دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: مهندسی مکانیک ویرایش: نویسندگان: Madhujit Mukhopadhyay. Abdul Hamid Sheikh سری: ISBN (شابک) : 3031087232, 9783031087233 ناشر: Springer سال نشر: 2022 تعداد صفحات: 482 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 10 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Matrix and Finite Element Analyses of Structures به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تحلیل ماتریسی و المان محدود سازه ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface About This Book Contents About the Authors 1 Basic Concepts of Structural Analysis 1.1 Types of Structures 1.2 Objective of Structural Analysis 1.3 Materials and Basic Assumptions 1.4 Loads 1.5 General Methods of Analysis 1.5.1 Equilibrium Conditions 1.5.2 Compatibility Conditions 1.6 Force–Displacement Relationship 1.7 Statical Indeterminacy 1.7.1 Plane Structure 1.7.2 Space Structures 1.8 Kinematic Indeterminacy 1.9 Two Approaches of Structural Analysis 2 Energy Principles 2.1 Introduction 2.2 Principle of Virtual Work 2.3 Principle of Complementary Virtual Work 2.4 Principle of Minimum Potential Energy 2.5 Principle of Minimum Complementary Energy 2.6 Castigliano’s Theorems 2.7 Determination of Displacements References and Suggested Readings 3 Introduction to the Flexibility and Stiffness Matrix Methods 3.1 Introduction 3.2 The Flexibility Matrix Method 3.3 The Stiffness Method 3.4 Incorporation of Different Loading Conditions 3.5 Other Types of Loadings 3.5.1 Treatment by the Flexibility Matrix Method 3.5.2 Treatment by the Stiffness Method 3.6 Incorporation of Shear Deformation 3.7 Relation Between Flexibility and Stiffness Matrices 3.8 Equivalent Joint Loads 3.9 Choice of the Method of Analysis References and Suggested Readings 4 Direct Stiffness Method 4.1 Introduction 4.2 Local and Global Coordinate System 4.3 Transformation of Variables 4.3.1 Transformation of Member Coordinate Axes 4.3.2 Transformation of Member Displacement Matrix 4.3.3 Transformation of the Member Force Matrix 4.3.4 Transformation of the Member Stiffness Matrix 4.4 Transformation of the Stiffness Matrix of the Member of a Truss 4.5 Transformation of the Stiffness Matrix of the Member of a Rigid Frame 4.6 Transformation of the Stiffness Matrix of the Member of a Grillage 4.7 Transformation of the Stiffness Matrix of the Member of a Space Frame 4.8 Horizontally Circular Curved Beam Element 4.9 Overall Stiffness Matrix 4.10 Boundary Conditions 4.10.1 Boundary Conditions Corresponding to Skewed Supports 4.11 Computation of Internal Forces 4.12 Computer Program for the Truss Analysis by the Direct Stiffness Method 4.13 Computer Program for the Frame Analysis by Direct Stiffness Method 4.14 Computer Program for the Grillage Analysis by the Direct Stiffness Method References and Suggested Readings 5 Substructure Technique for the Analysis of Structural Systems 5.1 Introduction 5.2 Basic Concepts 5.3 Direct Stiffness Method Restated 5.4 The Substructure Technique 5.5 An Illustrative Example 5.6 Computer Program for the Truss Analysis by the Substructure Technique References and Suggested Readings 6 The Flexibility Matrix Method 6.1 Introduction 6.2 Element Flexibility Matrix 6.3 Principle of Contragredience 6.4 The Equilibrium Matrix 6.5 Construction of the Flexibility Matrix of the Structure 6.6 Matrix Determination of the Displacement Vector 6.7 Determination of Member Forces 6.8 Procedure of the Analysis of Statically Indeterminate Structures 6.9 Illustrated Examples 6.10 Choice of the Released Structure References and Suggested Readings 7 Elements of Elasticity 7.1 Introduction 7.2 Some Notations and Relations in the Theory of Elasticity 7.2.1 Surface and Body Forces 7.2.2 Components of Stresses 7.2.3 Components of Strain 7.2.4 Stress–Strain Relationship 7.3 Two-Dimensional Problems 7.3.1 Plane Stress 7.3.2 Plane Strain 7.3.3 Differential Equations of Equilibrium 7.4 Bending of Thin Plates 7.4.1 Basic Assumptions 7.4.2 Deformation of the Plate 7.4.3 Strain–Displacement Relationship 7.4.4 Stress–Strain Relationship 7.4.5 Equilibrium Equations 7.4.6 Differential Equation for Deflection 7.4.7 Shearing Forces 7.5 Boundary Conditions 7.5.1 Simply Supported Edge 7.5.2 Clamped Edge 7.5.3 Free Edge 7.5.4 Elastically Supported Edge 7.5.5 Edge Having Elastic Rotational Restraint 7.6 Concluding Remarks References and Suggested Readings 8 Introduction to the Finite Element Method 8.1 Introduction 8.2 The Finite Element Method 8.3 Brief History of the Development of the Finite Element Method 8.4 Basic Steps in the Finite Element Method for the Solution of Static Problems 8.5 Advantages and Disadvantages of the Finite Element Method References and Suggested Readings 9 Finite Element Analysis of Plane Elasticity Problems 9.1 Introduction 9.2 Three-Noded Triangular Element 9.2.1 Displacement Function 9.2.2 Displacement Function Expressed in Terms of Nodal Displacements 9.2.3 Strain–Nodal Parameter Relationship 9.2.4 Stress–Strain Relationship 9.2.5 Derivation of the Element Stiffness Matrix 9.2.6 Determination of Element Stresses 9.3 Criteria for the Choice of the Displacement Function 9.4 Polynomial Displacement Functions 9.5 Verification of the Convergence Criteria of the Displacement Function of 3-Noded Triangular Element 9.6 Number of Terms in a Polynomial 9.7 Four-Noded Rectangular Element 9.7.1 Displacement Function 9.7.2 Displacement Function in Terms of Nodal Displacements 9.7.3 Strain-Nodal Displacement Relationship 9.7.4 Stress–Strain Relationship 9.7.5 Derivation of the Element Stiffness Matrix 9.7.6 Evaluation of Element Stresses 9.8 A Note on the Rectangular Element 9.9 A Note on Element Stresses 9.10 Computer Program for the Plane Stress Analysis Using Three–Noded Triangular Element Bibliography 10 Isoparametric and Other Element Representations and Numerical Integrations 10.1 Introduction 10.2 Shape Function or Interpolation Function 10.3 Determination of Shape Functions 10.3.1 Linear 2-D Element 10.3.2 Quadratic 2-D Element 10.4 Plane Stress Isoparametric Linear Element 10.4.1 Displacement Function in Terms of Nodal Parameters 10.4.2 Strain-Nodal Parameter Relationship 10.4.3 Evaluation of [B] Matrix 10.4.4 Element Stiffness Matrix 10.4.5 Convergence of Isoparametric Elements 10.4.6 Concept of Isoparametric Element 10.5 Numerical Integration 10.5.1 Gaussian Quadrature Formula 10.5.2 Gaussian Integration of Two Variables 10.6 Lagrangian Interpolation 10.7 Natural Coordinates and Higher Order Triangular Elements 10.7.1 One-Dimensional Element 10.7.2 Higher Order Triangular Elements 10.8 The Quadratic Triangle for the Plane Stress Problem 10.9 Numerical Integration of Area Coordinates 10.10 Triangular Isoparametric Elements for the Analysis of Plane Stress Problems 10.11 Allman’s Triangular Plane Stress Element 10.12 Computer Program for the Solution of Plane Stress Problem Using Isoparametric Element References and Suggested Readings 11 Finite Element Analysis of Plate Bending Problems 11.1 Introduction 11.2 Beam Element 11.2.1 Displacement Function 11.2.2 Displacement Function in Terms of Nodal Displacements 11.2.3 Strain (Curvature)–Nodal Parameter Relationship 11.2.4 Stress (Moment)–Strain (Curvature) Relationship 11.2.5 Derivation of the Element Stiffness Matrix 11.2.6 Determination of Equivalent Loading on the Beam 11.3 Rectangular Plate Bending Element 11.3.1 Displacement Function 11.3.2 Displacement Function Expressed in Terms of Nodal Displacements 11.3.3 Strain–Nodal Parameter Relationship 11.3.4 Stress (Moment)–Strain (Curvature) Relationship 11.3.5 Derivation of the Element Stiffness Matrix 11.4 Parallelogram Element of Plate Bending 11.4.1 Displacement Function 11.4.2 Displacement Function in Terms of Nodal Displacements 11.4.3 Curvature–Nodal Parameter Relationship 11.4.4 Moment–Curvature Relationship 11.4.5 Element Stiffness Matrix 11.5 Hermitian Polynomial Interpolation 11.6 A Conforming Plate Bending Element 11.7 Isoparametric Plate Bending Element 11.7.1 Displacement Function 11.7.2 Strain–Nodal Displacement Relationship 11.7.3 Stress–Strain Relationship 11.7.4 Element Stiffness Matrix 11.7.5 Reduced Integration Technique 11.8 Smoothed Stresses 11.9 Triangular Plate Bending Elements 11.10 DKT Element 11.10.1 Constraint Equations 11.10.2 Transformation Matrix 11.10.3 Element Stiffness Matrix 11.11 The Patch Test 11.11.1 The Patch Test for the Plane Stress Element 11.11.2 The Patch Test for Plate Bending Elements 11.12 Horizontally Curved Isoparametric Beam 11.12.1 Displacement Function in Terms of Nodal Parameters 11.12.2 Stress–Strain Relations 11.12.3 Strain–Displacement Relationship 11.12.4 Element Stiffness Matrix 11.13 Nonuniform Straight Beam Element 11.14 Computer Program for Isoparametric Quadratic Bending Element References and Suggested Readings 12 Finite Element Analysis of Shells 12.1 Introduction 12.2 Flat Shell Element 12.2.1 Transformation of the Stiffness Matrix and Assembly 12.3 Shell of Revolution 12.4 General Shell Finite Element of Triangular Shape 12.4.1 Derivation of the Stiffness Matrix 12.4.2 Consistent Load Vector 12.4.3 Condensation of Stiffness Matrix 12.5 Isoparametric General Shell Element 12.5.1 Geometry of the Shell Element 12.5.2 Displacement Field 12.5.3 Strains Inside the Element 12.5.4 Stress–Strain Relationship 12.5.5 Stiffness Matrix of the Shell Element 12.6 Vertically Curved Beam Element 12.7 Computer Program for the Finite Element Analysis of Shallow Shells of General Shape Using Triangular Element References and Suggested Readings 13 Semi-analytical and Spline Finite Strip Method of Analysis of Plate Bending 13.1 Introduction 13.2 Beam Function 13.3 Model of the Plate 13.4 The Displacement Function 13.5 Curvature-Nodal Parameter Relationship 13.6 Moment—Curvature Relationship 13.7 Strip Stiffness Matrix 13.8 Loading Matrix 13.9 Force Displacement Relationship 13.10 Spline Finite Strip Method of Analysis of Plate Bending 13.10.1 The Spline Function 13.10.2 Displacement Functions 13.10.3 Strain–Displacement Relationship 13.10.4 Stiffness Matrix 13.10.5 The Loading Matrix 13.11 Computer Program for the Spline Finite Strip Method of Analysis of Plates in Bending References and Suggested Readings 14 Dynamic and Instability Analyses by the Finite Element Method 14.1 Introduction 14.2 Dynamic Analysis 14.2.1 Torsional Vibration of Shafts 14.2.2 An Example 14.2.3 Flexural Vibration of Beams 14.2.4 In-Plane Vibration of Plates 14.2.5 Flexural Vibration of Plates 14.3 Elastic Instability Analysis 14.3.1 Column Instability Analysis 14.3.2 Plate Instability Analysis References and Suggested Readings 15 The Finite Difference Method for the Analysis of Beams and Plates 15.1 Introduction 15.2 Finite Difference Representation of Derivatives 15.2.1 First Derivative 15.2.2 Second Derivative 15.2.3 Third Derivative 15.2.4 Fourth Derivative 15.3 Errors in the Finite Difference Expressions 15.4 Equivalent Concentrated Load 15.5 Boundary Conditions for Beam Bending 15.5.1 Simple Support 15.5.2 Fixed End 15.5.3 Free End 15.6 A Statically Determinate Static Problem 15.7 A Statically Indeterminate Static Problem 15.8 Free Vibration of Beams 15.9 Buckling of Columns 15.10 Finite Difference Representation of the Plate Equation 15.10.1 A Plate Example References and Suggested Readings 16 Adaptive Finite Element Analysis 16.1 Introduction 16.2 The Adaptive Finite Element Technique 16.3 Superconvergent Patch Recovery Technique 16.4 Example of Verification of SPR 16.5 Error Estimation 16.6 ZZ Error Estimator 16.7 ZZ—Refinement Framework 16.8 Adaptive Mesh Generation 16.8.1 Mesh Generation Based on Mapping 16.8.2 Delaunay Triangulation Method 16.8.3 Domain Decomposition Method (Quadtree) 16.8.4 Advancing Front Technique References and Suggested Readings 17 Geometrical Nonlinear Finite Element Analysis 17.1 Introduction 17.2 Nonlinear Equation Solving Procedures 17.2.1 Direct Iteration Method 17.2.2 Newton–Raphson Method 17.2.3 Modified Newton–Raphson Method 17.2.4 Incremental Techniques 17.3 Formulation of the Geometric Nonlinear Problem 17.3.1 Equilibrium Equations 17.3.2 Incremental Equilibrium Equation 17.4 Large Deflection Analysis of Plates in b-notation 17.5 Large Deflection Analysis of Plates in n-notation 17.6 Example of a Pin-Jointed bar 17.7 Computer Program for Geometrically Nonlinear Analysis of Plates References and Suggested Reading 18 Finite Element Method of Analysis of Stiffened Plates 18.1 Introduction 18.2 Modeling the Plate and the Stiffener 18.3 Rectangular Stiffened Plate Bending Element 18.3.1 Stiffness Matrix of the Stiffener Element 18.4 Isoparametric Stiffened Plate Bending Element 18.4.1 Stiffness Matrix of Arbitrarily-Oriented Eccentric Stiffener References and Suggested Readings 19 Selected Topics 19.1 Rayleigh–Ritz Method 19.2 An Example 19.3 Rayleigh–Ritz Finite Element Method 19.4 Weighted Residual Methods 19.5 Galerkin Method 19.5.1 An Example of Galerkin Method 19.6 Galerkin Finite Element Method 19.7 Torsional Stiffness of Prismatic Beam Element 19.8 Torsion of Noncircular Sections 19.9 Axi-symmetrical Element 19.10 Three-Dimensional Elements 19.10.1 Linear Element (8 Nodes) (Fig. 19.8a) 19.10.2 Quadratic Element (20 Nodes) (Fig. 19.8b) 19.10.3 Cubic Element (32 Nodes) (Fig. 19.8c) 19.10.4 A16 Noded Solid (Fig. 19.9a) 19.10.5 A24 Noded Solid (Fig. 19.9b) References and Suggested Readings Appendix A Fixed-End Forces Appendix B Index