دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: بهینه سازی، تحقیق در عملیات. ویرایش: نویسندگان: M. J. Sewell سری: Cambridge Texts in Applied Mathematics ISBN (شابک) : 0521348765, 9780511872211 ناشر: Cambridge University Press سال نشر: 1988 تعداد صفحات: 486 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 9 مگابایت
در صورت تبدیل فایل کتاب Maximum and Minimum Principles: A Unified Approach with Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اصول حداکثر و حداقل: یک رویکرد یکپارچه با کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
در بسیاری از مسائل ریاضیات کاربردی، علوم، مهندسی یا اقتصاد، هزینه انرژی یا مشابه آن را می توان با کران های بالا و پایین تقریب زد. این کتاب با بیان شرایط حاکم بر مسئله و مرزها بر حسب تابع زین و گرادیان های آن، گزارشی یکپارچه از نظریه مورد نیاز برای ایجاد چنین محدوده هایی ارائه می دهد. چندین ویژگی وجود دارد، از جمله فصلی در مورد دگرگونی دوگانه Legendre و برخی از ویژگی های آن. بسیاری از مثالها و تمرینهای اساسی، بهویژه از مکانیک سیالات، جامدات الاستیک و پلاستیکی و از نظریه بهینهسازی گنجانده شدهاند. دیدگاه عملکردی زین به کتاب دامنه وسیعی می دهد. درمان ساده است و تنها پیش نیاز آن دانش اولیه حساب تغییرات است. بخشی از کتاب بر اساس دروس سال آخر کارشناسی است. این به حسابی تبدیل شده است که طیف گسترده ای از دانش آموزان و متخصصان را در ریاضیات کاربردی، مهندسی، فیزیک و تحقیقات عملیاتی مورد علاقه قرار می دهد.
In many problems of applied mathematics, science, engineering or economics, an energy expenditure or its analogue can be approximated by upper and lower bounds. This book provides a unified account of the theory required to establish such bounds, by expressing the governing conditions of the problem, and the bounds, in terms of a saddle functional and its gradients. There are several features, including a chapter on the Legendre dual transformation and some of its singularities. Many substantial examples and exercises are included, especially from the mechanics of fluids, elastic and plastic solids and from optimisation theory. The saddle functional viewpoint gives the book a wide scope. The treatment is straightforward, the only prerequisite being a basic knowledge of the calculus of variations. Part of the book is based on final-year undergraduate courses. This is developed into an account which will interest a wide range of students and professionals in applied mathematics, engineering, physics and operations research.
Cover S Title Saddle function Maximum and minimum principles: A unified approach, with applications Copyright Cambridge University Press 1987 Re-issued in this digitally printed version 2007 ISBN 978-0-521-33244-6 hardback ISBN 978-0-521-34876-8 paperback QA316.535 1987 511'.66 LCCN 86-20791 Contents Preface 1 Saddle function problems 1.1. The basic idea (i) A simple saddle function (ii) A convex function of one variable (iii) A general saddle function (iv) Equivalence problems Exercises 1.1 (v) Quadratic example Exercises 1.2 (vi) A saddle quantity 1.2. Inequality constraints (i) A single variable example Exercises 1.3 (ii) An inequality problem generated by a saddle function (iii) A graphical illustration of equivalence Exercises 1.4 1.3. Transition to higher dimensions (i) Notation (ii) Basic equivalence problems (iii) Definition of a saddle function in higher dimensions (iv) Second derivative hypotheses (v) Quadratic example (vi) Invariance in saddle definitions Exercises 1.5 1.4. Upper and lower bounds and uniqueness (i) Introduction (ii) Upper and lower bounds (iii) Example (iv) Uniqueness of solution (v) Embedding in concave linear L [x, u] Exercises 1.6 1.5. Converse theorems: extremum principles (i) Introduction (ii) Extremum principles for nonlinear L [x, ii] (iii) Maximum principle by embedding (iv) A stationary value problem under constraint Exercises 1.7 1.6. Examples of links with other viewpoints (i) Linear programming (ii) Quadratic programming (iii) Decomposition of a nonhomogeneous linear problem (iv) Hypercircle Exercises l.8 1.7. Initial motion problems (i) Mechanical background (ii) Initial motion problem (iii) Generating saddle function (iv) Unilateral constraints (v) Examples (vi) Simultaneous extremum principles (vii) Cavitation 1.8. Geometric programming (i) Introduction (ii) Primal problem (iii) Saddle function (iv) Governing conditions (v) Dual problem (vi) Alternative version of the dual problem (vii) Inequality constraints 1.9. Allocation problem (i) Introduction (ii) Saddle function and governing conditions (iii) Simultaneous extremum principles 2 Duality and Legendre transformations 2.1. Introduction 2.2. Legendre transformation (i) Introduction (ii) Duality between a point and a plane (iii) Polar reciprocation (iv) Plane locus of pole dual to point envelope of polar (v) Duality between regular branches (vi) Classification of singularities (vii) Stability of singularities (viii) Bifurcation set Exercises 2.1 2.3. Legendre transformations in one active variable, with singularities (i) Inflexion and cusp as dual isolated singularities (H) Dual distributed and accumulated singularities (iii) Some general theorems Exercises 2.2 (iv) Ladder for the cuspoids (v) Half-line dual of a pole at infinity (vi) Response curves and complementary areas (vii) Nondecreasing response characteristics 2.4. Legendre transformations in two active variables, with singularities (i) Umbilics, illustrating dual isolated singularities (ii) Accumulated duals of nonplanar distributed singularities Exercises 2.3 2.5. Closed chain of Legendre transformations (i) Indicial notation (ii) Inner product space notation (iii) Convex and saddle-shaped branches Exercises 2.4 2.6. Examples of quartets of Legendre transformations (i) Introductory examples (ii) Strain energy and complementary energy density (iii) Incremental elasticlplastic constitutive equations Exercises 2.5 (iv) Other physical examples of Legendre transformations (v) Stable singularities in a constrained plane mapping 2.7. The structure of maximum and minimum principles (i) Bounds and Legendre transformations (ii) Bifurcation theory Exercises 2.6 (iii) Generalized Hamiltonian and Lagrangian aspects (iv) Supplementary constraints Exercises 2.7 2.8. Network theory (i) Introduction (ii) A simple electrical network (iii) Node-branch incidence matrix (iv) Electrical branch characteristics (v) Saddle function and governing equations (vi) Bounds and extremum principles (vii) Equivalent underdetermined systems (viii) Loop-branch formulation (ix) Branch characteristics with inequalities 3 Upper and lower bounds via saddle functionals 3.1. Introduction 3.2. Inner product spaces (i) Linear spaces (ii) Inner product spaces 3.3. Linear operators and adjointness (i) Operators (ii) A djoin to ess of linear operators (iii) Examples of adjoint operators 1. Transposition of a matrix 2. Integration by parts 3. Green's Gauss'Idivergence theorem 4. A vector identity 5. Virtual work transformation 6. Integral operators 7. Sequences and integrable functions (iv) The operator T * T Exercises 3.1 3.4. Gradients of functionals (i) Derivatives of general operators (ii) Gradients of functionals (iii) Partial gradients of functionals 3.5. Saddle functional (i) Saddle quantity (ii) Definition of a saddle functional 3.6. Upper and lower bound (i) Introduction (ii) A central theorem in infinite dimensions (iii) Quadratic generating functional 3.7. An ordinary differential equation (i) Introduction (ii) Intermediate variable (iii) Inner product spaces and adjoins operators (iv) Hamiltonian functional (v) Generating functional (vi) Identification of A and B (vii) Stationary principle (viii) Saddle functional L[x, r ] (ix) Upper and lower bounds (x) Associated inequality problems (xi) Solution of individual constraints (xii) Evaluation of simultaneous bounds (xiii) Specific example (xiv) The fundamental lemma of the calculus of variations (xv) Complementary stationary principles (xvi) Weighting function with isolated zeros Exercises 3.2 3.8. Solution of linear constraints (i) Consistency conditions (ii) General formulae for J[ua] and K [x,] (iii) Separate upper and lower bounds, not simultaneous (iv) Example of a single bound 3.9. A procedure for the derivation of bounds (i) Introduction (ii) Steps in the procedure (iii) Hierarchy of smoothness in admissible fields 3.10. A catalogue of examples (i) Introduction (ii} Obstacle problem (iii) Euler equation and Hamilton's principle (iv) Foppl-Hencky equation (v) A partial differential equation (vi) A free boundary problem Exercises 3.3 3.11. Variational inequalities (i) Introduction (ii) A general definition (iii) Examples 3.12. Nonnegative operator equations (i) Introduction (ii} Examples (iii) General results (iv) Laplacian problems (v) A comparison of equivalent differential and integral equations (vi) Alternative bounds (vii) Wave scattering at a submerged weir 4 Extensions of the general approach 4.1. Introduction 4.2. Bounds on linear functionals (i) Introduction (ii) Nonnegative operator problems (iii) Other saddle-generated problems Exercises 4.1 (iv) Comparison problems for a cantilever beam (a) Given problem (b) Saddle functional (c) First comparison problem (d) Second comparison problem (v) Other examples of point wise bounds (a) A unit spike function (b) Example of T * Tx + E [x] = O (c) A two dimensional problem (d) Further examples (vi) Boundedness hypotheses (vii) Embedding method (viii) Examples 1. Bounds on a solution of an algebraic equation 2. A nonlinear ordinary ififferential equation 3. A nonlinear integral equation Exercises 4.2 4.3. Initial value problems (i) Introduction (ii) The role of the adjoint problem (iii) A simple example (iv) Change of variable (v) A self-adjoins representation (vi) A particular change of variable (vii) Example (viii) A general first order system (ix) A second order equation (x) A heat conduction problem (xi) Alternative approaches Exercise 4.3 4.4. Diffusion of liquid through a porous medium (i) Governing equations (ii) Adjointness (iii) Governing equations as Ti + h = 0 (iv) Nonnegative T (v) Generating saddle functional (vi) Upper and lower bounds 4.5. Comparison methods (i) The basic idea (ii) Example of the general setting (iii) Easy and hard problems (iv) Difference variables (v) Stationary and saddle properties (vi) Hashin---Shtrikman functional 5 Mechanics of solids and fluids 5.1. Introduction 5.2. Thermodynamics (i) Thermodynamic potential functions (ii) Second derivatives of thermodynamic potentials (iii) Simple fluids Exercises 5.1 5.3. Compressible inviscid flow (i) Thermodynamics (ii) Another Legendre transformation (iii) Constitutive surfaces (iv) Balance of mass, momentum and energy (v) Simultaneous upper and lower bounds for steady irrotational flow (vi) General flows Exercises 5.2 5.4. Magnetohydrodynamic pipe flow (i) Governing equations (ii) Decomposition method (iii) Embedding method 5.5. Inner product spaces and adjoint operators in continuum mechanics (i) Inner product spaces (ii) A djoin tress (iii) Virtual work (iv) Discontinuities of stress and displacement 5.6. Classical elasticity (i) Governing equations (ii) Generalized Hamiltonian representation (iii) Generating saddle functional (lv) Simultaneous upper and lower bounds 5.7. Slow viscous flow (i) Governing equations (ii) Generalized Hamiltonian representation (iii) Generating saddle functional (iv) Historical remarks and applications Exercises 5.3 5.8. Rigid/plastic yield point problem (i) Governing equations (ii) Generalized Hamiltonian representation (iii) Generating saddle functional (iv) Uniqueness of stress (v) Simultaneous upper and lower bounds Exercises 5.4 5.9. Finite elasticity (i) Strain measures (ii) Stress measures (iii) Hyperelastic solid (iv) Governing equations (v) Stationary principles Exercises 5.5 5.10. Incremental elastic/plastic distortion (i) Governing equations (ii) Strain-rate (iii) Stress-rate (iv) Constitutive rate equations (v) Continuing equilibrium (vi) Adjointness (vii) Generating functional (viii) Upper and lower bounds (ix) Weaker hypotheses (x) Kinematical constraints (xi) Equilibrium constraints (xii) Application of supplementary constraints Exercises 5.6 References Subject index Back Cover