دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 5
نویسندگان: John Bird
سری: Routledge Pocket Books
ISBN (شابک) : 0367266539, 9780367266530
ناشر: Routledge
سال نشر: 2019
تعداد صفحات: 571
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 12 مگابایت
در صورت تبدیل فایل کتاب Mathematics Pocket Book for Engineers and Scientists به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کتاب جیبی ریاضی برای مهندسان و دانشمندان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این مجموعه از فرمولهای ضروری، تعاریف، جداول و اطلاعات عمومی، اطلاعات ریاضی مورد نیاز دانشجویان مهندسی، تکنسینها، دانشمندان و متخصصان را در تمرین روزانه مهندسی فراهم میکند. یک منبع مرجع عملی و همه کاره، که اکنون در پنجمین ویرایش خود قرار دارد، طرحبندی تغییر و سادهسازی شده است تا اطمینان حاصل شود که اطلاعات حتی سریعتر و آسانتر در دسترس هستند - و آن را به همراهی مفید در محل، در دفتر و همچنین برای مطالعه دانشگاهی تبدیل میکند. . همچنین بهعنوان یک راهنمای بازنگری عملی برای کسانی که دورههای مدرک مهندسی و علوم را میگذرانند، و برای ملیتهای BTEC، ملیتهای عالی و NVQ عمل میکند، جایی که ریاضیات یکی از الزامات پایه این دوره است.
همه ملزومات ریاضیات مهندسی - از جبر، هندسه و مثلثات گرفته تا مدارهای منطقی، معادلات دیفرانسیل و احتمال - با توضیحات واضح و مختصر پوشش داده شده و با بیش از 300 نقشه خطی و 500 مثال کار شده بر اساس برنامه دنیای واقعی تاکید در سراسر کتاب بر ارائه ابزارهای عملی مورد نیاز برای حل سریع و کارآمد مسائل ریاضی در زمینه های مهندسی است. ارائه جان برد از این ماده اصلی همه پاسخ ها را در اختیار شما قرار می دهد.
This compendium of essential formulae, definitions, tables and general information provides the mathematical information required by engineering students, technicians, scientists and professionals in day-to-day engineering practice. A practical and versatile reference source, now in its fifth edition, the layout has been changed and streamlined to ensure the information is even more quickly and readily available – making it a handy companion on-site, in the office as well as for academic study. It also acts as a practical revision guide for those undertaking degree courses in engineering and science, and for BTEC Nationals, Higher Nationals and NVQs, where mathematics is an underpinning requirement of the course.
All the essentials of engineering mathematics – from algebra, geometry and trigonometry to logic circuits, differential equations and probability – are covered, with clear and succinct explanations and illustrated with over 300 line drawings and 500 worked examples based in real-world application. The emphasis throughout the book is on providing the practical tools needed to solve mathematical problems quickly and efficiently in engineering contexts. John Bird’s presentation of this core material puts all the answers at your fingertips.
Cover Title Page Copyright Page Table of Contents Preface Section 1: Engineering conversions, constants and symbols Chapter 1: General conversions and the Greek alphabet Chapter 2: Basic SI units, derived units and common prefixes Chapter 3: Some physical and mathematical constants Chapter 4: Recommended mathematical symbols Chapter 5: Symbols for physical quantities Section 2: Some algebra topics Chapter 6: Introduction to algebra Chapter 7: Polynomial division Chapter 8: The factor theorem Chapter 9: The remainder theorem Chapter 10: Continued fractions Chapter 11: Solving simple equations Chapter 12: Transposing formulae Chapter 13: Solving simultaneous equations Chapter 14: Solving quadratic equations by factorising Chapter 15: Solving quadratic equations by completing the square Chapter 16: Solving quadratic equations by formula Chapter 17: Logarithms Chapter 18: Exponential functions Chapter 19: Napierian logarithms Chapter 20: Hyperbolic functions Chapter 21: Partial fractions Section 3: Some number topics Chapter 22: Simple number sequences Chapter 23: Arithmetic progressions Chapter 24: Geometric progressions Chapter 25: Inequalities Chapter 26: The binomial series Chapter 27: Maclaurin’s theorem Chapter 28: Limiting values – L’Hopital’s rule Chapter 29: Solving equations by iterative methods (1) – the bisection method Chapter 30: Solving equations by iterative methods (2) – an algebraic method of successive approximations Chapter 31: Solving equations by iterative methods (3) – the Newton-Raphson method Chapter 32: Computer numbering systems Section 4: Areas and volumes Chapter 33: Area of plane figures Chapter 34: Circles Chapter 35: Volumes and surface areas of regular solids Chapter 36: Volumes and surface areas of frusta of pyramids and cones Chapter 37: The frustum and zone of a sphere Chapter 38: Areas and volumes of irregular figures and solids Chapter 39: The mean or average value of a waveform Section 5: Geometry and trigonometry Chapter 40: Types and properties of angles Chapter 41: Properties of triangles Chapter 42: The theorem of Pythagoras Chapter 43: Trigonometric ratios of acute angles Chapter 44: Evaluating trigonometric ratios Chapter 45: Fractional and surd forms of trigonometric ratios Chapter 46: Solution of right-angled triangles Chapter 47: Cartesian and polar co-ordinates Chapter 48: Sine and cosine rules and areas of any triangle Chapter 49: Graphs of trigonometric functions Chapter 50: Angles of any magnitude Chapter 51: Sine and cosine waveforms Chapter 52: Trigonometric identities and equations Chapter 53: The relationship between trigonometric and hyperbolic functions Chapter 54: Compound angles Section 6: Graphs Chapter 55: The straight-line graph Chapter 56: Determination of law Chapter 57: Graphs with logarithmic scales Chapter 58: Graphical solution of simultaneous equations Chapter 59: Quadratic graphs Chapter 60: Graphical solution of cubic equations Chapter 61: Polar curves Chapter 62: The ellipse and hyperbola Chapter 63: Graphical functions Section 7: Complex numbers Chapter 64: General complex number formulae Chapter 65: Cartesian form of a complex number Chapter 66: Polar form of a complex number Chapter 67: Applications of complex numbers Chapter 68: De Moivre’s theorem Chapter 69: Exponential form of a complex number Section 8: Vectors Chapter 70: Scalars and vectors Chapter 71: Vector addition Chapter 72: Resolution of vectors Chapter 73: Vector subtraction Chapter 74: Relative velocity Chapter 75: i, j, k notation Chapter 76: Combination of two periodic functions Chapter 77: The scalar product of two vectors Chapter 78: Vector products Section 9: Matrices and determinants Chapter 79: Addition, subtraction and multiplication of matrices Chapter 80: The determinant and inverse of a 2 by 2 matrix Chapter 81: The determinant of a 3 by 3 matrix Chapter 82: The inverse of a 3 by 3 matrix Chapter 83: Solution of simultaneous equations by matrices Chapter 84: Solution of simultaneous equations by determinants Chapter 85: Solution of simultaneous equations using Cramer’s rule Chapter 86: Solution of simultaneous equations using Gaussian elimination Chapter 87: Eigenvalues and eigenvectors Section 10: Boolean algebra and logic circuits Chapter 88: Boolean algebra and switching circuits Chapter 89: Simplifying Boolean expressions Chapter 90: Laws and rules of Boolean algebra Chapter 91: De Morgan’s laws Chapter 92: Karnaugh maps Chapter 93: Logic circuits and gates Chapter 94: Universal logic gates Section 11: Differential calculus and its applications Chapter 95: Common standard derivatives Chapter 96: Products and quotients Chapter 97: Function of a function Chapter 98: Successive differentiation Chapter 99: Differentiation of hyperbolic functions Chapter 100: Rates of change using differentiation Chapter 101: Velocity and acceleration Chapter 102: Turning points Chapter 103: Tangents and normals Chapter 104: Small changes using differentiation Chapter 105: Parametric equations Chapter 106: Differentiating implicit functions Chapter 107: Differentiation of logarithmic functions Chapter 108: Differentiation of inverse trigonometric functions Chapter 109: Differentiation of inverse hyperbolic functions Chapter 110: Partial differentiation Chapter 111: Total differential Chapter 112: Rates of change using partial differentiation Chapter 113: Small changes using partial differentiation Chapter 114: Maxima, minima and saddle points of functions of two variables Section 12: Integral calculus and its applications Chapter 115: Standard integrals Chapter 116: Non-standard integrals Chapter 117: Integration using algebraic substitutions Chapter 118: Integration using trigonometric and hyperbolic substitutions Chapter 119: Integration using partial fractions Chapter 120: The t = tan θ/2 substitution Chapter 121: Integration by parts Chapter 122: Reduction formulae Chapter 123: Double and triple integrals Chapter 124: Numerical integration Chapter 125: Area under and between curves Chapter 126: Mean or average values Chapter 127: Root mean square values Chapter 128: Volumes of solids of revolution Chapter 129: Centroids Chapter 130: Theorem of Pappus Chapter 131: Second moments of area Section 13: Differential equations Chapter 132: The solution of equations of the form dy/dx = f(x) Chapter 133: The solution of equations of the form dy/dx = f(y) Chapter 134: The solution of equations of the form dy/dx = f(x).f(y) Chapter 135: Homogeneous first order differential equations Chapter 136: Linear first order differential equations Chapter 137: Numerical methods for first order differential equations (1) – Euler’s method Chapter 138: Numerical methods for first order differential equations (2) – Euler-Cauchy method Chapter 139: Numerical methods for first order differential equations (3) – Runge-Kutta method Chapter 140: Second order differential equations of the form ad2y/dx2 + bdy/dx + cy = 0 Chapter 141: Second order differential equations of the form a ad2y/dx2 + bdy/dx + cy = f(x) Chapter 142: Power series methods of solving ordinary differential equations (1) – Leibniz theorem Chapter 143: Power series methods of solving ordinary differential equations (2) – Leibniz-Maclaurin method Chapter 144: Power series methods of solving ordinary differential equations (3) – Frobenius method Chapter 145: Power series methods of solving ordinary differential equations (4) – Bessel’s equation Chapter 146: Power series methods of solving ordinary differential equations (5) – Legendre’s equation and Legendre’s polynomials Chapter 147: Power series methods of solving ordinary differential equations (6) – Rodrigue’s formula Chapter 148: Solution of partial differential equations (1) – by direct integration Chapter 149: Solution of partial differential equations (2) – the wave equation Chapter 150: Solution of partial differential equations (3) – the heat conduction equation Chapter 151: Solution of partial differential equations (4) – Laplace’s equation Section 14: Laplace transforms Chapter 152: Standard Laplace transforms Chapter 153: The initial and final value theorems Chapter 154: Inverse Laplace transforms Chapter 155: Poles and zeros Chapter 156: The Laplace transform of the Heaviside function Chapter 157: Solving differential equations using Laplace transforms Chapter 158: Solving simultaneous differential equations using Laplace transforms Section 15: Z-transforms Chapter 159: Sequences Chapter 160: Properties of z-transforms Chapter 161: Inverse z-transforms Chapter 162: Using z-transforms to solve difference equations Section 16: Fourier series Chapter 163: Fourier series for periodic functions of period 2π Chapter 164: Fourier series for a non-periodic function over period 2π Chapter 165: Even and odd functions Chapter 166: Half range Fourier series Chapter 167: Expansion of a periodic function of period L Chapter 168: Half-range Fourier series for functions defined over range L Chapter 169: The complex or exponential form of a Fourier series Chapter 170: A numerical method of harmonic analysis Chapter 171: Complex waveform considerations Section 17: Statistics and probability Chapter 172: Presentation of ungrouped data Chapter 173: Presentation of grouped data Chapter 174: Measures of central tendency Chapter 175: Quartiles, deciles and percentiles Chapter 176: Probability Chapter 177: Permutations and combinations Chapter 178: Bayes’ theorem Chapter 179: The binomial distribution Chapter 180: The Poisson distribution Chapter 181: The normal distribution Chapter 182: Linear correlation Chapter 183: Linear regression Chapter 184: Sampling and estimation theories Chapter 185: Chi-square values Chapter 186: The sign test Chapter 187: Wilcoxon signed-rank test Chapter 188: The Mann-Whitney test Index