دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: سری: ناشر: MathWorks سال نشر: 2021 تعداد صفحات: 9684 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 51 مگابایت
در صورت تبدیل فایل کتاب Matlab. Statistics and Machine Learning Toolbox. User's Guide به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب متلب. جعبه ابزار آمار و یادگیری ماشین. راهنمای کاربر نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Getting Started Statistics and Machine Learning Toolbox Product Description Supported Data Types Organizing Data Other MATLAB Functions Supporting Nominal and Ordinal Arrays Create Nominal and Ordinal Arrays Create Nominal Arrays Create Ordinal Arrays Change Category Labels Change Category Labels Reorder Category Levels Reorder Category Levels in Ordinal Arrays Reorder Category Levels in Nominal Arrays Categorize Numeric Data Categorize Numeric Data Merge Category Levels Merge Category Levels Add and Drop Category Levels Plot Data Grouped by Category Plot Data Grouped by Category Test Differences Between Category Means Summary Statistics Grouped by Category Summary Statistics Grouped by Category Sort Ordinal Arrays Sort Ordinal Arrays Nominal and Ordinal Arrays What Are Nominal and Ordinal Arrays? Nominal and Ordinal Array Conversion Advantages of Using Nominal and Ordinal Arrays Manipulate Category Levels Analysis Using Nominal and Ordinal Arrays Reduce Memory Requirements Index and Search Using Nominal and Ordinal Arrays Index By Category Common Indexing and Searching Methods Grouping Variables What Are Grouping Variables? Group Definition Analysis Using Grouping Variables Missing Group Values Dummy Variables What Are Dummy Variables? Creating Dummy Variables Linear Regression with Categorical Covariates Create a Dataset Array from Workspace Variables Create a Dataset Array from a Numeric Array Create Dataset Array from Heterogeneous Workspace Variables Create a Dataset Array from a File Create a Dataset Array from a Tab-Delimited Text File Create a Dataset Array from a Comma-Separated Text File Create a Dataset Array from an Excel File Add and Delete Observations Add and Delete Variables Access Data in Dataset Array Variables Select Subsets of Observations Sort Observations in Dataset Arrays Merge Dataset Arrays Stack or Unstack Dataset Arrays Calculations on Dataset Arrays Export Dataset Arrays Clean Messy and Missing Data Dataset Arrays in the Variables Editor Open Dataset Arrays in the Variables Editor Modify Variable and Observation Names Reorder or Delete Variables Add New Data Sort Observations Select a Subset of Data Create Plots Dataset Arrays What Are Dataset Arrays? Dataset Array Conversion Dataset Array Properties Index and Search Dataset Arrays Ways To Index and Search Examples Descriptive Statistics Measures of Central Tendency Measures of Central Tendency Measures of Dispersion Compare Measures of Dispersion Quantiles and Percentiles Exploratory Analysis of Data Resampling Statistics Bootstrap Resampling Jackknife Resampling Parallel Computing Support for Resampling Methods Statistical Visualization Create Scatter Plots Using Grouped Data Compare Grouped Data Using Box Plots Distribution Plots Normal Probability Plots Probability Plots Quantile-Quantile Plots Cumulative Distribution Plots Visualizing Multivariate Data Probability Distributions Working with Probability Distributions Probability Distribution Objects Apps and Interactive User Interfaces Distribution-Specific Functions and Generic Distribution Functions Supported Distributions Continuous Distributions (Data) Continuous Distributions (Statistics) Discrete Distributions Multivariate Distributions Nonparametric Distributions Flexible Distribution Families Maximum Likelihood Estimation Negative Loglikelihood Functions Find MLEs Using Negative Loglikelihood Function Random Number Generation Nonparametric and Empirical Probability Distributions Overview Kernel Distribution Empirical Cumulative Distribution Function Piecewise Linear Distribution Pareto Tails Triangular Distribution Fit Kernel Distribution Object to Data Fit Kernel Distribution Using ksdensity Fit Distributions to Grouped Data Using ksdensity Fit a Nonparametric Distribution with Pareto Tails Generate Random Numbers Using the Triangular Distribution Model Data Using the Distribution Fitter App Explore Probability Distributions Interactively Create and Manage Data Sets Create a New Fit Display Results Manage Fits Evaluate Fits Exclude Data Save and Load Sessions Generate a File to Fit and Plot Distributions Fit a Distribution Using the Distribution Fitter App Step 1: Load Sample Data Step 2: Import Data Step 3: Create a New Fit Step 4: Create and Manage Additional Fits Define Custom Distributions Using the Distribution Fitter App Open the Distribution Fitter App Define Custom Distribution Import Custom Distribution Explore the Random Number Generation UI Compare Multiple Distribution Fits Fit Probability Distribution Objects to Grouped Data Three-Parameter Weibull Distribution Multinomial Probability Distribution Objects Multinomial Probability Distribution Functions Generate Random Numbers Using Uniform Distribution Inversion Represent Cauchy Distribution Using t Location-Scale Generate Cauchy Random Numbers Using Student\'s t Generate Correlated Data Using Rank Correlation Create Gaussian Mixture Model Fit Gaussian Mixture Model to Data Simulate Data from Gaussian Mixture Model Copulas: Generate Correlated Samples Determining Dependence Between Simulation Inputs Constructing Dependent Bivariate Distributions Using Rank Correlation Coefficients Using Bivariate Copulas Higher Dimension Copulas Archimedean Copulas Simulating Dependent Multivariate Data Using Copulas Fitting Copulas to Data Simulating Dependent Random Variables Using Copulas Fit Custom Distributions Avoid Numerical Issues When Fitting Custom Distributions Nonparametric Estimates of Cumulative Distribution Functions and Their Inverses Modelling Tail Data with the Generalized Pareto Distribution Modelling Data with the Generalized Extreme Value Distribution Curve Fitting and Distribution Fitting Fitting a Univariate Distribution Using Cumulative Probabilities Gaussian Processes Gaussian Process Regression Models Compare Prediction Intervals of GPR Models Kernel (Covariance) Function Options Exact GPR Method Parameter Estimation Prediction Computational Complexity of Exact Parameter Estimation and Prediction Subset of Data Approximation for GPR Models Subset of Regressors Approximation for GPR Models Approximating the Kernel Function Parameter Estimation Prediction Predictive Variance Problem Fully Independent Conditional Approximation for GPR Models Approximating the Kernel Function Parameter Estimation Prediction Block Coordinate Descent Approximation for GPR Models Fit GPR Models Using BCD Approximation Random Number Generation Generating Pseudorandom Numbers Common Pseudorandom Number Generation Methods Representing Sampling Distributions Using Markov Chain Samplers Using the Metropolis-Hastings Algorithm Using Slice Sampling Using Hamiltonian Monte Carlo Generating Quasi-Random Numbers Quasi-Random Sequences Quasi-Random Point Sets Quasi-Random Streams Generating Data Using Flexible Families of Distributions Bayesian Linear Regression Using Hamiltonian Monte Carlo Bayesian Analysis for a Logistic Regression Model Hypothesis Tests Hypothesis Test Terminology Hypothesis Test Assumptions Hypothesis Testing Available Hypothesis Tests Selecting a Sample Size Analysis of Variance Introduction to Analysis of Variance One-Way ANOVA Introduction to One-Way ANOVA Prepare Data for One-Way ANOVA Perform One-Way ANOVA Mathematical Details Two-Way ANOVA Introduction to Two-Way ANOVA Prepare Data for Balanced Two-Way ANOVA Perform Two-Way ANOVA Mathematical Details Multiple Comparisons Introduction Multiple Comparisons Using One-Way ANOVA Multiple Comparisons for Three-Way ANOVA Multiple Comparison Procedures N-Way ANOVA Introduction to N-Way ANOVA Prepare Data for N-Way ANOVA Perform N-Way ANOVA ANOVA with Random Effects Other ANOVA Models Analysis of Covariance Introduction to Analysis of Covariance Analysis of Covariance Tool Confidence Bounds Multiple Comparisons Nonparametric Methods Introduction to Nonparametric Methods Kruskal-Wallis Test Friedman\'s Test MANOVA Introduction to MANOVA ANOVA with Multiple Responses Model Specification for Repeated Measures Models Wilkinson Notation Compound Symmetry Assumption and Epsilon Corrections Mauchly’s Test of Sphericity Multivariate Analysis of Variance for Repeated Measures Bayesian Optimization Bayesian Optimization Algorithm Algorithm Outline Gaussian Process Regression for Fitting the Model Acquisition Function Types Acquisition Function Maximization Parallel Bayesian Optimization Optimize in Parallel Parallel Bayesian Algorithm Settings for Best Parallel Performance Differences in Parallel Bayesian Optimization Output Bayesian Optimization Plot Functions Built-In Plot Functions Custom Plot Function Syntax Create a Custom Plot Function Bayesian Optimization Output Functions What Is a Bayesian Optimization Output Function? Built-In Output Functions Custom Output Functions Bayesian Optimization Output Function Bayesian Optimization Workflow What Is Bayesian Optimization? Ways to Perform Bayesian Optimization Bayesian Optimization Using a Fit Function Bayesian Optimization Using bayesopt Bayesian Optimization Characteristics Parameters Available for Fit Functions Hyperparameter Optimization Options for Fit Functions Variables for a Bayesian Optimization Syntax for Creating Optimization Variables Variables for Optimization Examples Bayesian Optimization Objective Functions Objective Function Syntax Objective Function Example Objective Function Errors Constraints in Bayesian Optimization Bounds Deterministic Constraints — XConstraintFcn Conditional Constraints — ConditionalVariableFcn Coupled Constraints Bayesian Optimization with Coupled Constraints Optimize Cross-Validated Classifier Using bayesopt Optimize Classifier Fit Using Bayesian Optimization Optimize a Boosted Regression Ensemble Parametric Regression Analysis Choose a Regression Function Update Legacy Code with New Fitting Methods What Is a Linear Regression Model? Linear Regression Prepare Data Choose a Fitting Method Choose a Model or Range of Models Fit Model to Data Examine Quality and Adjust Fitted Model Predict or Simulate Responses to New Data Share Fitted Models Linear Regression Workflow Regression Using Dataset Arrays Linear Regression Using Tables Linear Regression with Interaction Effects Interpret Linear Regression Results Cook’s Distance Purpose Definition How To Determine Outliers Using Cook\'s Distance Coefficient Standard Errors and Confidence Intervals Coefficient Covariance and Standard Errors Coefficient Confidence Intervals Coefficient of Determination (R-Squared) Purpose Definition How To Display Coefficient of Determination Delete-1 Statistics Delete-1 Change in Covariance (CovRatio) Delete-1 Scaled Difference in Coefficient Estimates (Dfbetas) Delete-1 Scaled Change in Fitted Values (Dffits) Delete-1 Variance (S2_i) Durbin-Watson Test Purpose Definition How To Test for Autocorrelation Among Residuals F-statistic and t-statistic F-statistic Assess Fit of Model Using F-statistic t-statistic Assess Significance of Regression Coefficients Using t-statistic Hat Matrix and Leverage Hat Matrix Leverage Determine High Leverage Observations Residuals Purpose Definition How To Assess Model Assumptions Using Residuals Summary of Output and Diagnostic Statistics Wilkinson Notation Overview Formula Specification Linear Model Examples Linear Mixed-Effects Model Examples Generalized Linear Model Examples Generalized Linear Mixed-Effects Model Examples Repeated Measures Model Examples Stepwise Regression Stepwise Regression to Select Appropriate Models Compare large and small stepwise models Reduce Outlier Effects Using Robust Regression Why Use Robust Regression? Iteratively Reweighted Least Squares Compare Results of Standard and Robust Least-Squares Fit Steps for Iteratively Reweighted Least Squares Ridge Regression Introduction to Ridge Regression Ridge Regression Lasso and Elastic Net What Are Lasso and Elastic Net? Lasso and Elastic Net Details References Wide Data via Lasso and Parallel Computing Lasso Regularization Lasso and Elastic Net with Cross Validation Partial Least Squares Introduction to Partial Least Squares Perform Partial Least-Squares Regression Linear Mixed-Effects Models Prepare Data for Linear Mixed-Effects Models Tables and Dataset Arrays Design Matrices Relation of Matrix Form to Tables and Dataset Arrays Relationship Between Formula and Design Matrices Formula Design Matrices for Fixed and Random Effects Grouping Variables Estimating Parameters in Linear Mixed-Effects Models Maximum Likelihood (ML) Restricted Maximum Likelihood (REML) Linear Mixed-Effects Model Workflow Fit Mixed-Effects Spline Regression Train Linear Regression Model Analyze Time Series Data Partial Least Squares Regression and Principal Components Regression Generalized Linear Models Multinomial Models for Nominal Responses Multinomial Models for Ordinal Responses Hierarchical Multinomial Models Generalized Linear Models What Are Generalized Linear Models? Prepare Data Choose Generalized Linear Model and Link Function Choose Fitting Method and Model Fit Model to Data Examine Quality and Adjust the Fitted Model Predict or Simulate Responses to New Data Share Fitted Models Generalized Linear Model Workflow Lasso Regularization of Generalized Linear Models What is Generalized Linear Model Lasso Regularization? Generalized Linear Model Lasso and Elastic Net References Regularize Poisson Regression Regularize Logistic Regression Regularize Wide Data in Parallel Generalized Linear Mixed-Effects Models What Are Generalized Linear Mixed-Effects Models? GLME Model Equations Prepare Data for Model Fitting Choose a Distribution Type for the Model Choose a Link Function for the Model Specify the Model Formula Display the Model Work with the Model Fit a Generalized Linear Mixed-Effects Model Fitting Data with Generalized Linear Models Train Generalized Additive Model for Binary Classification Train Generalized Additive Model for Regression Nonlinear Regression Nonlinear Regression What Are Parametric Nonlinear Regression Models? Prepare Data Represent the Nonlinear Model Choose Initial Vector beta0 Fit Nonlinear Model to Data Examine Quality and Adjust the Fitted Nonlinear Model Predict or Simulate Responses Using a Nonlinear Model Nonlinear Regression Workflow Mixed-Effects Models Introduction to Mixed-Effects Models Mixed-Effects Model Hierarchy Specifying Mixed-Effects Models Specifying Covariate Models Choosing nlmefit or nlmefitsa Using Output Functions with Mixed-Effects Models Examining Residuals for Model Verification Mixed-Effects Models Using nlmefit and nlmefitsa Weighted Nonlinear Regression Pitfalls in Fitting Nonlinear Models by Transforming to Linearity Nonlinear Logistic Regression Survival Analysis What Is Survival Analysis? Introduction Censoring Data Survivor Function Hazard Function Kaplan-Meier Method Hazard and Survivor Functions for Different Groups Survivor Functions for Two Groups Cox Proportional Hazards Model Introduction Hazard Ratio Extension of Cox Proportional Hazards Model Partial Likelihood Function Partial Likelihood Function for Tied Events Frequency or Weights of Observations Cox Proportional Hazards Model for Censored Data Cox Proportional Hazards Model with Time-Dependent Covariates Cox Proportional Hazards Model Object Analyzing Survival or Reliability Data Multivariate Methods Multivariate Linear Regression Introduction to Multivariate Methods Multivariate Linear Regression Model Solving Multivariate Regression Problems Estimation of Multivariate Regression Models Least Squares Estimation Maximum Likelihood Estimation Missing Response Data Set Up Multivariate Regression Problems Response Matrix Design Matrices Common Multivariate Regression Problems Multivariate General Linear Model Fixed Effects Panel Model with Concurrent Correlation Longitudinal Analysis Multidimensional Scaling Nonclassical and Nonmetric Multidimensional Scaling Nonclassical Multidimensional Scaling Nonmetric Multidimensional Scaling Classical Multidimensional Scaling Procrustes Analysis Compare Landmark Data Data Input Preprocess Data for Accurate Results Compare Handwritten Shapes Using Procrustes Analysis Introduction to Feature Selection Feature Selection Algorithms Feature Selection Functions Sequential Feature Selection Introduction to Sequential Feature Selection Select Subset of Features with Comparative Predictive Power Nonnegative Matrix Factorization Perform Nonnegative Matrix Factorization Principal Component Analysis (PCA) Analyze Quality of Life in U.S. Cities Using PCA Factor Analysis Analyze Stock Prices Using Factor Analysis Robust Feature Selection Using NCA for Regression Neighborhood Component Analysis (NCA) Feature Selection NCA Feature Selection for Classification NCA Feature Selection for Regression Impact of Standardization Choosing the Regularization Parameter Value t-SNE What Is t-SNE? t-SNE Algorithm Barnes-Hut Variation of t-SNE Characteristics of t-SNE t-SNE Output Function t-SNE Output Function Description tsne optimValues Structure t-SNE Custom Output Function Visualize High-Dimensional Data Using t-SNE tsne Settings Feature Extraction What Is Feature Extraction? Sparse Filtering Algorithm Reconstruction ICA Algorithm Feature Extraction Workflow Extract Mixed Signals Select Features for Classifying High-Dimensional Data Perform Factor Analysis on Exam Grades Classical Multidimensional Scaling Applied to Nonspatial Distances Nonclassical Multidimensional Scaling Fitting an Orthogonal Regression Using Principal Components Analysis Tune Regularization Parameter to Detect Features Using NCA for Classification Cluster Analysis Choose Cluster Analysis Method Clustering Methods Comparison of Clustering Methods Hierarchical Clustering Introduction to Hierarchical Clustering Algorithm Description Similarity Measures Linkages Dendrograms Verify the Cluster Tree Create Clusters DBSCAN Introduction to DBSCAN Algorithm Description Determine Values for DBSCAN Parameters Partition Data Using Spectral Clustering Introduction to Spectral Clustering Algorithm Description Estimate Number of Clusters and Perform Spectral Clustering k-Means Clustering Introduction to k-Means Clustering Compare k-Means Clustering Solutions Cluster Using Gaussian Mixture Model How Gaussian Mixture Models Cluster Data Fit GMM with Different Covariance Options and Initial Conditions When to Regularize Model Fit Statistics Cluster Gaussian Mixture Data Using Hard Clustering Cluster Gaussian Mixture Data Using Soft Clustering Tune Gaussian Mixture Models Cluster Evaluation Cluster Analysis Anomaly Detection with Isolation Forest Introduction to Isolation Forest Parameters for Isolation Forests Anomaly Scores Anomaly Indicators Detect Outliers and Plot Contours of Anomaly Scores Examine NumObservationsPerLearner for Small Data Unsupervised Anomaly Detection Outlier Detection Novelty Detection Model-Specific Anomaly Detection Detect Outliers After Training Random Forest Detect Outliers After Training Discriminant Analysis Classifier Parametric Classification Parametric Classification Performance Curves Introduction to Performance Curves What are ROC Curves? Evaluate Classifier Performance Using perfcurve Classification Nonparametric Supervised Learning Supervised Learning Workflow and Algorithms What is Supervised Learning? Steps in Supervised Learning Characteristics of Classification Algorithms Visualize Decision Surfaces of Different Classifiers Classification Using Nearest Neighbors Pairwise Distance Metrics k-Nearest Neighbor Search and Radius Search Classify Query Data Find Nearest Neighbors Using a Custom Distance Metric K-Nearest Neighbor Classification for Supervised Learning Construct KNN Classifier Examine Quality of KNN Classifier Predict Classification Using KNN Classifier Modify KNN Classifier Framework for Ensemble Learning Prepare the Predictor Data Prepare the Response Data Choose an Applicable Ensemble Aggregation Method Set the Number of Ensemble Members Prepare the Weak Learners Call fitcensemble or fitrensemble Ensemble Algorithms Bootstrap Aggregation (Bagging) and Random Forest Random Subspace Boosting Algorithms Train Classification Ensemble Train Regression Ensemble Select Predictors for Random Forests Test Ensemble Quality Ensemble Regularization Regularize a Regression Ensemble Classification with Imbalanced Data Handle Imbalanced Data or Unequal Misclassification Costs in Classification Ensembles Train Ensemble With Unequal Classification Costs Surrogate Splits LPBoost and TotalBoost for Small Ensembles Tune RobustBoost Random Subspace Classification Train Classification Ensemble in Parallel Bootstrap Aggregation (Bagging) of Regression Trees Using TreeBagger Bootstrap Aggregation (Bagging) of Classification Trees Using TreeBagger Detect Outliers Using Quantile Regression Conditional Quantile Estimation Using Kernel Smoothing Tune Random Forest Using Quantile Error and Bayesian Optimization Support Vector Machines for Binary Classification Understanding Support Vector Machines Using Support Vector Machines Train SVM Classifiers Using a Gaussian Kernel Train SVM Classifier Using Custom Kernel Optimize Classifier Fit Using Bayesian Optimization Plot Posterior Probability Regions for SVM Classification Models Analyze Images Using Linear Support Vector Machines Assess Neural Network Classifier Performance Assess Regression Neural Network Performance Automated Feature Engineering for Classification Interpret Linear Model with Generated Features Generate New Features to Improve Bagged Ensemble Accuracy Automated Feature Engineering for Regression Interpret Linear Model with Generated Features Generate New Features to Improve Bagged Ensemble Performance Moving Towards Automating Model Selection Using Bayesian Optimization Automated Classifier Selection with Bayesian and ASHA Optimization Automated Regression Model Selection with Bayesian and ASHA Optimization Credit Rating by Bagging Decision Trees Combine Heterogeneous Models into Stacked Ensemble Label Data Using Semi-Supervised Learning Techniques Interpret Machine Learning Models Features for Model Interpretation Interpret Classification Model Interpret Regression Model Shapley Values for Machine Learning Model What Is a Shapley Value? Shapley Value Computation Algorithms Specify Shapley Value Computation Algorithm Complexity of Computing Shapley Values Reduce Computational Cost Bibliography Decision Trees Decision Trees Train Classification Tree Train Regression Tree View Decision Tree Growing Decision Trees Prediction Using Classification and Regression Trees Predict Out-of-Sample Responses of Subtrees Improving Classification Trees and Regression Trees Examining Resubstitution Error Cross Validation Choose Split Predictor Selection Technique Control Depth or “Leafiness” Pruning Splitting Categorical Predictors in Classification Trees Challenges in Splitting Multilevel Predictors Algorithms for Categorical Predictor Split Inspect Data with Multilevel Categorical Predictors Discriminant Analysis Discriminant Analysis Classification Create Discriminant Analysis Classifiers Creating Discriminant Analysis Model Weighted Observations Prediction Using Discriminant Analysis Models Posterior Probability Prior Probability Cost Create and Visualize Discriminant Analysis Classifier Improving Discriminant Analysis Models Deal with Singular Data Choose a Discriminant Type Examine the Resubstitution Error and Confusion Matrix Cross Validation Change Costs and Priors Regularize Discriminant Analysis Classifier Examine the Gaussian Mixture Assumption Bartlett Test of Equal Covariance Matrices for Linear Discriminant Analysis Q-Q Plot Mardia Kurtosis Test of Multivariate Normality Naive Bayes Naive Bayes Classification Supported Distributions Plot Posterior Classification Probabilities Classification and Regression for High-Dimensional Data Classification Learner Machine Learning in MATLAB What Is Machine Learning? Selecting the Right Algorithm Train Classification Models in Classification Learner App Train Regression Models in Regression Learner App Train Neural Networks for Deep Learning Train Classification Models in Classification Learner App Automated Classifier Training Manual Classifier Training Parallel Classifier Training Compare and Improve Classification Models Select Data and Validation for Classification Problem Select Data from Workspace Import Data from File Example Data for Classification Choose Validation Scheme Choose Classifier Options Choose Classifier Type Decision Trees Discriminant Analysis Logistic Regression Naive Bayes Classifiers Support Vector Machines Nearest Neighbor Classifiers Kernel Approximation Classifiers Ensemble Classifiers Neural Network Classifiers Feature Selection and Feature Transformation Using Classification Learner App Investigate Features in the Scatter Plot Select Features to Include Transform Features with PCA in Classification Learner Investigate Features in the Parallel Coordinates Plot Misclassification Costs in Classification Learner App Specify Misclassification Costs Assess Model Performance Misclassification Costs in Exported Model and Generated Code Hyperparameter Optimization in Classification Learner App Select Hyperparameters to Optimize Optimization Options Minimum Classification Error Plot Optimization Results Assess Classifier Performance in Classification Learner Check Performance in the Models Pane View and Compare Model Metrics Plot Classifier Results Check Performance Per Class in the Confusion Matrix Check the ROC Curve Compare Model Plots by Changing Layout Evaluate Test Set Model Performance Export Plots in Classification Learner App Export Classification Model to Predict New Data Export the Model to the Workspace to Make Predictions for New Data Make Predictions for New Data Generate MATLAB Code to Train the Model with New Data Generate C Code for Prediction Deploy Predictions Using MATLAB Compiler Export Model for Deployment to MATLAB Production Server Train Decision Trees Using Classification Learner App Train Discriminant Analysis Classifiers Using Classification Learner App Train Logistic Regression Classifiers Using Classification Learner App Train Support Vector Machines Using Classification Learner App Train Nearest Neighbor Classifiers Using Classification Learner App Train Kernel Approximation Classifiers Using Classification Learner App Train Ensemble Classifiers Using Classification Learner App Train Naive Bayes Classifiers Using Classification Learner App Train Neural Network Classifiers Using Classification Learner App Train and Compare Classifiers Using Misclassification Costs in Classification Learner App Train Classifier Using Hyperparameter Optimization in Classification Learner App Check Classifier Performance Using Test Set in Classification Learner App Deploy Model Trained in Classification Learner to MATLAB Production Server Choose Trained Model to Deploy Export Model for Deployment (Optional) Simulate Model Deployment Package Code Regression Learner Train Regression Models in Regression Learner App Automated Regression Model Training Manual Regression Model Training Parallel Regression Model Training Compare and Improve Regression Models Select Data and Validation for Regression Problem Select Data from Workspace Import Data from File Example Data for Regression Choose Validation Scheme Choose Regression Model Options Choose Regression Model Type Linear Regression Models Regression Trees Support Vector Machines Gaussian Process Regression Models Ensembles of Trees Neural Networks Feature Selection and Feature Transformation Using Regression Learner App Investigate Features in the Response Plot Select Features to Include Transform Features with PCA in Regression Learner Hyperparameter Optimization in Regression Learner App Select Hyperparameters to Optimize Optimization Options Minimum MSE Plot Optimization Results Assess Model Performance in Regression Learner Check Performance in Models Pane View and Compare Model Statistics Explore Data and Results in Response Plot Plot Predicted vs. Actual Response Evaluate Model Using Residuals Plot Compare Model Plots by Changing Layout Evaluate Test Set Model Performance Export Plots in Regression Learner App Export Regression Model to Predict New Data Export Model to Workspace Make Predictions for New Data Generate MATLAB Code to Train Model with New Data Generate C Code for Prediction Deploy Predictions Using MATLAB Compiler Export Model for Deployment to MATLAB Production Server Train Regression Trees Using Regression Learner App Train Regression Neural Networks Using Regression Learner App Train Regression Model Using Hyperparameter Optimization in Regression Learner App Check Model Performance Using Test Set in Regression Learner App Deploy Model Trained in Regression Learner to MATLAB Production Server Choose Trained Model to Deploy Export Model for Deployment (Optional) Simulate Model Deployment Package Code Support Vector Machines Understanding Support Vector Machine Regression Mathematical Formulation of SVM Regression Solving the SVM Regression Optimization Problem Incremental Learning Incremental Learning Overview What Is Incremental Learning? Incremental Learning with MATLAB Configure Incremental Learning Model Call Object Directly Convert Traditionally Trained Model Implement Incremental Learning for Linear Regression Using Succinct Workflow Implement Incremental Learning for Classification Using Succinct Workflow Implement Incremental Learning for Linear Regression Using Flexible Workflow Implement Incremental Learning for Classification Using Flexible Workflow Initialize Incremental Learning Model from SVM Regression Model Trained in Regression Learner Initialize Incremental Learning Model from Logistic Regression Model Trained in Classification Learner Perform Conditional Training During Incremental Learning Perform Text Classification Incrementally Incremental Learning with Naive Bayes and Heterogeneous Data Markov Models Markov Chains Hidden Markov Models (HMM) Introduction to Hidden Markov Models (HMM) Analyzing Hidden Markov Models Design of Experiments Design of Experiments Full Factorial Designs Multilevel Designs Two-Level Designs Fractional Factorial Designs Introduction to Fractional Factorial Designs Plackett-Burman Designs General Fractional Designs Response Surface Designs Introduction to Response Surface Designs Central Composite Designs Box-Behnken Designs D-Optimal Designs Introduction to D-Optimal Designs Generate D-Optimal Designs Augment D-Optimal Designs Specify Fixed Covariate Factors Specify Categorical Factors Specify Candidate Sets Improve an Engine Cooling Fan Using Design for Six Sigma Techniques Statistical Process Control Control Charts Capability Studies Tall Arrays Logistic Regression with Tall Arrays Bayesian Optimization with Tall Arrays Statistics and Machine Learning with Big Data Using Tall Arrays Parallel Statistics Quick Start Parallel Computing for Statistics and Machine Learning Toolbox Parallel Statistics and Machine Learning Toolbox Functionality How to Compute in Parallel Use Parallel Processing for Regression TreeBagger Workflow Concepts of Parallel Computing in Statistics and Machine Learning Toolbox Subtleties in Parallel Computing Vocabulary for Parallel Computation When to Run Statistical Functions in Parallel Why Run in Parallel? Factors Affecting Speed Factors Affecting Results Analyze and Model Data on GPU Working with parfor How Statistical Functions Use parfor Characteristics of parfor Reproducibility in Parallel Statistical Computations Issues and Considerations in Reproducing Parallel Computations Running Reproducible Parallel Computations Parallel Statistical Computation Using Random Numbers Implement Jackknife Using Parallel Computing Implement Cross-Validation Using Parallel Computing Simple Parallel Cross Validation Reproducible Parallel Cross Validation Implement Bootstrap Using Parallel Computing Bootstrap in Serial and Parallel Reproducible Parallel Bootstrap Code Generation Introduction to Code Generation Code Generation Workflows Code Generation Applications General Code Generation Workflow Define Entry-Point Function Generate Code Verify Generated Code Code Generation for Prediction of Machine Learning Model at Command Line Code Generation for Incremental Learning Code Generation for Nearest Neighbor Searcher Code Generation for Prediction of Machine Learning Model Using MATLAB Coder App Code Generation and Classification Learner App Load Sample Data Enable PCA Train Models Export Model to Workspace Generate C Code for Prediction Predict Class Labels Using MATLAB Function Block Specify Variable-Size Arguments for Code Generation Create Dummy Variables for Categorical Predictors and Generate C/C++ Code System Objects for Classification and Code Generation Predict Class Labels Using Stateflow Human Activity Recognition Simulink Model for Smartphone Deployment Human Activity Recognition Simulink Model for Fixed-Point Deployment Code Generation for Prediction and Update Using Coder Configurer Code Generation for Probability Distribution Objects Fixed-Point Code Generation for Prediction of SVM Generate Code to Classify Data in Table Code Generation for Image Classification Predict Class Labels Using ClassificationSVM Predict Block Predict Responses Using RegressionSVM Predict Block Predict Class Labels Using ClassificationTree Predict Block Predict Responses Using RegressionTree Predict Block Predict Class Labels Using ClassificationEnsemble Predict Block Predict Responses Using RegressionEnsemble Predict Block Predict Class Labels Using ClassificationNeuralNetwork Predict Block Predict Responses Using RegressionNeuralNetwork Predict Block Code Generation for Logistic Regression Model Trained in Classification Learner Functions addedvarplot clustering.evaluation.ClusterCriterion.addK addlevels addInteractions qrandstream.addlistener GeneralizedLinearMixedModel.anova addTerms addTerms adtest andrewsplot anova LinearMixedModel.anova anova1 anova2 anovan RepeatedMeasuresModel.anova ansaribradley aoctool TreeBagger.append barttest BayesianOptimization bayesopt bbdesign bestPoint betacdf betafit betainv betalike betapdf betarnd betastat binocdf binofit binoinv binopdf binornd binostat binScatterPlot biplot bootci bootstrp boxplot boundary CalinskiHarabaszEvaluation candexch candgen canoncorr capability capaplot caseread casewrite DaviesBouldinEvaluation dataset.cat cdf ccdesign cdf cdfplot cell2dataset dataset.cellstr chi2cdf chi2gof chi2inv chi2pdf chi2rnd chi2stat cholcov ClassificationBaggedEnsemble ClassificationECOC ClassificationECOCCoderConfigurer ClassificationDiscriminant ClassificationEnsemble ClassificationEnsemble Predict ClassificationKNN ClassificationLinear ClassificationLinearCoderConfigurer ClassificationNaiveBayes ClassificationNeuralNetwork ClassificationNeuralNetwork Predict ClassificationPartitionedECOC ClassificationPartitionedEnsemble ClassificationPartitionedGAM ClassificationPartitionedKernel ClassificationPartitionedKernelECOC ClassificationPartitionedLinear ClassificationPartitionedLinearECOC ClassificationPartitionedModel ClassificationSVM ClassificationSVMCoderConfigurer ClassificationSVM Predict ClassificationTree ClassificationTree Predict ClassificationTreeCoderConfigurer classify cluster cluster ClusterCriterion clusterdata Cluster Data cmdscale coefci coefCI GeneralizedLinearMixedModel.coefCI coefCI LinearMixedModel.coefCI NonLinearModel.coefCI coefTest GeneralizedLinearMixedModel.coefTest coefTest LinearMixedModel.coefTest NonLinearModel.coefTest RepeatedMeasuresModel.coeftest CompactTreeBagger.combine combnk compact ClassificationDiscriminant.compact compact ClassificationEnsemble.compact ClassificationTree.compact compact compact RegressionEnsemble.compact RegressionSVM.compact RegressionTree.compact TreeBagger.compact CompactClassificationDiscriminant CompactClassificationECOC CompactClassificationEnsemble ClassificationGAM CompactClassificationNaiveBayes CompactClassificationNeuralNetwork CompactClassificationGAM CompactClassificationSVM CompactClassificationTree CompactLinearModel CompactGeneralizedLinearModel CompactRegressionEnsemble CompactRegressionGAM CompactRegressionGP CompactRegressionNeuralNetwork CompactRegressionSVM CompactRegressionTree CompactTreeBagger CompactTreeBagger GeneralizedLinearMixedModel.compare LinearMixedModel.compare compareHoldout confusionchart ConfusionMatrixChart confusionmat controlchart controlrules cophenet copulacdf copulafit copulaparam copulapdf copulastat copularnd cordexch corr corrcov GeneralizedLinearMixedModel.covarianceParameters LinearMixedModel.covarianceParameters CoxModel coxphfit createns crosstab crossval crossval ClassificationDiscriminant.crossval crossval ClassificationEnsemble.crossval ClassificationTree.crossval RegressionEnsemble.crossval RegressionSVM.crossval RegressionTree.crossval ClassificationTree.cvloss RegressionTree.cvloss cvpartition ClassificationDiscriminant.cvshrink RegressionEnsemble.cvshrink datasample dataset dataset dataset.dataset2cell dataset.dataset2struct dataset2table dataset.datasetfun daugment dbscan dcovary qrandstream.delete dendrogram describe designecoc devianceTest GeneralizedLinearMixedModel.designMatrix LinearMixedModel.designMatrix dfittool discardSupportVectors discardSupportVectors CompactRegressionSVM.discardSupportVectors dataset.disp GeneralizedLinearMixedModel.disp LinearMixedModel.disp NonLinearModel.disp qrandstream.disp dataset.display distributionFitter Probability Distribution Function dataset.double droplevels dummyvar dwtest dwtest ecdf ecdfhist edge edge ClassificationLinear.edge CompactClassificationDiscriminant.edge edge CompactClassificationEnsemble.edge edge edge edge CompactClassificationTree.edge dataset.end RepeatedMeasuresModel.epsilon evcdf evfit evinv qrandstream.eq CompactTreeBagger.error TreeBagger.error evalclusters evlike evpdf evrnd evstat expcdf expfit ExhaustiveSearcher expinv explike dataset.export exppdf exprnd expstat factoran fcdf FeatureTransformer feval feval NonLinearModel.feval ff2n TreeBagger.fillprox qrandstream.findobj qrandstream.findprop finv fishertest fit fit fit fit fitcauto fitcdiscr fitcecoc fitcensemble fitcgam fitcknn fitclinear fitcnb fitcnet fitcox fitcsvm fitctree fitglm fitglme fitgmdist fitlm fitlme fitlmematrix fitsemigraph fitsemiself fitrauto fitrgam fitrgp fitrlinear fitrm fitrnet fitdist fitensemble fitnlm fitPosterior fitPosterior fitrensemble fitrsvm fitrtree fitSVMPosterior GeneralizedLinearMixedModel.fitted LinearMixedModel.fitted GeneralizedLinearMixedModel.fixedEffects LinearMixedModel.fixedEffects fpdf fracfact fracfactgen friedman frnd fscchi2 fscmrmr fscnca fsrnca fsrftest fstat fsulaplacian fsurfht fullfact gagerr gamcdf gamfit gaminv gamlike gampdf gamrnd gamstat gather qrandstream.ge GeneralizedLinearMixedModel GeneralizedLinearModel generateCode generateFiles generateLearnerDataTypeFcn gencfeatures genrfeatures geocdf geoinv geomean geopdf geornd geostat GapEvaluation dataset.get getlabels getlevels gevcdf gevfit gevinv gevlike gevpdf gevrnd gevstat gline glmfit glmval glyphplot gmdistribution gname gpcdf gpfit gpinv gplike gppdf gplotmatrix gprnd gpstat TreeBagger.growTrees grp2idx grpstats RepeatedMeasuresModel.grpstats gscatter qrandstream.gt haltonset harmmean hazardratio hist3 histfit hmmdecode hmmestimate hmmgenerate hmmtrain hmmviterbi dataset.horzcat hougen hygecdf hygeinv hygepdf hygernd hygestat hyperparameters icdf inconsistent clustering.evaluation.GapEvaluation.increaseB interactionplot dataset.intersect invpred iqr incrementalClassificationLinear incrementalClassificationNaiveBayes incrementalLearner incrementalLearner incrementalLearner incrementalLearner incrementalLearner incrementalRegressionLinear dataset.isempty isanomaly islevel iforest dataset.ismember dataset.ismissing IsolationForest qrandstream.isvalid iwishrnd jackknife jbtest johnsrnd dataset.join KDTreeSearcher kfoldEdge kfoldEdge kfoldEdge ClassificationPartitionedLinear.kfoldEdge ClassificationPartitionedLinearECOC.kfoldEdge kfoldEdge kfoldfun kfoldfun kfoldfun kfoldLoss kfoldLoss kfoldLoss ClassificationPartitionedLinear.kfoldLoss ClassificationPartitionedLinearECOC.kfoldLoss kfoldLoss RegressionPartitionedLinear.kfoldLoss kfoldLoss kfoldMargin kfoldMargin kfoldMargin ClassificationPartitionedLinear.kfoldMargin ClassificationPartitionedLinearECOC.kfoldMargin kfoldMargin kfoldPredict kfoldPredict kfoldPredict ClassificationPartitionedLinear.kfoldPredict ClassificationPartitionedLinearECOC.kfoldPredict kfoldPredict RegressionPartitionedLinear.kfoldPredict kfoldPredict kmeans kmedoids knnsearch knnsearch kruskalwallis ksdensity kstest kstest2 kurtosis lasso lassoglm lassoPlot qrandstream.le learnerCoderConfigurer dataset.length levelcounts leverage lhsdesign lhsnorm lillietest lime LinearModel LinearMixedModel linhyptest linhyptest linkage loadCompactModel loadLearnerForCoder logncdf lognfit logninv lognlike lognpdf lognrnd lognstat CompactClassificationDiscriminant.logp logp logp loss loss ClassificationLinear.loss CompactClassificationDiscriminant.loss loss CompactClassificationEnsemble.loss loss loss loss CompactClassificationTree.loss CompactRegressionEnsemble.loss CompactRegressionGP.loss loss CompactRegressionSVM.loss CompactRegressionTree.loss loss loss FeatureSelectionNCAClassification.loss FeatureSelectionNCARegression.loss loss RegressionLinear.loss lowerparams qrandstream.lt lsline mad mahal CompactClassificationDiscriminant.mahal mahal maineffectsplot makecdiscr makedist RepeatedMeasuresModel.manova manova1 manovacluster margin margin ClassificationLinear.margin CompactClassificationDiscriminant.margin margin CompactClassificationEnsemble.margin margin margin margin CompactClassificationTree.margin CompactTreeBagger.margin TreeBagger.margin RepeatedMeasuresModel.margmean RepeatedMeasuresModel.mauchly mat2dataset mdscale CompactTreeBagger.mdsprox TreeBagger.mdsprox mean CompactTreeBagger.meanMargin TreeBagger.meanMargin CompactClassificationTree.surrogateAssociation CompactRegressionTree.surrogateAssociation median mergelevels mhsample mle mlecov mnpdf mnrfit mnrnd mnrval moment multcompare RepeatedMeasuresModel.multcompare multivarichart mvksdensity mvncdf mvnpdf mvregress mvregresslike mvnrnd mvtcdf mvtpdf mvtrnd nancov nanmax nanmean nanmedian nanmin nanstd nansum nanvar nearcorr nbincdf nbinfit nbininv nbinpdf nbinrnd nbinstat FeatureSelectionNCAClassification FeatureSelectionNCARegression ncfcdf ncfinv ncfpdf ncfrnd ncfstat nctcdf nctinv nctpdf nctrnd nctstat ncx2cdf ncx2inv ncx2pdf ncx2rnd ncx2stat dataset.ndims qrandstream.ne negloglik net CompactClassificationDiscriminant.nLinearCoeffs nlinfit nlintool nlmefit nlmefitsa nlparci nlpredci nnmf nominal qrandstream.notify NonLinearModel normcdf normfit norminv normlike normpdf normplot normrnd normspec normstat nsegments dataset.numel onehotdecode onehotencode optimalleaforder ClassificationBaggedEnsemble.oobEdge TreeBagger.oobError ClassificationBaggedEnsemble.oobLoss RegressionBaggedEnsemble.oobLoss ClassificationBaggedEnsemble.oobMargin TreeBagger.oobMargin TreeBagger.oobMeanMargin ClassificationBaggedEnsemble.oobPermutedPredictorImportance RegressionBaggedEnsemble.oobPermutedPredictorImportance ClassificationBaggedEnsemble.oobPredict RegressionBaggedEnsemble.oobPredict TreeBagger.oobPredict TreeBagger.oobQuantileError TreeBagger.oobQuantilePredict optimizableVariable ordinal CompactTreeBagger.outlierMeasure parallelcoords paramci paretotails partialcorr partialcorri partialDependence pca pcacov pcares ppca pdf pdf pdist pdist2 pearsrnd perfcurve clustering.evaluation.ClusterCriterion.plot plot plot RepeatedMeasuresModel.plot plot plotAdded plotAdjustedResponse plot plotDiagnostics plotDiagnostics NonLinearModel.plotDiagnostics plotEffects plotInteraction plotLocalEffects plotPartialDependence RepeatedMeasuresModel.plotprofile plotResiduals GeneralizedLinearMixedModel.plotResiduals plotResiduals LinearMixedModel.plotResiduals NonLinearModel.plotResiduals plotSlice plotSlice NonLinearModel.plotSlice plotSurvival plsregress qrandstream.PointSet poisscdf poissfit poissinv poisspdf poissrnd poisstat polyconf polytool posterior RegressionGP.postFitStatistics prctile predict predict ClassificationLinear.predict CompactClassificationDiscriminant.predict predict CompactClassificationEnsemble.predict predict predict predict CompactClassificationTree.predict CompactRegressionEnsemble.predict CompactRegressionGP.predict predict CompactRegressionSVM.predict CompactRegressionTree.predict predict predict predict RegressionLinear.predict CompactTreeBagger.predict predict GeneralizedLinearMixedModel.predict predict LinearMixedModel.predict FeatureSelectionNCAClassification.predict FeatureSelectionNCARegression.predict NonLinearModel.predict RepeatedMeasuresModel.predict predict predict TreeBagger.predict predictConstraints predictError predictObjective predictObjectiveEvaluationTime CompactClassificationEnsemble.predictorImportance CompactClassificationTree.predictorImportance CompactRegressionEnsemble.predictorImportance CompactRegressionTree.predictorImportance probplot procrustes proflik CompactTreeBagger.proximity ClassificationTree.prune RegressionTree.prune qrandstream.qrand qrandstream qrandstream qqplot quantile qrandstream.rand TreeBagger.quantileError TreeBagger.quantilePredict randg random random GeneralizedLinearMixedModel.random random random LinearMixedModel.random NonLinearModel.random RepeatedMeasuresModel.random GeneralizedLinearMixedModel.randomEffects LinearMixedModel.randomEffects randsample randtool range rangesearch rangesearch ranksum RepeatedMeasuresModel.ranova raylcdf raylfit raylinv raylpdf raylrnd raylstat rcoplot ReconstructionICA refcurve GeneralizedLinearMixedModel.refit FeatureSelectionNCAClassification.refit FeatureSelectionNCARegression.refit reduceDimensions refline regress RegressionBaggedEnsemble RegressionEnsemble RegressionEnsemble Predict RegressionGAM RegressionGP RegressionLinear RegressionLinearCoderConfigurer RegressionNeuralNetwork RegressionNeuralNetwork Predict RegressionPartitionedEnsemble RegressionPartitionedGAM RegressionPartitionedLinear RegressionPartitionedModel RegressionPartitionedSVM RegressionSVM RegressionSVMCoderConfigurer RegressionSVM Predict RegressionTree RegressionTree Predict RegressionTreeCoderConfigurer regstats RegressionEnsemble.regularize relieff CompactClassificationEnsemble.removeLearners CompactRegressionEnsemble.removeLearners removeTerms removeTerms reorderlevels repartition RepeatedMeasuresModel dataset.replacedata dataset.replaceWithMissing qrandstream.reset GeneralizedLinearMixedModel.residuals LinearMixedModel.residuals GeneralizedLinearMixedModel.response LinearMixedModel.response resubEdge ClassificationDiscriminant.resubEdge resubEdge ClassificationEnsemble.resubEdge ClassificationTree.resubEdge ClassificationDiscriminant.resubLoss resubLoss ClassificationEnsemble.resubLoss resubLoss ClassificationTree.resubLoss RegressionEnsemble.resubLoss resubLoss RegressionSVM.resubLoss RegressionTree.resubLoss resubMargin ClassificationDiscriminant.resubMargin resubMargin ClassificationEnsemble.resubMargin ClassificationTree.resubMargin ClassificationDiscriminant.resubPredict resubPredict ClassificationEnsemble.resubPredict resubPredict ClassificationTree.resubPredict RegressionEnsemble.resubPredict resubPredict RegressionSVM.resubPredict RegressionTree.resubPredict resume ClassificationEnsemble.resume ClassificationPartitionedEnsemble.resume resume resume RegressionEnsemble.resume RegressionPartitionedEnsemble.resume RegressionSVM.resume rica ridge robustcov robustdemo robustfit rotatefactors rowexch rsmdemo rstool runstest sampsizepwr saveCompactModel saveLearnerForCoder scatterhist scramble segment ClassificationLinear.selectModels selectModels RegressionLinear.selectModels SemiSupervisedGraphModel SemiSupervisedSelfTrainingModel sequentialfs dataset.set CompactTreeBagger.setDefaultYfit dataset.setdiff setlabels dataset.setxor shapley RegressionEnsemble.shrink signrank signtest silhouette SilhouetteEvaluation dataset.single dataset.size slicesample skewness sobolset sortClasses dataset.sortrows sparsefilt SparseFiltering spectralcluster squareform dataset.stack qrandstream.State statget statset std step step stepwise stepwiseglm stepwiselm stepwisefit dataset.subsasgn dataset.subsref dataset.summary struct2dataset surfht survival table2dataset tabulate tblread tblwrite tcdf tdfread templateDiscriminant templateECOC templateEnsemble templateKernel templateKNN templateLinear templateNaiveBayes templateSVM templateTree test testcholdout testckfold tiedrank tinv tpdf training transform transform TreeBagger TreeBagger trimmean trnd truncate tsne tstat ttest ttest2 BetaDistribution BinomialDistribution BirnbaumSaundersDistribution BurrDistribution ExponentialDistribution ExtremeValueDistribution GammaDistribution GeneralizedExtremeValueDistribution GeneralizedParetoDistribution HalfNormalDistribution InverseGaussianDistribution KernelDistribution LogisticDistribution LoglogisticDistribution LognormalDistribution LoguniformDistribution MultinomialDistribution NakagamiDistribution NegativeBinomialDistribution NormalDistribution PiecewiseLinearDistribution PoissonDistribution RayleighDistribution RicianDistribution StableDistribution tLocationScaleDistribution TriangularDistribution UniformDistribution WeibullDistribution dataset.union dataset.unique unidcdf unidinv unidpdf unidrnd unidstat unifcdf unifinv unifit unifpdf unifrnd unifstat dataset.unstack update updateMetrics updateMetrics updateMetricsAndFit updateMetricsAndFit upperparams validatedUpdateInputs var vartest vartest2 vartestn dataset.vertcat clustering.evaluation.ClusterCriterion.compact CompactClassificationTree.view CompactRegressionTree.view wblcdf wblfit wblinv wbllike wblpdf wblplot wblrnd wblstat wishrnd xptread x2fx zscore ztest hmcSampler HamiltonianSampler HamiltonianSampler.estimateMAP HamiltonianSampler.tuneSampler HamiltonianSampler.drawSamples HamiltonianSampler.diagnostics Classification Learner Regression Learner Distribution Fitter fitckernel ClassificationKernel edge loss margin predict resume fitrkernel RegressionKernel loss predict resume RegressionPartitionedKernel kfoldLoss kfoldPredict Sample Data Sets Sample Data Sets Probability Distributions Bernoulli Distribution Overview Parameters Probability Density Function Cumulative Distribution Function Descriptive Statistics Examples Related Distributions Beta Distribution Overview Parameters Probability Density Function Cumulative Distribution Function Example Binomial Distribution Overview Parameters Probability Density Function Cumulative Distribution Function Descriptive Statistics Example Related Distributions Birnbaum-Saunders Distribution Definition Background Parameters Burr Type XII Distribution Definition Background Parameters Fit a Burr Distribution and Draw the cdf Compare Lognormal and Burr Distribution pdfs Burr pdf for Various Parameters Survival and Hazard Functions of Burr Distribution Divergence of Parameter Estimates Chi-Square Distribution Overview Parameters Probability Density Function Cumulative Distribution Function Inverse Cumulative Distribution Function Descriptive Statistics Examples Related Distributions Exponential Distribution Overview Parameters Probability Density Function Cumulative Distribution Function Inverse Cumulative Distribution Function Hazard Function Examples Related Distributions Extreme Value Distribution Definition Background Parameters Examples F Distribution Definition Background Examples Gamma Distribution Overview Parameters Probability Density Function Cumulative Distribution Function Inverse Cumulative Distribution Function Descriptive Statistics Examples Related Distributions Generalized Extreme Value Distribution Definition Background Parameters Examples Generalized Pareto Distribution Definition Background Parameters Examples Geometric Distribution Overview Parameters Probability Density Function Cumulative Distribution Function Descriptive Statistics Hazard Function Examples Related Distributions Half-Normal Distribution Overview Parameters Probability Density Function Cumulative Distribution Function Descriptive Statistics Relationship to Other Distributions Hypergeometric Distribution Definition Background Examples Inverse Gaussian Distribution Definition Background Parameters Inverse Wishart Distribution Definition Background Example Kernel Distribution Overview Kernel Density Estimator Kernel Smoothing Function Bandwidth Logistic Distribution Overview Parameters Probability Density Function Relationship to Other Distributions Loglogistic Distribution Overview Parameters Probability Density Function Relationship to Other Distributions Lognormal Distribution Overview Parameters Probability Density Function Cumulative Distribution Function Examples Related Distributions Loguniform Distribution Overview Parameters Probability Density Function Cumulative Distribution Function Descriptive Statistics Examples Related Distributions Multinomial Distribution Overview Parameter Probability Density Function Descriptive Statistics Relationship to Other Distributions Multivariate Normal Distribution Overview Parameters Probability Density Function Cumulative Distribution Function Examples Multivariate t Distribution Definition Background Example Nakagami Distribution Definition Background Parameters Negative Binomial Distribution Definition Background Parameters Example Noncentral Chi-Square Distribution Definition Background Examples Noncentral F Distribution Definition Background Examples Noncentral t Distribution Definition Background Examples Normal Distribution Overview Parameters Probability Density Function Cumulative Distribution Function Examples Related Distributions Piecewise Linear Distribution Overview Parameters Cumulative Distribution Function Relationship to Other Distributions Poisson Distribution Overview Parameters Probability Density Function Cumulative Distribution Function Examples Related Distributions Rayleigh Distribution Definition Background Parameters Examples Rician Distribution Definition Background Parameters Stable Distribution Overview Parameters Probability Density Function Cumulative Distribution Function Descriptive Statistics Relationship to Other Distributions Student\'s t Distribution Overview Parameters Probability Density Function Cumulative Distribution Function Inverse Cumulative Distribution Function Descriptive Statistics Examples Related Distributions t Location-Scale Distribution Overview Parameters Probability Density Function Cumulative Distribution Function Descriptive Statistics Relationship to Other Distributions Triangular Distribution Overview Parameters Probability Density Function Cumulative Distribution Function Descriptive Statistics Uniform Distribution (Continuous) Overview Parameters Probability Density Function Cumulative Distribution Function Descriptive Statistics Random Number Generation Examples Related Distributions Uniform Distribution (Discrete) Definition Background Examples Weibull Distribution Overview Parameters Probability Density Function Cumulative Distribution Function Inverse Cumulative Distribution Function Hazard Function Examples Related Distributions Wishart Distribution Overview Parameters Probability Density Function Example Bibliography Bibliography