ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب MCA Microsoft Certified Associate Azure Data Engineer Study Guide: Exam DP-203

دانلود کتاب راهنمای مطالعه Azure Data Engineer Associate Certified MCA Microsoft: Exam DP-203

MCA Microsoft Certified Associate Azure Data Engineer Study Guide: Exam DP-203

مشخصات کتاب

MCA Microsoft Certified Associate Azure Data Engineer Study Guide: Exam DP-203

ویرایش: [1 ed.] 
نویسندگان:   
سری:  
ISBN (شابک) : 1119885426, 9781119885429 
ناشر: Sybex 
سال نشر: 2023 
تعداد صفحات: 1008 
زبان: English 
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 85 Mb 

قیمت کتاب (تومان) : 35,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 1


در صورت تبدیل فایل کتاب MCA Microsoft Certified Associate Azure Data Engineer Study Guide: Exam DP-203 به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب راهنمای مطالعه Azure Data Engineer Associate Certified MCA Microsoft: Exam DP-203 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب راهنمای مطالعه Azure Data Engineer Associate Certified MCA Microsoft: Exam DP-203

برای گواهینامه Azure Data Engineering - و یک حرفه جدید هیجان انگیز در تجزیه و تحلیل - با این دستیار تحصیلی ضروری آماده شوید. راهنمای عملی و عملی برای آماده شدن برای گواهینامه چالش برانگیز Azure Data Engineer و برای یک حرفه جدید در یک زمینه هیجان انگیز و رو به رشد فناوری. در این کتاب، در حین یادگیری نقش‌های شغلی و مسئولیت‌های یک مهندس داده Azure که به تازگی ساخته شده است، تمام اهداف تحت پوشش آزمون DP-203 را بررسی خواهید کرد. از یکپارچه‌سازی، تبدیل و ادغام داده‌ها از سیستم‌های داده ساختاریافته و بدون ساختار مختلف به ساختاری که برای ساخت راه‌حل‌های تحلیلی مناسب است، با کمک‌ها و ابزارهای مطالعه آسان Sybex به سرعت و کارآمدی دست خواهید یافت. این راهنمای مطالعه همچنین ارائه می‌دهد: توصیه‌های آماده برای شغل برای هر کسی که امیدوار است اولین مصاحبه شغلی مهندسی داده خود را انجام دهد و در اولین روز خود در این زمینه موفق شود نکات و ترفندهای ضروری برای آشنایی با ساختار امتحان DP-203 و کمک به کاهش اضطراب امتحان رایگان دسترسی به ابزارهای گسترده مطالعه آنلاین Sybex، قابل دسترسی در چندین دستگاه، و ارائه دسترسی به صدها سوال تمرین پاداش، فلش کارت الکترونیکی، و واژه نامه دیجیتالی قابل جستجو از اصطلاحات کلیدی یک کمک آموزشی منحصر به فرد طراحی شده برای کمک به شما مستقیماً به مطالب مهمی که برای موفقیت در امتحان و کار به آن نیاز دارید، راهنمای مطالعه Azure Data Engineer Associate Certified MCA Microsoft: آزمون DP-203 در قفسه کتاب هر کسی است که امیدوار است مهارت های تجزیه و تحلیل داده خود را افزایش دهد و مهندسی داده خود را ارتقا دهد. حرفه ای با گواهینامه مورد تقاضا، یا امیدواری برای ایجاد تغییر شغلی به یک حوزه جدید محبوب در فناوری.


توضیحاتی درمورد کتاب به خارجی

Prepare for the Azure Data Engineering certification—and an exciting new career in analytics—with this must-have study aide In the MCA Microsoft Certified Associate Azure Data Engineer Study Guide: Exam DP-203, accomplished data engineer and tech educator Benjamin Perkins delivers a hands-on, practical guide to preparing for the challenging Azure Data Engineer certification and for a new career in an exciting and growing field of tech. In the book, you’ll explore all the objectives covered on the DP-203 exam while learning the job roles and responsibilities of a newly minted Azure data engineer. From integrating, transforming, and consolidating data from various structured and unstructured data systems into a structure that is suitable for building analytics solutions, you’ll get up to speed quickly and efficiently with Sybex’s easy-to-use study aids and tools. This Study Guide also offers: Career-ready advice for anyone hoping to ace their first data engineering job interview and excel in their first day in the field Indispensable tips and tricks to familiarize yourself with the DP-203 exam structure and help reduce test anxiety Complimentary access to Sybex’s expansive online study tools, accessible across multiple devices, and offering access to hundreds of bonus practice questions, electronic flashcards, and a searchable, digital glossary of key terms A one-of-a-kind study aid designed to help you get straight to the crucial material you need to succeed on the exam and on the job, the MCA Microsoft Certified Associate Azure Data Engineer Study Guide: Exam DP-203 belongs on the bookshelves of anyone hoping to increase their data analytics skills, advance their data engineering career with an in-demand certification, or hoping to make a career change into a popular new area of tech.



فهرست مطالب

Cover Page
Title Page
Copyright Page
Acknowledgments
About the Author
About the Technical Editor
Contents at a Glance
Contents
Table of Exercises
Introduction
Part I Azure Data Engineer Certification and Azure Products
	Chapter 1 Gaining the Azure Data Engineer Associate Certification
		The Journey to Certification
		How to Pass Exam DP-203
			Understanding the Exam Expectations and Requirements
			Use Azure Daily
			Read Azure Articles to Stay Current
			Have an Understanding of All Azure Products
		Azure Product Name Recognition
		Azure Data Analytics
			Azure Synapse Analytics
			Azure Databricks
			Azure HDInsight
			Azure Analysis Services
			Azure Data Factory
			Azure Event Hubs
			Azure Stream Analytics
			Other Products
		Azure Storage Products
			Azure Data Lake Storage
			Azure Storage
			Other Products
		Azure Databases
			Azure Cosmos DB
			Azure SQL Server Products
			Additional Azure Databases
			Other Products
		Azure Security
			Azure Active Directory
			Role-Based Access Control
			Attribute-Based Access Control
			Azure Key Vault
			Other Products
		Azure Networking
			Virtual Networks
			Other Products
		Azure Compute
			Azure Virtual Machines
			Azure Virtual Machine Scale Sets
			Azure App Service Web Apps
			Azure Functions
			Azure Batch
		Azure Management and Governance
			Azure Monitor
			Azure Purview
			Azure Policy
			Azure Blueprints (Preview)
			Azure Lighthouse
			Azure Cost Management and Billing
			Other Products
		Summary
		Exam Essentials
		Review Questions
	Chapter 2 CREATE DATABASE dbName
		The Brainjammer
		A Historical Look at Data
			Variety
			Velocity
			Volume
			Data Locations
			Data File Formats
		Data Structures, Types, and Concepts
			Data Structures
			Data Types and Management
			Data Concepts
		Data Programming and Querying for Data Engineers
			Data Programming
			Querying Data
		Understanding Big Data Processing
			Big Data Stages
			ETL, ELT, ELTL
			Analytics Types
			Big Data Layers
		Summary
		Exam Essentials
		Review Questions
Part II Design and Implement Data Storage
	Chapter 3 Data Sources and Ingestion
		Where Does Data Come From?
		Design a Data Storage Structure
			Design an Azure Data Lake Solution
			Recommended File Types for Storage
			Recommended File Types for Analytical Queries
			Design for Efficient Querying
			Design for Data Pruning
			Design a Folder Structure That Represents the Levels of Data Transformation
			Design a Distribution Strategy
			Design a Data Archiving Solution
		Design a Partition Strategy
			Design a Partition Strategy for Files
			Design a Partition Strategy for Analytical Workloads
			Design a Partition Strategy for Efficiency and Performance
			Design a Partition Strategy for Azure Synapse Analytics
			Identify When Partitioning Is Needed in Azure Data Lake Storage Gen2
		Design the Serving/Data Exploration Layer
			Design Star Schemas
			Design Slowly Changing Dimensions
			Design a Dimensional Hierarchy
			Design a Solution for Temporal Data
			Design for Incremental Loading
			Design Analytical Stores
			Design Metastores in Azure Synapse Analytics and Azure Databricks
		The Ingestion of Data into a Pipeline
			Azure Synapse Analytics
			Azure Data Factory
			Azure Databricks
			Event Hubs and IoT Hub
			Azure Stream Analytics
			Apache Kafka for HDInsight
		Migrating and Moving Data
		Summary
		Exam Essentials
		Review Questions
	Chapter 4 The Storage of Data
		Implement Physical Data Storage Structures
			Implement Compression
			Implement Partitioning
			Implement Sharding
			Implement Different Table Geometries with Azure Synapse Analytics Pools
			Implement Data Redundancy
			Implement Distributions
			Implement Data Archiving
			Azure Synapse Analytics Develop Hub
		Implement Logical Data Structures
			Build a Temporal Data Solution
			Build a Slowly Changing Dimension
			Build a Logical Folder Structure
			Build External Tables
			Implement File and Folder Structures for Efficient Querying and Data Pruning
		Implement a Partition Strategy
			Implement a Partition Strategy for Files
			Implement a Partition Strategy for Analytical Workloads
			Implement a Partition Strategy for Streaming Workloads
			Implement a Partition Strategy for Azure Synapse Analytics
		Design and Implement the Data Exploration Layer
			Deliver Data in a Relational Star Schema
			Deliver Data in Parquet Files
			Maintain Metadata
			Implement a Dimensional Hierarchy
			Create and Execute Queries by Using a Compute Solution That Leverages SQL Serverless and Spark Cluster
			Recommend Azure Synapse Analytics Database Templates
			Implement Azure Synapse Analytics Database Templates
		Additional Data Storage Topics
			Storing Raw Data in Azure Databricks for Transformation
			Storing Data Using Azure HDInsight
			Storing Prepared, Trained, and Modeled Data
		Summary
		Exam Essentials
		Review Questions
Part III Develop Data Processing
	Chapter 5 Transform, Manage, and Prepare Data
		Ingest and Transform Data
			Transform Data Using Azure Synapse Pipelines
			Transform Data Using Azure Data Factory
			Transform Data Using Apache Spark
			Transform Data Using Transact-SQL
			Transform Data Using Stream Analytics
			Cleanse Data
			Split Data
			Shred JSON
			Encode and Decode Data
			Configure Error Handling for the Transformation
			Normalize and Denormalize Values
			Transform Data by Using Scala
			Perform Exploratory Data Analysis
		Transformation and Data Management Concepts
			Transformation
			Data Management
			Azure Databricks
		Data Modeling and Usage
			Data Modeling with Machine Learning
			Usage
		Summary
		Exam Essentials
		Review Questions
	Chapter 6 Create and Manage Batch Processing and Pipelines
		Design and Develop a Batch Processing Solution
			Design a Batch Processing Solution
			Develop Batch Processing Solutions
			Create Data Pipelines
			Handle Duplicate Data
			Handle Missing Data
			Handle Late-Arriving Data
			Upsert Data
			Configure the Batch Size
			Configure Batch Retention
			Design and Develop Slowly Changing Dimensions
			Design and Implement Incremental Data Loads
			Integrate Jupyter/IPython Notebooks into a Data Pipeline
			Revert Data to a Previous State
			Handle Security and Compliance Requirements
			Design and Create Tests for Data Pipelines
			Scale Resources
			Design and Configure Exception Handling
			Debug Spark Jobs Using the Spark UI
			Implement Azure Synapse Link and Query the Replicated Data
			Use PolyBase to Load Data to a SQL Pool
			Read from and Write to a Delta Table
		Manage Batches and Pipelines
			Trigger Batches
			Schedule Data Pipelines
			Validate Batch Loads
			Implement Version Control for Pipeline Artifacts
			Manage Data Pipelines
			Manage Spark Jobs in a Pipeline
			Handle Failed Batch Loads
		Summary
		Exam Essentials
		Review Questions
	Chapter 7 Design and Implement a Data Stream Processing Solution
		Develop a Stream Processing Solution
			Design a Stream Processing Solution
			Create a Stream Processing Solution
			Process Time Series Data
			Design and Create Windowed Aggregates
			Process Data Within One Partition
			Process Data Across Partitions
			Upsert Data
			Handle Schema Drift
			Configure Checkpoints/Watermarking During Processing
			Replay Archived Stream Data
			Design and Create Tests for Data Pipelines
			Monitor for Performance and Functional Regressions
			Optimize Pipelines for Analytical or Transactional Purposes
			Scale Resources
			Design and Configure Exception Handling
			Handle Interruptions
		Ingest and Transform Data
			Transform Data Using Azure Stream Analytics
		Monitor Data Storage and Data Processing
			Monitor Stream Processing
		Summary
		Exam Essentials
		Review Questions
Part IV Secure, Monitor, and Optimize Data Storage and Data Processing
	Chapter 8 Keeping Data Safe and Secure
		Design Security for Data Policies and Standards
			Design a Data Auditing Strategy
			Design a Data Retention Policy
			Design for Data Privacy
			Design to Purge Data Based on Business Requirements
			Design Data Encryption for Data at Rest and in Transit
			Design Row-Level and Column-Level Security
			Design a Data Masking Strategy
			Design Access Control for Azure Data Lake Storage Gen2
		Implement Data Security
			Implement a Data Auditing Strategy
			Manage Sensitive Information
			Implement a Data Retention Policy
			Encrypt Data at Rest and in Motion
			Implement Row-Level and Column-Level Security
			Implement Data Masking
			Manage Identities, Keys, and Secrets Across Different Data Platform Technologies
			Implement Access Control for Azure Data Lake Storage Gen2
			Implement Secure Endpoints (Private and Public)
			Implement Resource Tokens in Azure Databricks
			Load a DataFrame with Sensitive Information
			Write Encrypted Data to Tables or Parquet Files
		Develop a Batch Processing Solution
			Handle Security and Compliance Requirements
		Design and Implement the Data Exploration Layer
			Browse and Search Metadata in Microsoft Purview Data Catalog
			Push New or Updated Data Lineage to Microsoft Purview
		Summary
		Exam Essentials
		Review Questions
	Chapter 9 Monitoring Azure Data Storage and Processing
		Monitoring Data Storage and Data Processing
			Implement Logging Used by Azure Monitor
			Configure Monitoring Services
			Understand Custom Logging Options
			Measure Query Performance
			Monitor Data Pipeline Performance
			Monitor Cluster Performance
			Measure Performance of Data Movement
			Interpret Azure Monitor Metrics and Logs
			Monitor and Update Statistics about Data Across a System
			Schedule and Monitor Pipeline Tests
			Interpret a Spark Directed Acyclic Graph
			Monitor Stream Processing
			Implement a Pipeline Alert Strategy
		Develop a Batch Processing Solution
			Design and Create Tests for Data Pipelines
		Develop a Stream Processing Solution
			Monitor for Performance and Functional Regressions
			Design and Create Tests for Data Pipelines
		Azure Monitoring Overview
			Azure Batch
			Azure Key Vault
			Azure SQL
		Summary
		Exam Essentials
		Review Questions
	Chapter 10 Troubleshoot Data Storage Processing
		Optimize and Troubleshoot Data Storage and Data Processing
			Optimize Resource Management
			Compact Small Files
			Handle Skew in Data
			Handle Data Spill
			Find Shuffling in a Pipeline
			Tune Shuffle Partitions
			Tune Queries by Using Indexers
			Tune Queries by Using Cache
			Optimize Pipelines for Analytical or Transactional Purposes
			Optimize Pipeline for Descriptive versus Analytical Workloads
			Troubleshoot a Failed Spark Job
			Troubleshoot a Failed Pipeline Run
			Rewrite User-Defined Functions
		Design and Develop a Batch Processing Solution
			Design and Configure Exception Handling
			Debug Spark Jobs by Using the Spark UI
			Scale Resources
		Monitor Batches and Pipelines
			Handle Failed Batch Loads
		Design and Develop a Stream Processing Solution
			Optimize Pipelines for Analytical or Transactional Purposes
			Handle Interruptions
			Scale Resources
		Summary
		Exam Essentials
		Review Questions
Appendix Answers to Review Questions
	Chapter 1: Gaining the Azure Data Engineer Associate Certification
	Chapter 2: CREATE DATABASE dbName
	Chapter 3: Data Sources and Ingestion
	Chapter 4: The Storage of Data
	Chapter 5: Transform, Manage, and Prepare Data
	Chapter 6. Create and Manage Batch Processing and Pipelines
	Chapter 7: Design and Implement a Data Stream Processing Solution
	Chapter 8: Keeping Data Safe and Secure
	Chapter 9: Monitoring Azure Data Storage and Processing
	Chapter 10: Troubleshoot Data Storage Processing
Index
EULA




نظرات کاربران