Hilbert Transform on L2
The Fourier Transform on Lp, 1 < p < 2
Exercises

Fractional Integration
Subrepresentation Formulas and Fractional Integrals
L1, L1 Poincaré Estimates and the Subrepresentation Formula; Hölder Classes
Norm Estimates for Iα
Exponential Integrability of Iαf
Bounded Mean Oscillation
Exercises

Weak Derivatives and Poincaré–Sobolev Estimates
Weak Derivatives
Approximation by Smooth Functions and Sobolev Spaces
Poincaré–Sobolev Estimates
Exercises

Notations
Index




نظرات کاربران