دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.]
نویسندگان: Benjamin Perkins
سری:
ISBN (شابک) : 1119885426, 9781119885429
ناشر: Sybex
سال نشر: 2023
تعداد صفحات: 1008
زبان: English
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 85 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب MCA Microsoft Certified Associate Azure Data Engineer Study Guide: Exam DP-203 به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب راهنمای مطالعه Azure Data Engineer Associate Certified MCA Microsoft: Exam DP-203 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
برای گواهینامه Azure Data Engineering - و یک حرفه جدید هیجان انگیز در تجزیه و تحلیل - با این دستیار تحصیلی ضروری آماده شوید. راهنمای عملی و عملی برای آماده شدن برای گواهینامه چالش برانگیز Azure Data Engineer و برای یک حرفه جدید در یک زمینه هیجان انگیز و رو به رشد فناوری. در این کتاب، در حین یادگیری نقشهای شغلی و مسئولیتهای یک مهندس داده Azure که به تازگی ساخته شده است، تمام اهداف تحت پوشش آزمون DP-203 را بررسی خواهید کرد. از یکپارچهسازی، تبدیل و ادغام دادهها از سیستمهای داده ساختاریافته و بدون ساختار مختلف به ساختاری که برای ساخت راهحلهای تحلیلی مناسب است، با کمکها و ابزارهای مطالعه آسان Sybex به سرعت و کارآمدی دست خواهید یافت. این راهنمای مطالعه همچنین ارائه میدهد: توصیههای آماده برای شغل برای هر کسی که امیدوار است اولین مصاحبه شغلی مهندسی داده خود را انجام دهد و در اولین روز خود در این زمینه موفق شود نکات و ترفندهای ضروری برای آشنایی با ساختار امتحان DP-203 و کمک به کاهش اضطراب امتحان رایگان دسترسی به ابزارهای گسترده مطالعه آنلاین Sybex، قابل دسترسی در چندین دستگاه، و ارائه دسترسی به صدها سوال تمرین پاداش، فلش کارت الکترونیکی، و واژه نامه دیجیتالی قابل جستجو از اصطلاحات کلیدی یک کمک آموزشی منحصر به فرد طراحی شده برای کمک به شما مستقیماً به مطالب مهمی که برای موفقیت در امتحان و کار به آن نیاز دارید، راهنمای مطالعه Azure Data Engineer Associate Certified MCA Microsoft: آزمون DP-203 در قفسه کتاب هر کسی است که امیدوار است مهارت های تجزیه و تحلیل داده خود را افزایش دهد و مهندسی داده خود را ارتقا دهد. حرفه ای با گواهینامه مورد تقاضا، یا امیدواری برای ایجاد تغییر شغلی به یک حوزه جدید محبوب در فناوری.
Prepare for the Azure Data Engineering certification—and an exciting new career in analytics—with this must-have study aide In the MCA Microsoft Certified Associate Azure Data Engineer Study Guide: Exam DP-203, accomplished data engineer and tech educator Benjamin Perkins delivers a hands-on, practical guide to preparing for the challenging Azure Data Engineer certification and for a new career in an exciting and growing field of tech. In the book, you’ll explore all the objectives covered on the DP-203 exam while learning the job roles and responsibilities of a newly minted Azure data engineer. From integrating, transforming, and consolidating data from various structured and unstructured data systems into a structure that is suitable for building analytics solutions, you’ll get up to speed quickly and efficiently with Sybex’s easy-to-use study aids and tools. This Study Guide also offers: Career-ready advice for anyone hoping to ace their first data engineering job interview and excel in their first day in the field Indispensable tips and tricks to familiarize yourself with the DP-203 exam structure and help reduce test anxiety Complimentary access to Sybex’s expansive online study tools, accessible across multiple devices, and offering access to hundreds of bonus practice questions, electronic flashcards, and a searchable, digital glossary of key terms A one-of-a-kind study aid designed to help you get straight to the crucial material you need to succeed on the exam and on the job, the MCA Microsoft Certified Associate Azure Data Engineer Study Guide: Exam DP-203 belongs on the bookshelves of anyone hoping to increase their data analytics skills, advance their data engineering career with an in-demand certification, or hoping to make a career change into a popular new area of tech.
Cover Page Title Page Copyright Page Acknowledgments About the Author About the Technical Editor Contents at a Glance Contents Table of Exercises Introduction Part I Azure Data Engineer Certification and Azure Products Chapter 1 Gaining the Azure Data Engineer Associate Certification The Journey to Certification How to Pass Exam DP-203 Understanding the Exam Expectations and Requirements Use Azure Daily Read Azure Articles to Stay Current Have an Understanding of All Azure Products Azure Product Name Recognition Azure Data Analytics Azure Synapse Analytics Azure Databricks Azure HDInsight Azure Analysis Services Azure Data Factory Azure Event Hubs Azure Stream Analytics Other Products Azure Storage Products Azure Data Lake Storage Azure Storage Other Products Azure Databases Azure Cosmos DB Azure SQL Server Products Additional Azure Databases Other Products Azure Security Azure Active Directory Role-Based Access Control Attribute-Based Access Control Azure Key Vault Other Products Azure Networking Virtual Networks Other Products Azure Compute Azure Virtual Machines Azure Virtual Machine Scale Sets Azure App Service Web Apps Azure Functions Azure Batch Azure Management and Governance Azure Monitor Azure Purview Azure Policy Azure Blueprints (Preview) Azure Lighthouse Azure Cost Management and Billing Other Products Summary Exam Essentials Review Questions Chapter 2 CREATE DATABASE dbName The Brainjammer A Historical Look at Data Variety Velocity Volume Data Locations Data File Formats Data Structures, Types, and Concepts Data Structures Data Types and Management Data Concepts Data Programming and Querying for Data Engineers Data Programming Querying Data Understanding Big Data Processing Big Data Stages ETL, ELT, ELTL Analytics Types Big Data Layers Summary Exam Essentials Review Questions Part II Design and Implement Data Storage Chapter 3 Data Sources and Ingestion Where Does Data Come From? Design a Data Storage Structure Design an Azure Data Lake Solution Recommended File Types for Storage Recommended File Types for Analytical Queries Design for Efficient Querying Design for Data Pruning Design a Folder Structure That Represents the Levels of Data Transformation Design a Distribution Strategy Design a Data Archiving Solution Design a Partition Strategy Design a Partition Strategy for Files Design a Partition Strategy for Analytical Workloads Design a Partition Strategy for Efficiency and Performance Design a Partition Strategy for Azure Synapse Analytics Identify When Partitioning Is Needed in Azure Data Lake Storage Gen2 Design the Serving/Data Exploration Layer Design Star Schemas Design Slowly Changing Dimensions Design a Dimensional Hierarchy Design a Solution for Temporal Data Design for Incremental Loading Design Analytical Stores Design Metastores in Azure Synapse Analytics and Azure Databricks The Ingestion of Data into a Pipeline Azure Synapse Analytics Azure Data Factory Azure Databricks Event Hubs and IoT Hub Azure Stream Analytics Apache Kafka for HDInsight Migrating and Moving Data Summary Exam Essentials Review Questions Chapter 4 The Storage of Data Implement Physical Data Storage Structures Implement Compression Implement Partitioning Implement Sharding Implement Different Table Geometries with Azure Synapse Analytics Pools Implement Data Redundancy Implement Distributions Implement Data Archiving Azure Synapse Analytics Develop Hub Implement Logical Data Structures Build a Temporal Data Solution Build a Slowly Changing Dimension Build a Logical Folder Structure Build External Tables Implement File and Folder Structures for Efficient Querying and Data Pruning Implement a Partition Strategy Implement a Partition Strategy for Files Implement a Partition Strategy for Analytical Workloads Implement a Partition Strategy for Streaming Workloads Implement a Partition Strategy for Azure Synapse Analytics Design and Implement the Data Exploration Layer Deliver Data in a Relational Star Schema Deliver Data in Parquet Files Maintain Metadata Implement a Dimensional Hierarchy Create and Execute Queries by Using a Compute Solution That Leverages SQL Serverless and Spark Cluster Recommend Azure Synapse Analytics Database Templates Implement Azure Synapse Analytics Database Templates Additional Data Storage Topics Storing Raw Data in Azure Databricks for Transformation Storing Data Using Azure HDInsight Storing Prepared, Trained, and Modeled Data Summary Exam Essentials Review Questions Part III Develop Data Processing Chapter 5 Transform, Manage, and Prepare Data Ingest and Transform Data Transform Data Using Azure Synapse Pipelines Transform Data Using Azure Data Factory Transform Data Using Apache Spark Transform Data Using Transact-SQL Transform Data Using Stream Analytics Cleanse Data Split Data Shred JSON Encode and Decode Data Configure Error Handling for the Transformation Normalize and Denormalize Values Transform Data by Using Scala Perform Exploratory Data Analysis Transformation and Data Management Concepts Transformation Data Management Azure Databricks Data Modeling and Usage Data Modeling with Machine Learning Usage Summary Exam Essentials Review Questions Chapter 6 Create and Manage Batch Processing and Pipelines Design and Develop a Batch Processing Solution Design a Batch Processing Solution Develop Batch Processing Solutions Create Data Pipelines Handle Duplicate Data Handle Missing Data Handle Late-Arriving Data Upsert Data Configure the Batch Size Configure Batch Retention Design and Develop Slowly Changing Dimensions Design and Implement Incremental Data Loads Integrate Jupyter/IPython Notebooks into a Data Pipeline Revert Data to a Previous State Handle Security and Compliance Requirements Design and Create Tests for Data Pipelines Scale Resources Design and Configure Exception Handling Debug Spark Jobs Using the Spark UI Implement Azure Synapse Link and Query the Replicated Data Use PolyBase to Load Data to a SQL Pool Read from and Write to a Delta Table Manage Batches and Pipelines Trigger Batches Schedule Data Pipelines Validate Batch Loads Implement Version Control for Pipeline Artifacts Manage Data Pipelines Manage Spark Jobs in a Pipeline Handle Failed Batch Loads Summary Exam Essentials Review Questions Chapter 7 Design and Implement a Data Stream Processing Solution Develop a Stream Processing Solution Design a Stream Processing Solution Create a Stream Processing Solution Process Time Series Data Design and Create Windowed Aggregates Process Data Within One Partition Process Data Across Partitions Upsert Data Handle Schema Drift Configure Checkpoints/Watermarking During Processing Replay Archived Stream Data Design and Create Tests for Data Pipelines Monitor for Performance and Functional Regressions Optimize Pipelines for Analytical or Transactional Purposes Scale Resources Design and Configure Exception Handling Handle Interruptions Ingest and Transform Data Transform Data Using Azure Stream Analytics Monitor Data Storage and Data Processing Monitor Stream Processing Summary Exam Essentials Review Questions Part IV Secure, Monitor, and Optimize Data Storage and Data Processing Chapter 8 Keeping Data Safe and Secure Design Security for Data Policies and Standards Design a Data Auditing Strategy Design a Data Retention Policy Design for Data Privacy Design to Purge Data Based on Business Requirements Design Data Encryption for Data at Rest and in Transit Design Row-Level and Column-Level Security Design a Data Masking Strategy Design Access Control for Azure Data Lake Storage Gen2 Implement Data Security Implement a Data Auditing Strategy Manage Sensitive Information Implement a Data Retention Policy Encrypt Data at Rest and in Motion Implement Row-Level and Column-Level Security Implement Data Masking Manage Identities, Keys, and Secrets Across Different Data Platform Technologies Implement Access Control for Azure Data Lake Storage Gen2 Implement Secure Endpoints (Private and Public) Implement Resource Tokens in Azure Databricks Load a DataFrame with Sensitive Information Write Encrypted Data to Tables or Parquet Files Develop a Batch Processing Solution Handle Security and Compliance Requirements Design and Implement the Data Exploration Layer Browse and Search Metadata in Microsoft Purview Data Catalog Push New or Updated Data Lineage to Microsoft Purview Summary Exam Essentials Review Questions Chapter 9 Monitoring Azure Data Storage and Processing Monitoring Data Storage and Data Processing Implement Logging Used by Azure Monitor Configure Monitoring Services Understand Custom Logging Options Measure Query Performance Monitor Data Pipeline Performance Monitor Cluster Performance Measure Performance of Data Movement Interpret Azure Monitor Metrics and Logs Monitor and Update Statistics about Data Across a System Schedule and Monitor Pipeline Tests Interpret a Spark Directed Acyclic Graph Monitor Stream Processing Implement a Pipeline Alert Strategy Develop a Batch Processing Solution Design and Create Tests for Data Pipelines Develop a Stream Processing Solution Monitor for Performance and Functional Regressions Design and Create Tests for Data Pipelines Azure Monitoring Overview Azure Batch Azure Key Vault Azure SQL Summary Exam Essentials Review Questions Chapter 10 Troubleshoot Data Storage Processing Optimize and Troubleshoot Data Storage and Data Processing Optimize Resource Management Compact Small Files Handle Skew in Data Handle Data Spill Find Shuffling in a Pipeline Tune Shuffle Partitions Tune Queries by Using Indexers Tune Queries by Using Cache Optimize Pipelines for Analytical or Transactional Purposes Optimize Pipeline for Descriptive versus Analytical Workloads Troubleshoot a Failed Spark Job Troubleshoot a Failed Pipeline Run Rewrite User-Defined Functions Design and Develop a Batch Processing Solution Design and Configure Exception Handling Debug Spark Jobs by Using the Spark UI Scale Resources Monitor Batches and Pipelines Handle Failed Batch Loads Design and Develop a Stream Processing Solution Optimize Pipelines for Analytical or Transactional Purposes Handle Interruptions Scale Resources Summary Exam Essentials Review Questions Appendix Answers to Review Questions Chapter 1: Gaining the Azure Data Engineer Associate Certification Chapter 2: CREATE DATABASE dbName Chapter 3: Data Sources and Ingestion Chapter 4: The Storage of Data Chapter 5: Transform, Manage, and Prepare Data Chapter 6. Create and Manage Batch Processing and Pipelines Chapter 7: Design and Implement a Data Stream Processing Solution Chapter 8: Keeping Data Safe and Secure Chapter 9: Monitoring Azure Data Storage and Processing Chapter 10: Troubleshoot Data Storage Processing Index EULA