ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب MATLAB® Coder User's Guide

دانلود کتاب راهنمای کاربر کدنویس MATLAB®

MATLAB® Coder User's Guide

مشخصات کتاب

MATLAB® Coder User's Guide

ویرایش:  
 
سری:  
 
ناشر: MathWorks 
سال نشر: 2022 
تعداد صفحات: 1476 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 12 مگابایت 

قیمت کتاب (تومان) : 34,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 13


در صورت تبدیل فایل کتاب MATLAB® Coder User's Guide به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب راهنمای کاربر کدنویس MATLAB® نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

About MATLAB Coder
	MATLAB Coder Product Description
	Product Overview
		When to Use MATLAB Coder
		Code Generation for Embedded Software Applications
		Code Generation for Fixed-Point Algorithms
Design Considerations for C/C++ Code Generation
	When to Generate Code from MATLAB Algorithms
		When Not to Generate Code from MATLAB Algorithms
	Which Code Generation Feature to Use
	Prerequisites for C/C++ Code Generation from MATLAB
	MATLAB Code Design Considerations for Code Generation
		See Also
	Differences Between Generated Code and MATLAB Code
		Functions that have Multiple Possible Outputs
		Writing to ans Variable
		Logical Short-Circuiting
		Loop Index Overflow
		Indexing for Loops by Using Single Precision Operands
		Index of an Unentered for Loop
		Character Size
		Order of Evaluation in Expressions
		Name Resolution While Constructing Function Handles
		Termination Behavior
		Size of Variable-Size N-D Arrays
		Size of Empty Arrays
		Size of Empty Array That Results from Deleting Elements of an Array
		Binary Element-Wise Operations with Single and Double Operands
		Floating-Point Numerical Results
		NaN and Infinity
		Negative Zero
		Code Generation Target
		MATLAB Class Property Initialization
		MATLAB Classes in Nested Property Assignments That Have Set Methods
		MATLAB Handle Class Destructors
		Variable-Size Data
		Complex Numbers
		Converting Strings with Consecutive Unary Operators to double
		Display Function
	Potential Differences Reporting
		Addressing Potential Differences Messages
		Disabling and Enabling Potential Differences Reporting for MATLAB Coder
		Disabling and Enabling Potential Differences Reporting for Fixed-Point Designer
	Potential Differences Messages
		Automatic Dimension Incompatibility
		mtimes No Dynamic Scalar Expansion
		Matrix-Matrix Indexing
		Vector-Vector Indexing
		Loop Index Overflow
	MATLAB Language Features Supported for C/C++ Code Generation
		MATLAB Features That Code Generation Supports
		MATLAB Language Features That Code Generation Does Not Support
Functions, Classes, and System Objects Supported for Code Generation
	Functions and Objects Supported for C/C++ Code Generation
Defining MATLAB Variables for C/C++ Code Generation
	Variables Definition for Code Generation
	Best Practices for Defining Variables for C/C++ Code Generation
		Define Variables By Assignment Before Using Them
		Use Caution When Reassigning Variables
		Use Type Cast Operators in Variable Definitions
		Define Matrices Before Assigning Indexed Variables
		Index Arrays by Using Constant Value Vectors
	Eliminate Redundant Copies of Variables in Generated Code
		When Redundant Copies Occur
		How to Eliminate Redundant Copies by Defining Uninitialized Variables
		Defining Uninitialized Variables
	Reassignment of Variable Properties
	Reuse the Same Variable with Different Properties
		When You Can Reuse the Same Variable with Different Properties
		When You Cannot Reuse Variables
		Limitations of Variable Reuse
	Supported Variable Types
	Edit and Represent Coder Type Objects and Properties
		Object Properties
		Legacy Representation of Coder Type Objects
Defining Data for Code Generation
	Data Definition Considerations for Code Generation
	Code Generation for Complex Data
		Restrictions When Defining Complex Variables
		Code Generation for Complex Data with Zero-Valued Imaginary Parts
		Results of Expressions That Have Complex Operands
		Results of Complex Multiplication with Nonfinite Values
	Encoding of Characters in Code Generation
	Array Size Restrictions for Code Generation
	Code Generation for Constants in Structures and Arrays
	Code Generation for Strings
		Limitations
		Differences Between Generated Code and MATLAB Code
	Define String Scalar Inputs
		Define String Scalar Types at the Command Line
		Define String Scalar Inputs in the MATLAB Coder App
	Code Generation for Sparse Matrices
		Sparse Data Types in Generated Code
		Input Definition
		Code Generation Guidelines
		Code Generation Limitations
	Specify Array Layout in Functions and Classes
		Specify Array Layout in a Function
		Query Array Layout of a Function
		Specify Array Layout in a Class
	Code Design for Row-Major Array Layout
		Understand Potential Inefficiencies Caused by Array Layout
		Linear Indexing Uses Column-Major Array Layout
Code Generation for Variable-Size Data
	Code Generation for Variable-Size Arrays
		Memory Allocation for Variable-Size Arrays
		Enabling and Disabling Support for Variable-Size Arrays
		Variable-Size Arrays in a Code Generation Report
	Control Memory Allocation for Variable-Size Arrays
		Provide Upper Bounds for Variable-Size Arrays
		Disable Dynamic Memory Allocation
		Configure Code Generator to Use Dynamic Memory Allocation for Arrays Bigger Than a Threshold
	Specify Upper Bounds for Variable-Size Arrays
		Specify Upper Bounds for Variable-Size Inputs
		Specify Upper Bounds for Local Variables
	Define Variable-Size Data for Code Generation
		Use a Matrix Constructor with Nonconstant Dimensions
		Assign Multiple Sizes to the Same Variable
		Define Variable-Size Data Explicitly by Using coder.varsize
	Diagnose and Fix Variable-Size Data Errors
		Diagnosing and Fixing Size Mismatch Errors
		Diagnosing and Fixing Errors in Detecting Upper Bounds
	Incompatibilities with MATLAB in Variable-Size Support for Code Generation
		Incompatibility with MATLAB for Scalar Expansion
		Incompatibility with MATLAB in Determining Size of Variable-Size N-D Arrays
		Incompatibility with MATLAB in Determining Size of Empty Arrays
		Incompatibility with MATLAB in Determining Class of Empty Arrays
		Incompatibility with MATLAB in Matrix-Matrix Indexing
		Incompatibility with MATLAB in Vector-Vector Indexing
		Incompatibility with MATLAB in Matrix Indexing Operations for Code Generation
		Incompatibility with MATLAB in Concatenating Variable-Size Matrices
		Differences When Curly-Brace Indexing of Variable-Size Cell Array Inside Concatenation Returns No Elements
	Variable-Sizing Restrictions for Code Generation of Toolbox Functions
		Common Restrictions
		Toolbox Functions with Restrictions for Variable-Size Data
	Generate Code With Implicit Expansion Enabled
		Output Size
		Additional Code Generation
		Performance Variation
	Optimize Implicit Expansion in Generated Code
		Disable Implicit Expansion in Specified Function by Using coder.noImplicitExpansionInFunction
		Disable Implicit Expansion for Specific Binary Operation by Using coder.sameSizeBinaryOp
		Disable Implicit Expansion in your Project
	Representation of Arrays in Generated Code
		Customize Interface Generation
	Control Memory Allocation for Fixed-Size Arrays
		Enable Dynamic Memory Allocation for All Fixed-Size Arrays
		Enable Dynamic Memory Allocation for Arrays Bigger Than a Threshold
	Resolve Error: Size Mismatches
		Issue
		Possible Solutions
Code Generation for MATLAB Structures
	Structure Definition for Code Generation
	Structure Operations Allowed for Code Generation
	Define Scalar Structures for Code Generation
		Restrictions When Defining Scalar Structures by Assignment
		Adding Fields in Consistent Order on Each Control Flow Path
		Restriction on Adding New Fields After First Use
	Define Arrays of Structures for Code Generation
		Ensuring Consistency of Fields
		Using repmat to Define an Array of Structures with Consistent Field Properties
		Defining an Array of Structures by Using struct
		Defining an Array of Structures Using Concatenation
	Index Substructures and Fields
	Assign Values to Structures and Fields
Code Generation for Categorical Arrays
	Code Generation for Categorical Arrays
		Define Categorical Arrays for Code Generation
		Allowed Operations on Categorical Arrays
		MATLAB Toolbox Functions That Support Categorical Arrays
	Define Categorical Array Inputs
		Define Categorical Array Inputs at the Command Line
		Define Categorical Array Inputs in the MATLAB Coder App
		Representation of Categorical Arrays
	Categorical Array Limitations for Code Generation
Code Generation for Cell Arrays
	Code Generation for Cell Arrays
		Homogeneous vs. Heterogeneous Cell Arrays
		Controlling Whether a Cell Array Is Homogeneous or Heterogeneous
		Naming the Structure Type That Represents a Heterogeneous Cell Array in the Generated Code
		Cell Arrays in Reports
	Control Whether a Cell Array Is Variable-Size
	Define Cell Array Inputs
	Cell Array Limitations for Code Generation
		Cell Array Element Assignment
		Variable-Size Cell Arrays
		Definition of Variable-Size Cell Array by Using cell
		Cell Array Indexing
		Growing a Cell Array by Using {end + 1}
		Cell Array Contents
		Passing Cell Arrays to External C/C++ Functions
Code Generation for Datetime Arrays
	Code Generation for Datetime Arrays
		Define Datetime Arrays for Code Generation
		Allowed Operations on Datetime Arrays
		MATLAB Toolbox Functions That Support Datetime Arrays
	Define Datetime Array Inputs
		Define Datetime Array Inputs at the Command Line
		Define Datetime Array Inputs in the MATLAB Coder App
		Representation of Datetime Arrays
	Datetime Array Limitations for Code Generation
Code Generation for Duration Arrays
	Code Generation for Duration Arrays
		Define Duration Arrays for Code Generation
		Allowed Operations on Duration Arrays
		MATLAB Toolbox Functions That Support Duration Arrays
	Define Duration Array Inputs
		Define Duration Array Inputs at the Command Line
		Define Duration Array Inputs in the MATLAB Coder App
		Representation of Duration Arrays
	Duration Array Limitations for Code Generation
Code Generation for Tables
	Code Generation for Tables
		Define Tables for Code Generation
		Allowed Operations on Tables
		MATLAB Toolbox Functions That Support Tables
	Define Table Inputs
		Define Table Inputs at the Command Line
		Define Table Inputs in the MATLAB Coder App
		Representation of Tables
	Table Limitations for Code Generation
		Creating Tables Limitations
		Modifying Tables Limitations
		Using Table Functions Limitations
Code Generation for Timetables
	Code Generation for Timetables
		Define Timetables for Code Generation
		Allowed Operations on Timetables
		MATLAB Toolbox Functions That Support Timetables
	Define Timetable Inputs
		Define Timetable Inputs at the Command Line
		Define Timetable Inputs in the MATLAB Coder App
		Representation of Timetables
	Timetable Limitations for Code Generation
		Creating Timetables Limitations
		Modifying Timetables Limitations
		Using Timetable Functions Limitations
Code Generation for Enumerated Data
	Code Generation for Enumerations
		Define Enumerations for Code Generation
		Allowed Operations on Enumerations
		MATLAB Toolbox Functions That Support Enumerations
	Customize Enumerated Types in Generated Code
		Specify a Default Enumeration Value
		Specify a Header File
		Include Class Name Prefix in Generated Enumerated Type Value Names
		Generate C++11 Code Containing Ordinary C Enumeration
Code Generation for MATLAB Classes
	MATLAB Classes Definition for Code Generation
		Language Limitations
		Code Generation Features Not Compatible with Classes
		Defining Class Properties for Code Generation
		Inheritance from Built-In MATLAB Classes Not Supported
	Classes That Support Code Generation
	Generate Code for MATLAB Value Classes
	Generate Code for MATLAB Handle Classes and System Objects
	Code Generation for Handle Class Destructors
		Guidelines and Restrictions
		Behavioral Differences of Objects in Generated Code and in MATLAB
	Class Does Not Have Property
		Solution
	Passing By Reference Not Supported for Some Properties
	Handle Object Limitations for Code Generation
		A Variable Outside a Loop Cannot Refer to a Handle Object Allocated Inside a Loop
		A Handle Object That a Persistent Variable Refers To Must Be a Singleton Object
		References to Handle Objects Can Appear Undefined
	System Objects in MATLAB Code Generation
		Usage Rules and Limitations for System Objects for Generating Code
		System Objects in codegen
		System Objects in the MATLAB Function Block
		System Objects in the MATLAB System Block
		System Objects and MATLAB Compiler Software
	Specify Objects as Inputs at the Command Line
		Consistency Between coder.ClassType Object and Class Definition File
		Limitations for Using Objects as Entry-Point Function Inputs
	Specify Objects as Inputs in the MATLAB Coder App
		Automatically Define an Object Input Type
		Provide an Example
		Consistency Between the Type Definition and Class Definition File
		Limitations for Using Objects as Entry-Point Function Inputs
	Work Around Language Limitation: Code Generation Does Not Support Object Arrays
		Issue
		Possible Solutions
Generating C++ Classes
	Generate C++ Classes for MATLAB Classes
		Example: Generate Code for a Handle Class That Has Private and Public Members
		Additional Usage Notes and Limitations
Code Generation for Function Handles
	Function Handle Limitations for Code Generation
Code Generation for Deep Learning Arrays
	Code Generation for dlarray
		Define dlarray for Code Generation
		dlarray Object Functions with Code Generation Support
		Deep Learning Toolbox Functions with dlarray Code Generation Support
		MATLAB Functions with dlarray Code Generation Support
	dlarray Limitations for Code Generation
		Recommended Usage
		Limitations
Defining Functions for Code Generation
	Code Generation for Variable Length Argument Lists
	Generate Code for arguments Block That Validates Input Arguments
		Supported Features
		Input Type Specification and arguments blocks
	Specify Number of Entry-Point Function Input or Output Arguments to Generate
		Control Number of Input Arguments
		Control the Number of Output Arguments
	Code Generation for Anonymous Functions
		Anonymous Function Limitations for Code Generation
	Code Generation for Nested Functions
		Nested Function Limitations for Code Generation
Calling Functions for Code Generation
	Resolution of Function Calls for Code Generation
		Key Points About Resolving Function Calls
		Compile Path Search Order
		When to Use the Code Generation Path
	Resolution of File Types on Code Generation Path
	Compilation Directive %#codegen
	Use MATLAB Engine to Execute a Function Call in Generated Code
		When To Declare a Function as Extrinsic
		Use the coder.extrinsic Construct
		Call MATLAB Functions Using feval
		Working with mxArrays
		Restrictions on Using Extrinsic Functions
	Code Generation for Recursive Functions
		Compile-Time Recursion
		Run-Time Recursion
		Disallow Recursion
		Disable Run-Time Recursion
		Recursive Function Limitations for Code Generation
	Force Code Generator to Use Run-Time Recursion
		Treat the Input to the Recursive Function as a Nonconstant
		Make the Input to the Recursive Function Variable-Size
		Assign Output Variable Before the Recursive Call
	Avoid Duplicate Functions in Generated Code
		Issue
		Cause
		Solution
Fixed-Point Conversion
	Detect Unexecuted and Constant-Folded Code
		What Is Unexecuted Code?
		Detect Unexecuted Code
		Fix Unexecuted Code
	Convert MATLAB Code to Fixed-Point C Code
	Propose Fixed-Point Data Types Based on Simulation Ranges
	Propose Fixed-Point Data Types Based on Derived Ranges
	Specify Type Proposal Options
	Detect Overflows
	Replace the exp Function with a Lookup Table
	Replace a Custom Function with a Lookup Table
	Enable Plotting Using the Simulation Data Inspector
	Visualize Differences Between Floating-Point and Fixed-Point Results
	View and Modify Variable Information
		View Variable Information
		Modify Variable Information
		Revert Changes
		Promote Sim Min and Sim Max Values
	Automated Fixed-Point Conversion
		Automated Fixed-Point Conversion Capabilities
		Code Coverage
		Proposing Data Types
		Locking Proposed Data Types
		Viewing Functions
		Viewing Variables
		Log Data for Histogram
		Function Replacements
		Validating Types
		Testing Numerics
		Detecting Overflows
	Convert Fixed-Point Conversion Project to MATLAB Scripts
	Generated Fixed-Point Code
		Location of Generated Fixed-Point Files
		Minimizing fi-casts to Improve Code Readability
		Avoiding Overflows in the Generated Fixed-Point Code
		Controlling Bit Growth
		Avoiding Loss of Range or Precision
		Handling Non-Constant mpower Exponents
	Fixed-Point Code for MATLAB Classes
		Automated Conversion Support for MATLAB Classes
		Unsupported Constructs
		Coding Style Best Practices
	Automated Fixed-Point Conversion Best Practices
		Create a Test File
		Prepare Your Algorithm for Code Acceleration or Code Generation
		Check for Fixed-Point Support for Functions Used in Your Algorithm
		Manage Data Types and Control Bit Growth
		Convert to Fixed Point
		Use the Histogram to Fine-Tune Data Type Settings
		Optimize Your Algorithm
		Avoid Explicit Double and Single Casts
	Replacing Functions Using Lookup Table Approximations
	MATLAB Language Features Supported for Automated Fixed-Point Conversion
		MATLAB Language Features Supported for Automated Fixed-Point Conversion
		MATLAB Language Features Not Supported for Automated Fixed-Point Conversion
	Inspecting Data Using the Simulation Data Inspector
		What Is the Simulation Data Inspector?
		Import Logged Data
		Export Logged Data
		Group Signals
		Run Options
		Create Report
		Comparison Options
		Enabling Plotting Using the Simulation Data Inspector
		Save and Load Simulation Data Inspector Sessions
	Custom Plot Functions
	Data Type Issues in Generated Code
		Enable the Highlight Option in the MATLAB Coder App
		Enable the Highlight Option at the Command Line
		Stowaway Doubles
		Stowaway Singles
		Expensive Fixed-Point Operations
Automated Fixed-Point Conversion Using Programmatic Workflow
	Convert MATLAB Code to Fixed-Point C Code
	Propose Fixed-Point Data Types Based on Simulation Ranges
	Propose Fixed-Point Data Types Based on Derived Ranges
	Detect Overflows
	Replace the exp Function with a Lookup Table
	Replace a Custom Function with a Lookup Table
	Enable Plotting Using the Simulation Data Inspector
	Visualize Differences Between Floating-Point and Fixed-Point Results
Single-Precision Conversion
	Generate Single-Precision C Code at the Command Line
		Prerequisites
		Create a Folder and Copy Relevant Files
		Determine the Type of the Input Argument
		Generate and Run Single-Precision MEX to Verify Numerical Behavior
		Generate Single-Precision C Code
		View the Generated Single-Precision C Code
		View Potential Data Type Issues
	Generate Single-Precision C Code Using the MATLAB Coder App
		Prerequisites
		Create a Folder and Copy Relevant Files
		Open the MATLAB Coder App
		Select the Source Files
		Enable Single-Precision Conversion
		Define Input Types
		Check for Run-Time Issues
		Generate Single-Precision C Code
		View the Generated C Code
		View Potential Data Type Issues
	Generate Single-Precision MATLAB Code
		Prerequisites
		Create a Folder and Copy Relevant Files
		Set Up the Single-Precision Configuration Object
		Generate Single-Precision MATLAB Code
		View the Type Proposal Report
		View Generated Single-Precision MATLAB Code
		View Potential Data Type Issues
		Compare the Double-Precision and Single-Precision Variables
		Optionally Generate Single-Precision C Code
	Choose a Single-Precision Conversion Workflow
	Single-Precision Conversion Best Practices
		Use Integers for Index Variables
		Limit Use of assert Statements
		Initialize MATLAB Class Properties in Constructor
		Provide a Test File That Calls Your MATLAB Function
		Prepare Your Code for Code Generation
		Verify Double-Precision Code Before Single-Precision Conversion
		Best Practices for Generation of Single-Precision C/C++ Code
		Best Practices for Generation of Single-Precision MATLAB Code
	Warnings from Conversion to Single-Precision C/C++ Code
		Function Uses Double-Precision in the C89/C90 Standard
		Built-In Function Is Implemented in Double-Precision
		Built-In Function Returns Double-Precision
	Combining Integers and Double-Precision Numbers
	MATLAB Language Features Supported for Single-Precision Conversion
		MATLAB Language Features Supported for Single-Precision Conversion
		MATLAB Language Features Not Supported for Single-Precision Conversion
Setting Up a MATLAB Coder Project
	Set Up a MATLAB Coder Project
		Create a Project
		Open an Existing Project
	Specify Properties of Entry-Point Function Inputs Using the App
		Why Specify Input Properties?
		Specify an Input Definition Using the App
	Automatically Define Input Types by Using the App
	Make Dimensions Variable-Size When They Meet Size Threshold
	Define Input Parameter by Example by Using the App
		Define an Input Parameter by Example
		Specify Input Parameters by Example
		Specify a String Scalar Input Parameter by Example
		Specify a Structure Type Input Parameter by Example
		Specify a Cell Array Type Input Parameter by Example
		Specify an Enumerated Type Input Parameter by Example
		Specify an Object Input Type Parameter by Example
		Specify a Fixed-Point Input Parameter by Example
		Specify an Input from an Entry-Point Function Output Type
	Define or Edit Input Parameter Type by Using the App
		Define or Edit an Input Parameter Type
		Specify a String Scalar Input Parameter
		Specify an Enumerated Type Input Parameter
		Specify a Fixed-Point Input Parameter
		Specify a Structure Input Parameter
		Specify a Cell Array Input Parameter
	Define Constant Input Parameters Using the App
	Define Inputs Programmatically in the MATLAB File
	Add Global Variables by Using the App
	Specify Global Variable Type and Initial Value Using the App
		Why Specify a Type Definition for Global Variables?
		Specify a Global Variable Type
		Define a Global Variable by Example
		Define or Edit Global Variable Type
		Define Global Variable Initial Value
		Define Global Variable Constant Value
		Remove Global Variables
	Undo and Redo Changes to Type Definitions in the App
	Code Generation Readiness Screening in the MATLAB Coder App
	Slow Operations in MATLAB Coder App
	Unable to Open a MATLAB Coder Project
Preparing MATLAB Code for C/C++ Code Generation
	Workflow for Preparing MATLAB Code for Code Generation
		See Also
	Fixing Errors Detected at Design Time
		See Also
	Using the Code Analyzer
	Check Code with the Code Analyzer
	Check Code by Using the Code Generation Readiness Tool
		Run Code Generation Readiness Tool at the Command Line
		Run Code Generation Readiness Tool from the Current Folder Browser
		Run the Code Generation Readiness Tool Using the MATLAB Coder App
	Code Generation Readiness Tool
		Issues Tab
		Files Tab
	Unable to Determine Code Generation Readiness
	Generate MEX Functions by Using the MATLAB Coder App
		Workflow for Generating MEX Functions Using the MATLAB Coder App
		Generate a MEX Function Using the MATLAB Coder App
		Configure Project Settings
		Build a MATLAB Coder Project
		See Also
	Generate MEX Functions at the Command Line
		Command-line Workflow for Generating MEX Functions
		Generate a MEX Function at the Command Line
	Fix Errors Detected at Code Generation Time
		See Also
	Running and Debugging MEX Functions
		Debug MEX Functions
		Debug MEX Functions by Using a C/C++ Debugger
	Debugging Strategies
	Collect and View Line Execution Counts for Your MATLAB Code
	Resolve Error: Function Is Not Supported for Code Generation
		Issue
		Possible Solutions
	Debug Generated C/C++ Code
Testing MEX Functions in MATLAB
	Why Test MEX Functions in MATLAB?
	Workflow for Testing MEX Functions in MATLAB
		See Also
	Running MEX Functions
		Debug MEX Functions
		Debug MEX Functions by Using a C/C++ Debugger
	Check for Run-Time Issues by Using the App
		Collect MATLAB Line Execution Counts
		Disable JIT Compilation for Parallel Loops
	Verify MEX Functions in the MATLAB Coder App
	Verify MEX Functions at the Command Line
	Debug Run-Time Errors
		Viewing Errors in the Run-Time Stack
		Handling Run-Time Errors
	Using MEX Functions That MATLAB Coder Generates
Generating C/C++ Code from MATLAB Code
	Code Generation Workflow
		See Also
	Generating Standalone C/C++ Executables from MATLAB Code
		Generate a C Executable Using the MATLAB Coder App
		Generate a C Executable at the Command Line
		Specifying main Functions for C/C++ Executables
		Specify main Functions
	Configure Build Settings
		Specify Build Type
		Specify a Language for Code Generation
		Specify Output File Name
		Specify Output File Locations
		Parameter Specification Methods
		Specify Build Configuration Parameters
	Specify Configuration Parameters in Command-Line Workflow Interactively
		Create and Modify Configuration Objects by Using the Dialog Box
		Additional Functionalities in the Dialog Box
	Specify Data Types Used in Generated Code
		Specify Data Type Using the MATLAB Coder App
		Specify Data Type at the Command Line
	Use Generated Initialize and Terminate Functions
		Initialize Function
		Terminate Function
	Change the Language Standard
	Convert codegen Command to Equivalent MATLAB Coder Project
		Example: Convert a Complete codegen Command to a Project File
		Example: Convert an Incomplete codegen Command to a Template Project File
		Limitations
	Share Build Configuration Settings
		Export Settings
		Import Settings
	Convert MATLAB Coder Project to MATLAB Script
		Convert a Project Using the MATLAB Coder App
		Convert a Project Using the Command-Line Interface
		Run the Script
		Special Cases That Generate Additional MAT-File
	Preserve Variable Names in Generated Code
	Reserved Keywords
		C Reserved Keywords
		C++ Reserved Keywords
		Keywords Reserved for Code Generation
		Reserved Prefixes
		MATLAB Coder Code Replacement Library Keywords
	Specify Properties of Entry-Point Function Inputs
		Why You Must Specify Input Properties
		Properties to Specify
		Rules for Specifying Properties of Primary Inputs
		Methods for Defining Properties of Primary Inputs
		Define Input Properties by Example at the Command Line
		Specify Constant Inputs at the Command Line
		Specify Variable-Size Inputs at the Command Line
		Input Type Specification and arguments blocks
	Specify Cell Array Inputs at the Command Line
		Specify Cell Array Inputs by Example
		Specify the Type of the Cell Array Input
		Make a Homogeneous Copy of a Type
		Make a Heterogeneous Copy of a Type
		Specify Variable-Size Cell Array Inputs
		Specify Type Name for Heterogeneous Cell Array Inputs
		Specify Constant Cell Array Inputs
	Constant Input Checking in MEX Functions
		Control Whether a MEX Function Checks the Value of a Constant Input
	Define Input Properties Programmatically in the MATLAB File
		How to Use assert with MATLAB Coder
		Rules for Using assert Function
		Specifying General Properties of Primary Inputs
		Specifying Properties of Primary Fixed-Point Inputs
		Specifying Properties of Cell Arrays
		Specifying Class and Size of Scalar Structure
		Specifying Class and Size of Structure Array
	Create and Edit Input Types by Using the Coder Type Editor
		Open the Coder Type Editor
		Common Editor Actions
		Type Browser Pane
		Type Properties Pane
		MATLAB Code Pane
	Speed Up Compilation by Generating Only Code
	Disable Creation of the Code Generation Report
	Paths and File Infrastructure Setup
		Compile Path Search Order
		Specify Folders to Search for Custom Code
		Naming Conventions
	Generate Code for Multiple Entry-Point Functions
		Generating Code for Multiple Entry-Point Functions
		Call a Single Entry-Point Function from a MEX Function
		Generate Code for More Than One Entry-Point Function Using the MATLAB Coder App
	Generate One MEX Function for Multiple Signatures
		Generate Multisignature MEX Function for a Single Entry-Point Function
		Generate Multisignature MEX Function for Multiple Entry-Point Functions
	Pass an Entry-Point Function Output as an Input
		Pass an Entry-Point Function Output as an Input to Another Entry-Point Function
		Use coder.OutputType to Facilitate Code Componentization
	Generate Code for Global Data
		Workflow
		Declare Global Variables
		Define Global Data
		Synchronizing Global Data with MATLAB
		Define Constant Global Data
		Global Data Limitations for Generated Code
	Specify Global Cell Arrays at the Command Line
	Generate Code for Enumerations
	Generate Code for Variable-Size Data
		Disable Support for Variable-Size Data
		Control Dynamic Memory Allocation
		Generating Code for MATLAB Functions with Variable-Size Data
		Generate Code for a MATLAB Function That Expands a Vector in a Loop
	How MATLAB Coder Partitions Generated Code
		Partitioning Generated Files
		How to Select the File Partitioning Method
		Partitioning Generated Files with One C/C++ File Per MATLAB File
		Generated Files and Locations
		File Partitioning and Inlining
	Requirements for Signed Integer Representation
	Build Process Customization
		RTW.BuildInfo Methods
		coder.updateBuildInfo Function
		coder.ExternalDependency Class
		Post-Code-Generation Command
	Run-time Stack Overflow
	Compiler and Linker Errors
		Failure to Specify a Main Function
		Failure to Specify External Code Files
		Errors Caused by External Code
	Pass Structure Arguments by Reference or by Value in Generated Code
	Name the C Structure Type to Use With a Global Structure Variable
	Generate Code for an LED Control Function That Uses Enumerated Types
	Generate Code That Uses N-Dimensional Indexing
		Improve Readability with N-Dimensional Indexing and Row-Major Layout
		Column-Major Layout and N-Dimensional Indexing
		Other Code Generation Considerations
	Install OpenMP Library on macOS Platform
	Generate Code to Detect Edges on Images
	C Code Generation for a MATLAB Kalman Filtering Algorithm
	Generate Code to Optimize Portfolio by Using Black Litterman Approach
	Generate Code for Persistent Variables
	Generate Code for Structure Arrays
	Add Custom Toolchains to MATLAB® Coder™ Build Process
	Generate Code for Sobel Edge Detection That Uses Half-Precision Data Type
	Half Precision in MATLAB
		Half Precision Code Generation Support
		Generate Native Half-Precision C Code Using MATLAB Coder
			Generate Native Half-Precision C Code for ARM® Cortex®-A with GCC Compiler
			Generate Native Half-Precision C Code for ARM Cortex-A with Armclang Compiler
			Register ARM Target Hardware with Custom Language Implementation
		What is Half Precision?
			Half Precision Applications
			Benefits of Using Half Precision in Embedded Applications
			Half Precision in MATLAB
			Half Precision in Simulink
			Code Generation with Half Precision
	Build Process Support for File and Folder Names
		Filenames with Spaces
		Folder Names with Spaces
		Troubleshooting Errors When Folder Names Have Spaces
		Folder Names with Special Characters
		Very Long Folder Paths
	Generate Code That Reads Data from a File
Verify Generated C/C++ Code
	Tracing Generated C/C++ Code to MATLAB Source Code
		Generate Traceability Tags
		Format of Traceability Tags
		Location of Comments in Generated Code
		Traceability Tag Limitations
	Code Generation Reports
		Report Generation
		Report Location
		Errors and Warnings
		Files and Functions
		MATLAB Source
		MATLAB Variables
		Tracing Code
		Code Insights
		Additional Reports
		Report Limitations
	Access Code Generation Report Information Programmatically
		Create Report Information Object
		Example: Create Report Information Object for Successful Code Generation
		Example: Create Report Information Object for Successful Code Generation That Checks Out Toolbox Licenses
		Example: Create Report Information Object for Failed Code Generation
		Inspect Code Manually
		Transferring Code Configuration Objects to a New MATLAB Session
	Generate Standalone C/C++ Code That Detects and Reports Run-Time Errors
		Generated C Code vs. Generated C++ Code
		Example: Compare Generated C and C++ Code That Include Run-Time Checks
		Limitations
	Example: Generate Standalone C Code That Detects and Reports Run-Time Errors
	Testing Code Generated from MATLAB Code
	Unit Test Generated Code with MATLAB Coder
	Unit Test External C Code with MATLAB Coder
	Calculate Number of Lines of Code by Using Report Information Object
Code Replacement for MATLAB Code
	What Is Code Replacement?
		Code Replacement Libraries
		Code Replacement Terminology
		Code Replacement Limitations
	Choose a Code Replacement Library
		About Choosing a Code Replacement Library
		Explore Available Code Replacement Libraries
		Explore Code Replacement Library Contents
	Replace Code Generated from MATLAB Code
	Generate SIMD Code for MATLAB Functions
		MATLAB Functions That Support SIMD Code
		Generate SIMD Code Versus Plain C Code
		Limitations
Custom Toolchain Registration
	Custom Toolchain Registration
		What Is a Custom Toolchain?
		What Is a Factory Toolchain?
		What is a Toolchain Definition?
		Key Terms
		Typical Workflow
	About coder.make.ToolchainInfo
	Create and Edit Toolchain Definition File
	Toolchain Definition File with Commentary
		Steps Involved in Writing a Toolchain Definition File
		Write a Function That Creates a ToolchainInfo Object
		Setup
		Macros
		C Compiler
		C++ Compiler
		Linker
		Archiver
		Builder
		Build Configurations
	Create and Validate ToolchainInfo Object
	Register the Custom Toolchain
	Use the Custom Toolchain
	Troubleshooting Custom Toolchain Validation
		Build Tool Command Path Incorrect
		Build Tool Not in System Path
		Tool Path Does Not Exist
		Path Incompatible with Builder or Build Tool
		Unsupported Platform
		Toolchain is Not installed
		Project or Configuration Is Using the Template Makefile
	Prevent Circular Data Dependencies with One-Pass or Single-Pass Linkers
	Build 32-bit DLL on 64-bit Windows® Platform Using MSVC Toolchain
Deploying Generated Code
	C Compiler Considerations for Signed Integer Overflows
	Use C Arrays in the Generated Function Interfaces
		Implementation of Arrays in the Generated C/C++ Code
		The emxArray Dynamic Data Structure Definition
		Utility Functions for Interacting with emxArray Data
		Examples
	Use Dynamically Allocated C++ Arrays in Generated Function Interfaces
		Using the coder::array Class Template
		Examples
		Change Interface Generation
	Use a Dynamic Library in a Microsoft Visual Studio Project
	Incorporate Generated Code Using an Example Main Function
		Workflow for Using an Example Main Function
		Control Example Main Generation Using the MATLAB Coder App
		Control Example Main Generation Using the Command-Line Interface
	Use an Example C Main in an Application
		Prerequisites
		Create a Folder and Copy Relevant Files
		Run the Sobel Filter on the Image
		Generate and Test a MEX Function
		Generate an Example Main Function for sobel.m
		Copy the Example Main Files
		Modify the Generated Example Main Function
		Generate the Sobel Filter Application
		Run the Sobel Filter Application
		Display the Resulting Image
	Package Code for Other Development Environments
		When to Package Code
		Package Generated Code Using the MATLAB Coder App
		Package Generated Code at the Command Line
		Specify packNGo Options
	Structure of Generated Example C/C++ Main Function
		Contents of the File main.c or main.cpp
		Contents of the File main.h
	Troubleshoot Failures in Deployed Code
	Using Dynamic Memory Allocation for an Atoms Simulation
	Register New Hardware Devices
		Specify Hardware Implementation for New Device
		Specify Hardware Implementation That Persists Over MATLAB Sessions
		Create Hardware Implementation by Modifying Existing Implementation
		Create Hardware Implementation by Reusing Existing Implementation
		Validate Hardware Device Data
		Export Hardware Device Data
		Create Alternative Identifier for Target Object
		Upgrade Data Definitions for Hardware Devices
	Configure CMake Build Process
		Specify CMake Toolchain Definition
		Available CMake Toolchain Definitions
	Create Custom CMake Toolchain Definition
	Deploy Generated C Code to External Hardware: Raspberry Pi Examples
		Prerequisites
		Hardware Implementation Parameters
		Hello World Example
		Spring Mass Damper System Example
	Deploy Generated Code
		Main Function
		Generated Function Interfaces
		Executable Applications
		Static and Dynamic Libraries
		Generated File Structure
		Code Verification
		Custom Hardware Considerations
		Other Deployment Strategies
	Approaches for Building Code Generated from MATLAB Code
Accelerating MATLAB Algorithms
	Workflow for Accelerating MATLAB Algorithms
		See Also
	Best Practices for Using MEX Functions to Accelerate MATLAB Algorithms
		Accelerate Code That Dominates Execution Time
		Include Loops Inside MEX Function
		Avoid Generating MEX Functions from Unsupported Functions
		Avoid Generating MEX Functions if Built-In MATLAB Functions Dominate Run Time
		Minimize MEX Function Calls
	Accelerate MATLAB Algorithms
	Modifying MATLAB Code for Acceleration
		How to Modify Your MATLAB Code for Acceleration
	Profile MEX Functions by Using MATLAB Profiler
		MEX Profile Generation
		Example
		Effect of Folding Expressions on MEX Code Coverage
	Control Run-Time Checks
		Types of Run-Time Checks
		When to Disable Run-Time Checks
		How to Disable Run-Time Checks
	Algorithm Acceleration Using Parallel for-Loops (parfor)
		Parallel for-Loops (parfor) in Generated Code
		How parfor-Loops Improve Execution Speed
		When to Use parfor-Loops
		When Not to Use parfor-Loops
		parfor-Loop Syntax
		parfor Restrictions
	Control Compilation of parfor-Loops
		When to Disable parfor
	Reduction Assignments in parfor-Loops
		What are Reduction Assignments?
		Multiple Reductions in a parfor-Loop
	Classification of Variables in parfor-Loops
		Overview
		Sliced Variables
		Broadcast Variables
		Reduction Variables
		Temporary Variables
	Accelerate MATLAB Algorithms That Use Parallel for-Loops (parfor)
	Specify Maximum Number of Threads in parfor-Loops
	Troubleshooting parfor-Loops
		Global or Persistent Declarations in parfor-Loop
		Compiler Does Not Support OpenMP
	Generate MEX Code to Accelerate Simulation of Bouncing Balls
	Generate MEX Code to Calculate Geodesics in Curved Space-Time
	Generate Accelerated MEX Code for Reverberation Using MATLAB Classes
	Using PARFOR to Speed Up an Image Contrast Enhancement Algorithm
	Use Generated Code to Accelerate an Application Deployed with MATLAB Compiler
External Code Integration
	Call Custom C/C++ Code from the Generated Code
		Call C Code
		Return Multiple Values from a C Function
		Pass Data by Reference
		Integrate External Code that Uses Custom Data Types
		Integrate External Code that Uses Pointers, Structures, and Arrays
	Configure Build for External C/C++ Code
		Provide External Files for Code Generation
		Configure Build from Within a Function
		Configure Build by Using the Configuration Object
		Configure Build by Using the MATLAB Coder App
	Develop Interface for External C/C++ Code
		Create a class from coder.ExternalDependency
		Best Practices for Using coder.ExternalDependency
	Mapping MATLAB Types to Types in Generated Code
		Complex Types
		Structure Types
		Fixed-Point Types
		Character Vectors
		Multiword Types
	Generate Code to Read a Text File
	Generate C/C++ Strings from MATLAB Strings and Character Row Vectors
		Add New Line to Strings in Generated Code
		Limitations
Generate Efficient and Reusable Code
	Optimization Strategies
	Modularize MATLAB Code
	Avoid Data Copies of Function Inputs in Generated Code
	Inline Code
	Control Inlining to Fine-Tune Performance and Readability of Generated Code
		Control Inlining of a Specific MATLAB Function
		Control Inlining by Using Code Generation Settings
		Interaction Between Different Inlining Controls
		Example: Control Inlining at the Boundary Between Your Functions and MathWorks® Functions
	Fold Function Calls into Constants
	Control Stack Space Usage
	Stack Allocation and Performance
		Allocate Heap Space from Command Line
		Allocate Heap Space Using the MATLAB Coder App
	Dynamic Memory Allocation and Performance
		When Dynamic Memory Allocation Occurs
	Minimize Dynamic Memory Allocation
	Provide Maximum Size for Variable-Size Arrays
	Disable Dynamic Memory Allocation During Code Generation
	Set Dynamic Memory Allocation Threshold
		Set Dynamic Memory Allocation Threshold Using the MATLAB Coder App
		Set Dynamic Memory Allocation Threshold at the Command Line
	Optimize Dynamic Array Access
		Disable Cache Dynamic Array Data Pointer Property
		Compare Generated C Code
	Excluding Unused Paths from Generated Code
	Prevent Code Generation for Unused Execution Paths
		Prevent Code Generation When Local Variable Controls Flow
		Prevent Code Generation When Input Variable Controls Flow
	Generate Code with Parallel for-Loops (parfor)
	Minimize Redundant Operations in Loops
	Unroll for-Loops and parfor-Loops
		Force for-Loop Unrolling by Using coder.unroll
		Set Loop Unrolling Threshold for All for-Loops and parfor-Loops in the MATLAB Code
	Disable Support for Integer Overflow or Nonfinites
		Disable Support for Integer Overflow
		Disable Support for Nonfinite Numbers
	Integrate External/Custom Code
	MATLAB Coder Optimizations in Generated Code
		Constant Folding
		Loop Fusion
		Successive Matrix Operations Combined
		Unreachable Code Elimination
		memcpy Calls
		memset Calls
	Use coder.const with Extrinsic Function Calls
		Reduce Code Generation Time by Using coder.const with feval
		Force Constant-Folding by Using coder.const with feval
	memcpy Optimization
	memset Optimization
	Reuse Large Arrays and Structures
	LAPACK Calls in Generated Code
	Speed Up Linear Algebra in Generated Standalone Code by Using LAPACK Calls
		Specify LAPACK Library
		Write LAPACK Callback Class
		Generate LAPACK Calls by Specifying a LAPACK Callback Class
		Locate LAPACK Library in Execution Environment
	BLAS Calls in Generated Code
	Speed Up Matrix Operations in Generated Standalone Code by Using BLAS Calls
		Specify BLAS Library
		Write BLAS Callback Class
		Generate BLAS Calls by Specifying a BLAS Callback Class
		Locate BLAS Library in Execution Environment
		Usage Notes and Limitations for OpenBLAS Library
	Speed Up Fast Fourier Transforms in Generated Standalone Code by Using FFTW Library Calls
		FFTW Planning Considerations
		Install FFTW Library
		Write an FFT Callback Class
		Generate FFTW Library Calls by Specifying an FFT Library Callback Class
	Synchronize Multithreaded Access to FFTW Planning in Generated Standalone Code
		Prerequisites
		Create a MATLAB Function
		Write Supporting C Code
		Write an FFT Library Callback Class
		Generate a Dynamically Linked Library
		Specify Configuration Parameters in the MATLAB Coder App
	Speed Up MEX Generation by Using JIT Compilation
		Specify Use of JIT Compilation in the MATLAB Coder App
		Specify Use of JIT Compilation at the Command Line
		JIT Compilation Incompatibilities
	Automatically Parallelize for Loops in Generated Code
		Parallelize for Loops by Using MATLAB Coder App
		Parallelize for Loops at Command Line
		Inspect Generated Code and Code Insights
		Disable Automatic Parallelization of a for Loop
		Parallelize Implicit for Loops
		Parallelize for Loops Performing Reduction Operations
		Usage Notes and Limitations
	Specify Maximum Number of Threads to Run Parallel for-Loops in the Generated Code
		Specify Number of Threads by Using MATLAB Coder App
		Specify Number of Threads at the Command Line
		Create Custom Hardware Processor
	Optimize Generated Code for Fast Fourier Transform Functions
		Intel Target Support
		ARM Target Support
		MEX Target Support
Generating Reentrant C Code from MATLAB Code
	Generate Reentrant C Code from MATLAB Code
		About This Tutorial
		Copying Files Locally
		About the Example
		Providing a C main Function
		Configuring Build Parameters
		Generating the C Code
		Viewing the Generated C Code
		Running the Code
		Key Points to Remember
		Learn More
	Reentrant Code
	Specify Generation of Reentrant Code
		Specify Generation of Reentrant Code Using the MATLAB Coder App
		Specify Generation of Reentrant Code Using the Command-Line Interface
	API for Generated Reusable Code
	Call Reentrant Code in a Single-Threaded Environment
	Call Reentrant Code in a Multithreaded Environment
		Multithreaded Examples
	Call Reentrant Code with No Persistent or Global Data (UNIX Only)
		Provide a Main Function
		Generate Reentrant C Code
		Examine the Generated Code
		Run the Code
	Call Reentrant Code — Multithreaded with Persistent Data (Windows Only)
		MATLAB Code for This Example
		Provide a Main Function
		Generate Reentrant C Code
		Examine the Generated Code
		Run the Code
	Call Reentrant Code — Multithreaded with Persistent Data (UNIX Only)
		MATLAB Code for This Example
		Provide a Main Function
		Generate Reentrant C Code
		Examine the Generated Code
		Run the Code
Troubleshooting Code Generation Problems
	JIT MEX Incompatibility Warning
		Issue
		Cause
		Solution
	JIT Compilation Does Not Support OpenMP
		Issue
		Cause
		Solution
	Output Variable Must Be Assigned Before Run-Time Recursive Call
		Issue
		Cause
		Solution
	Compile-Time Recursion Limit Reached
		Issue
		Cause
		Solutions
		Force Run-Time Recursion
		Increase the Compile-Time Recursion Limit
	Unable to Determine That Every Element of Cell Array Is Assigned
		Issue
		Cause
		Solution
	Nonconstant Index into varargin or varargout in a for-Loop
		Issue
		Cause
		Solution
	Unknown Output Type for coder.ceval
		Issue
		Cause
		Solution
	MEX Generated on macOS Platform Stays Loaded in Memory
		Issue
		Cause
		Solution
	Resolve Error: Code Generator Failed to Produce C++ Destructor for MATLAB Class
		Issue
		Possible Solutions
Row-Major Array Layout
	Row-Major and Column-Major Array Layouts
		Array Storage in Computer Memory
		Conversions Between Different Array Layouts
	Generate Code That Uses Row-Major Array Layout
		Specify Row-Major Layout
		Array Layout and Algorithmic Efficiency
		Row-Major Layout for N-Dimensional Arrays
		Specify Array Layout in External Function Calls
Deep Learning with MATLAB Coder
	Prerequisites for Deep Learning with MATLAB Coder
		MathWorks Products
		Third-Party Hardware and Software
		Environment Variables
	Workflow for Deep Learning Code Generation with MATLAB Coder
	Networks and Layers Supported for Code Generation
		Supported Pretrained Networks
		Supported Layers
		Supported Classes
		int8 Code Generation
	Analyze Network for Code Generation
		Check dlnetwork for Code Generation Compatibility
		Analyze Classification Network for Code Generation Compatibility
	Load Pretrained Networks for Code Generation
		Load a Network by Using coder.loadDeepLearningNetwork
		Specify a Network Object for Code Generation
		Specify a dlnetwork Object for Code Generation
	Generate Generic C/C++ Code for Deep Learning Networks
		Requirements
		Code Generation by Using codegen
		Code Generation by Using the MATLAB Coder App
	Code Generation for Deep Learning Networks with MKL-DNN
		Requirements
		Code Generation by Using codegen
		Code Generation by Using the MATLAB Coder App
	Code Generation for Deep Learning Networks with ARM Compute Library
		Requirements
		Code Generation by Using codegen
		Code Generation by Using the MATLAB Coder App
	Cross-Compile Deep Learning Code That Uses ARM Compute Library
		Prerequisites
		Generate and Deploy Deep Learning Code
	Generate int8 Code for Deep Learning Networks
		ARM Cortex-A Processors
		ARM Cortex-M Processors
	Update Network Parameters After Code Generation
		Create an Entry-Point Function
		Create a Network
		Code Generation by Using codegen
		Run the Generated MEX
		Update Network with Different Learnable Parameters
		Run the Generated MEX with Updated Learnables
		Limitations
	Deep Learning Code Generation on Intel Targets for Different Batch Sizes
	Deep Learning Prediction with ARM Compute Using codegen
	Code Generation for Deep Learning on ARM Targets
	Generate C++ Code for Object Detection Using YOLO v2 and Intel MKL-DNN
	Code Generation and Deployment of MobileNet-v2 Network to Raspberry Pi
	Code Generation for Semantic Segmentation Application on Intel CPUs That Uses U-Net
	Code Generation for Semantic Segmentation Application on ARM Neon Targets That Uses U-Net
	Code Generation for LSTM Network on Raspberry Pi
	Code Generation for LSTM Network That Uses Intel MKL-DNN
	Code Generation for Convolutional LSTM Network That Uses Intel MKL-DNN
	Cross Compile Deep Learning Code for ARM Neon Targets
	Generate INT8 Code for Deep Learning Network on Raspberry Pi
	Generate INT8 Code for Deep Learning Network on Cortex-M Target
	Generate Generic C/C++ Code for Sequence-to-Sequence Regression That Uses Deep Learning
	Generate Digit Images Using Variational Autoencoder on Intel CPUs
	Post-Code-Generation Update of Deep Learning Network Parameters
	Generate Code for LSTM Network and Deploy on Cortex-M Target
	Prune Filters in a Detection Network Using Taylor Scores
Generating Code for C++
	C++ Code Generation
		Generate C++ Code
		C++ Language Features Supported in Generated Code
		Additional Differences Between Generated C Code and C++ Code
	Generate C++ Code with Class Interface
		Generate C++ Code with a Class Interface
		Globals and Persistents in a Generated C++ Class
		Put Multiple Entry-Point Functions in the Same Class
	Organize Generated C++ Code into Namespaces
		Settings That Control Namespace Structure
		Example: Generate C++ Code with Namespaces
	Integrate Multiple Generated C++ Code Projects
	Generate C++ Classes for MATLAB Classes That Model Simple and Damped Oscillators
Simulation Data Inspector
	View Data in the Simulation Data Inspector
		View Logged Data
		Import Data from the Workspace or a File
		View Complex Data
		View String Data
		View Frame-Based Data
		View Event-Based Data
	Import Data from a CSV File into the Simulation Data Inspector
		Basic File Format
		Multiple Time Vectors
		Signal Metadata
		Import Data from a CSV File
	Microsoft Excel Import, Export, and Logging Format
		Basic File Format
		Multiple Time Vectors
		Signal Metadata
		User-Defined Data Types
		Complex, Multidimensional, and Bus Signals
		Function-Call Signals
		Simulation Parameters
		Multiple Runs
	Configure the Simulation Data Inspector
		Logged Data Size and Location
		Archive Behavior and Run Limit
		Incoming Run Names and Location
		Signal Metadata to Display
		Signal Selection on the Inspect Pane
		How Signals Are Aligned for Comparison
		Colors Used to Display Comparison Results
		Signal Grouping
		Data to Stream from Parallel Simulations
		Options for Saving and Loading Session Files
		Signal Display Units
	How the Simulation Data Inspector Compares Data
		Signal Alignment
		Synchronization
		Interpolation
		Tolerance Specification
		Limitations
	Save and Share Simulation Data Inspector Data and Views
		Save and Load Simulation Data Inspector Sessions
		Share Simulation Data Inspector Views
		Share Simulation Data Inspector Plots
		Create Simulation Data Inspector Report
		Export Data to the Workspace or a File
		Export Video Signal to an MP4 File
	Inspect and Compare Data Programmatically
		Create a Run and View the Data
		Compare Two Signals in the Same Run
		Compare Runs with Global Tolerance
		Analyze Simulation Data Using Signal Tolerances
	Limit the Size of Logged Data
		Limit the Number of Runs Retained in the Simulation Data Inspector Archive
		Specify a Minimum Disk Space Requirement or Maximum Size for Logged Data
		View Data Only During Simulation
		Reduce the Number of Data Points Logged from Simulation




نظرات کاربران