ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Mathematics Pocket Book for Engineers and Scientists

دانلود کتاب کتاب جیبی ریاضی برای مهندسان و دانشمندان

Mathematics Pocket Book for Engineers and Scientists

مشخصات کتاب

Mathematics Pocket Book for Engineers and Scientists

ویرایش: 5 
نویسندگان:   
سری: Routledge Pocket Books 
ISBN (شابک) : 0367266539, 9780367266530 
ناشر: Routledge 
سال نشر: 2019 
تعداد صفحات: 571 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 12 مگابایت 

قیمت کتاب (تومان) : 39,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 18


در صورت تبدیل فایل کتاب Mathematics Pocket Book for Engineers and Scientists به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب کتاب جیبی ریاضی برای مهندسان و دانشمندان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب کتاب جیبی ریاضی برای مهندسان و دانشمندان



این مجموعه از فرمول‌های ضروری، تعاریف، جداول و اطلاعات عمومی، اطلاعات ریاضی مورد نیاز دانشجویان مهندسی، تکنسین‌ها، دانشمندان و متخصصان را در تمرین روزانه مهندسی فراهم می‌کند. یک منبع مرجع عملی و همه کاره، که اکنون در پنجمین ویرایش خود قرار دارد، طرح‌بندی تغییر و ساده‌سازی شده است تا اطمینان حاصل شود که اطلاعات حتی سریع‌تر و آسان‌تر در دسترس هستند - و آن را به همراهی مفید در محل، در دفتر و همچنین برای مطالعه دانشگاهی تبدیل می‌کند. . همچنین به‌عنوان یک راهنمای بازنگری عملی برای کسانی که دوره‌های مدرک مهندسی و علوم را می‌گذرانند، و برای ملیت‌های BTEC، ملیت‌های عالی و NVQ عمل می‌کند، جایی که ریاضیات یکی از الزامات پایه این دوره است.

همه ملزومات ریاضیات مهندسی - از جبر، هندسه و مثلثات گرفته تا مدارهای منطقی، معادلات دیفرانسیل و احتمال - با توضیحات واضح و مختصر پوشش داده شده و با بیش از 300 نقشه خطی و 500 مثال کار شده بر اساس برنامه دنیای واقعی تاکید در سراسر کتاب بر ارائه ابزارهای عملی مورد نیاز برای حل سریع و کارآمد مسائل ریاضی در زمینه های مهندسی است. ارائه جان برد از این ماده اصلی همه پاسخ ها را در اختیار شما قرار می دهد.


توضیحاتی درمورد کتاب به خارجی

This compendium of essential formulae, definitions, tables and general information provides the mathematical information required by engineering students, technicians, scientists and professionals in day-to-day engineering practice. A practical and versatile reference source, now in its fifth edition, the layout has been changed and streamlined to ensure the information is even more quickly and readily available – making it a handy companion on-site, in the office as well as for academic study. It also acts as a practical revision guide for those undertaking degree courses in engineering and science, and for BTEC Nationals, Higher Nationals and NVQs, where mathematics is an underpinning requirement of the course.

All the essentials of engineering mathematics – from algebra, geometry and trigonometry to logic circuits, differential equations and probability – are covered, with clear and succinct explanations and illustrated with over 300 line drawings and 500 worked examples based in real-world application. The emphasis throughout the book is on providing the practical tools needed to solve mathematical problems quickly and efficiently in engineering contexts. John Bird’s presentation of this core material puts all the answers at your fingertips.



فهرست مطالب

Cover
Title Page
Copyright Page
Table of Contents
Preface
Section 1: Engineering conversions, constants and symbols
	Chapter 1: General conversions and the Greek alphabet
	Chapter 2: Basic SI units, derived units and common prefixes
	Chapter 3: Some physical and mathematical constants
	Chapter 4: Recommended mathematical symbols
	Chapter 5: Symbols for physical quantities
Section 2: Some algebra topics
	Chapter 6: Introduction to algebra
	Chapter 7: Polynomial division
	Chapter 8: The factor theorem
	Chapter 9: The remainder theorem
	Chapter 10: Continued fractions
	Chapter 11: Solving simple equations
	Chapter 12: Transposing formulae
	Chapter 13: Solving simultaneous equations
	Chapter 14: Solving quadratic equations by factorising
	Chapter 15: Solving quadratic equations by completing the square
	Chapter 16: Solving quadratic equations by formula
	Chapter 17: Logarithms
	Chapter 18: Exponential functions
	Chapter 19: Napierian logarithms
	Chapter 20: Hyperbolic functions
	Chapter 21: Partial fractions
Section 3: Some number topics
	Chapter 22: Simple number sequences
	Chapter 23: Arithmetic progressions
	Chapter 24: Geometric progressions
	Chapter 25: Inequalities
	Chapter 26: The binomial series
	Chapter 27: Maclaurin’s theorem
	Chapter 28: Limiting values – L’Hopital’s rule
	Chapter 29: Solving equations by iterative methods (1) – the bisection method
	Chapter 30: Solving equations by iterative methods (2) – an algebraic method of successive approximations
	Chapter 31: Solving equations by iterative methods (3) – the Newton-Raphson method
	Chapter 32: Computer numbering systems
Section 4: Areas and volumes
	Chapter 33: Area of plane figures
	Chapter 34: Circles
	Chapter 35: Volumes and surface areas of regular solids
	Chapter 36: Volumes and surface areas of frusta of pyramids and cones
	Chapter 37: The frustum and zone of a sphere
	Chapter 38: Areas and volumes of irregular figures and solids
	Chapter 39: The mean or average value of a waveform
Section 5: Geometry and trigonometry
	Chapter 40: Types and properties of angles
	Chapter 41: Properties of triangles
	Chapter 42: The theorem of Pythagoras
	Chapter 43: Trigonometric ratios of acute angles
	Chapter 44: Evaluating trigonometric ratios
	Chapter 45: Fractional and surd forms of trigonometric ratios
	Chapter 46: Solution of right-angled triangles
	Chapter 47: Cartesian and polar co-ordinates
	Chapter 48: Sine and cosine rules and areas of any triangle
	Chapter 49: Graphs of trigonometric functions
	Chapter 50: Angles of any magnitude
	Chapter 51: Sine and cosine waveforms
	Chapter 52: Trigonometric identities and equations
	Chapter 53: The relationship between trigonometric and hyperbolic functions
	Chapter 54: Compound angles
Section 6: Graphs
	Chapter 55: The straight-line graph
	Chapter 56: Determination of law
	Chapter 57: Graphs with logarithmic scales
	Chapter 58: Graphical solution of simultaneous equations
	Chapter 59: Quadratic graphs
	Chapter 60: Graphical solution of cubic equations
	Chapter 61: Polar curves
	Chapter 62: The ellipse and hyperbola
	Chapter 63: Graphical functions
Section 7: Complex numbers
	Chapter 64: General complex number formulae
	Chapter 65: Cartesian form of a complex number
	Chapter 66: Polar form of a complex number
	Chapter 67: Applications of complex numbers
	Chapter 68: De Moivre’s theorem
	Chapter 69: Exponential form of a complex number
Section 8: Vectors
	Chapter 70: Scalars and vectors
	Chapter 71: Vector addition
	Chapter 72: Resolution of vectors
	Chapter 73: Vector subtraction
	Chapter 74: Relative velocity
	Chapter 75: i, j, k notation
	Chapter 76: Combination of two periodic functions
	Chapter 77: The scalar product of two vectors
	Chapter 78: Vector products
Section 9: Matrices and determinants
	Chapter 79: Addition, subtraction and multiplication of matrices
	Chapter 80: The determinant and inverse of a 2 by 2 matrix
	Chapter 81: The determinant of a 3 by 3 matrix
	Chapter 82: The inverse of a 3 by 3 matrix
	Chapter 83: Solution of simultaneous equations by matrices
	Chapter 84: Solution of simultaneous equations by determinants
	Chapter 85: Solution of simultaneous equations using Cramer’s rule
	Chapter 86: Solution of simultaneous equations using Gaussian elimination
	Chapter 87: Eigenvalues and eigenvectors
Section 10: Boolean algebra and logic circuits
	Chapter 88: Boolean algebra and switching circuits
	Chapter 89: Simplifying Boolean expressions
	Chapter 90: Laws and rules of Boolean algebra
	Chapter 91: De Morgan’s laws
	Chapter 92: Karnaugh maps
	Chapter 93: Logic circuits and gates
	Chapter 94: Universal logic gates
Section 11: Differential calculus and its applications
	Chapter 95: Common standard derivatives
	Chapter 96: Products and quotients
	Chapter 97: Function of a function
	Chapter 98: Successive differentiation
	Chapter 99: Differentiation of hyperbolic functions
	Chapter 100: Rates of change using differentiation
	Chapter 101: Velocity and acceleration
	Chapter 102: Turning points
	Chapter 103: Tangents and normals
	Chapter 104: Small changes using differentiation
	Chapter 105: Parametric equations
	Chapter 106: Differentiating implicit functions
	Chapter 107: Differentiation of logarithmic functions
	Chapter 108: Differentiation of inverse trigonometric functions
	Chapter 109: Differentiation of inverse hyperbolic functions
	Chapter 110: Partial differentiation
	Chapter 111: Total differential
	Chapter 112: Rates of change using partial differentiation
	Chapter 113: Small changes using partial differentiation
	Chapter 114: Maxima, minima and saddle points of functions of two variables
Section 12: Integral calculus and its applications
	Chapter 115: Standard integrals
	Chapter 116: Non-standard integrals
	Chapter 117: Integration using algebraic substitutions
	Chapter 118: Integration using trigonometric and hyperbolic substitutions
	Chapter 119: Integration using partial fractions
	Chapter 120: The t = tan θ/2 substitution
	Chapter 121: Integration by parts
	Chapter 122: Reduction formulae
	Chapter 123: Double and triple integrals
	Chapter 124: Numerical integration
	Chapter 125: Area under and between curves
	Chapter 126: Mean or average values
	Chapter 127: Root mean square values
	Chapter 128: Volumes of solids of revolution
	Chapter 129: Centroids
	Chapter 130: Theorem of Pappus
	Chapter 131: Second moments of area
Section 13: Differential equations
	Chapter 132: The solution of equations of the form dy/dx = f(x)
	Chapter 133: The solution of equations of the form dy/dx = f(y)
	Chapter 134: The solution of equations of the form dy/dx = f(x).f(y)
	Chapter 135: Homogeneous first order differential equations
	Chapter 136: Linear first order differential equations
	Chapter 137: Numerical methods for first order differential equations (1) – Euler’s method
	Chapter 138: Numerical methods for first order differential equations (2) – Euler-Cauchy method
	Chapter 139: Numerical methods for first order differential equations (3) – Runge-Kutta method
	Chapter 140: Second order differential equations of the form ad2y/dx2 + bdy/dx + cy = 0
	Chapter 141: Second order differential equations of the form a ad2y/dx2 + bdy/dx + cy = f(x)
	Chapter 142: Power series methods of solving ordinary differential equations (1) – Leibniz theorem
	Chapter 143: Power series methods of solving ordinary differential equations (2) – Leibniz-Maclaurin method
	Chapter 144: Power series methods of solving ordinary differential equations (3) – Frobenius method
	Chapter 145: Power series methods of solving ordinary differential equations (4) – Bessel’s equation
	Chapter 146: Power series methods of solving ordinary differential equations (5) – Legendre’s equation and Legendre’s polynomials
	Chapter 147: Power series methods of solving ordinary differential equations (6) – Rodrigue’s formula
	Chapter 148: Solution of partial differential equations (1) – by direct integration
	Chapter 149: Solution of partial differential equations (2) – the wave equation
	Chapter 150: Solution of partial differential equations (3) – the heat conduction equation
	Chapter 151: Solution of partial differential equations (4) – Laplace’s equation
Section 14: Laplace transforms
	Chapter 152: Standard Laplace transforms
	Chapter 153: The initial and final value theorems
	Chapter 154: Inverse Laplace transforms
	Chapter 155: Poles and zeros
	Chapter 156: The Laplace transform of the Heaviside function
	Chapter 157: Solving differential equations using Laplace transforms
	Chapter 158: Solving simultaneous differential equations using Laplace transforms
Section 15: Z-transforms
	Chapter 159: Sequences
	Chapter 160: Properties of z-transforms
	Chapter 161: Inverse z-transforms
	Chapter 162: Using z-transforms to solve difference equations
Section 16: Fourier series
	Chapter 163: Fourier series for periodic functions of period 2π
	Chapter 164: Fourier series for a non-periodic function over period 2π
	Chapter 165: Even and odd functions
	Chapter 166: Half range Fourier series
	Chapter 167: Expansion of a periodic function of period L
	Chapter 168: Half-range Fourier series for functions defined over range L
	Chapter 169: The complex or exponential form of a Fourier series
	Chapter 170: A numerical method of harmonic analysis
	Chapter 171: Complex waveform considerations
Section 17: Statistics and probability
	Chapter 172: Presentation of ungrouped data
	Chapter 173: Presentation of grouped data
	Chapter 174: Measures of central tendency
	Chapter 175: Quartiles, deciles and percentiles
	Chapter 176: Probability
	Chapter 177: Permutations and combinations
	Chapter 178: Bayes’ theorem
	Chapter 179: The binomial distribution
	Chapter 180: The Poisson distribution
	Chapter 181: The normal distribution
	Chapter 182: Linear correlation
	Chapter 183: Linear regression
	Chapter 184: Sampling and estimation theories
	Chapter 185: Chi-square values
	Chapter 186: The sign test
	Chapter 187: Wilcoxon signed-rank test
	Chapter 188: The Mann-Whitney test
Index




نظرات کاربران